We study probabilistic bit-probe schemes for the membership problem. Given a
set A of at most n elements from the universe of size m we organize such a
structure that queries of type "Is x in A?" can be answered very quickly.
H.Buhrman, P.B.Miltersen, J.Radhakrishnan, and S.Venkatesh proposed a bit-probe
scheme based on expanders. Their scheme needs space of O(nlogm) bits, and
requires to read only one randomly chosen bit from the memory to answer a
query. The answer is correct with high probability with two-sided errors. In
this paper we show that for the same problem there exists a bit-probe scheme
with one-sided error that needs space of O(n\log^2 m+\poly(\log m)) bits. The
difference with the model of Buhrman, Miltersen, Radhakrishnan, and Venkatesh
is that we consider a bit-probe scheme with an auxiliary word. This means that
in our scheme the memory is split into two parts of different size: the main
storage of O(nlog2m) bits and a short word of logO(1)m bits that is
pre-computed once for the stored set A and `cached'. To answer a query "Is x in
A?" we allow to read the whole cached word and only one bit from the main
storage. For some reasonable values of parameters our space bound is better
than what can be achieved by any scheme without cached data.Comment: 19 page