2,001 research outputs found

    Pseudo-random graphs and bit probe schemes with one-sided error

    Full text link
    We study probabilistic bit-probe schemes for the membership problem. Given a set A of at most n elements from the universe of size m we organize such a structure that queries of type "Is x in A?" can be answered very quickly. H.Buhrman, P.B.Miltersen, J.Radhakrishnan, and S.Venkatesh proposed a bit-probe scheme based on expanders. Their scheme needs space of O(nlogm)O(n\log m) bits, and requires to read only one randomly chosen bit from the memory to answer a query. The answer is correct with high probability with two-sided errors. In this paper we show that for the same problem there exists a bit-probe scheme with one-sided error that needs space of O(n\log^2 m+\poly(\log m)) bits. The difference with the model of Buhrman, Miltersen, Radhakrishnan, and Venkatesh is that we consider a bit-probe scheme with an auxiliary word. This means that in our scheme the memory is split into two parts of different size: the main storage of O(nlog2m)O(n\log^2 m) bits and a short word of logO(1)m\log^{O(1)}m bits that is pre-computed once for the stored set A and `cached'. To answer a query "Is x in A?" we allow to read the whole cached word and only one bit from the main storage. For some reasonable values of parameters our space bound is better than what can be achieved by any scheme without cached data.Comment: 19 page

    Structured Intuition: A Methodology to Analyse Entity Authentication

    Get PDF

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi
    corecore