

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Structured Intuition: A Methodology to Analyse Entity Authentication

Ahmed, Naveed; Jensen, Christian D.

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ahmed, N., & Jensen, C. D. (2012). Structured Intuition: A Methodology to Analyse Entity Authentication. Kgs.
Lyngby: Technical University of Denmark (DTU). (IMM-PHD-2012; No. 276).

http://orbit.dtu.dk/en/publications/structured-intuition-a-methodology-to-analyse-entity-authentication(25868621-1ef3-4617-b25d-237c7fc3a646).html

Structured Intuition:

A Methodology to Analyse
Entity Authentication

Naveed Ahmed

Kongens Lyngby 2012
IMM-PHD-2012-xx

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Entity authentication is a process of verifying a claimed identity of a network
party. It may appear to be a simple goal, but, depending on the application
and context, it entails a number of modalities, such as whether the party is
currently active on the network, whether the party is willing to communicate,
and whether the party knows that it has been authenticated. Combining such
goals in different ways leads to different flavours of entity authentication.

On an unauthenticated channel, an adversary can present a false claim of iden-
tity. Clearly, if the adversary succeeds, it may have serious consequences for
the security of the system, e.g., private information of legitimate parties may
be leaked or the security policy of a trusted system may be violated. At a cor-
porate level, such a failure of authentication may result in loss of proprietary
technology or customers’ credit card information. Sometimes, a single failure
of authentication affects the system for a long time, e.g., if an adversary is able
to install a malicious program, such as a root kit, back door, key logger, bot,
or other malware. Therefore, security protocols, which can resist a resourceful
adversary, are used to authenticate network parties.

Verification of an authentication protocol to show that it is secure is a hard
problem. Most of the reported flaws in authentication protocols are not due
to some weakness in the cryptographic primitives used in these protocols. The
usual problems lie in improper use of cryptographic primitives, and failure to
unambiguously specify protocol assumptions and goals. Therefore, it is impor-
tant that an authentication protocol is analysed with clear goals and explicitly
stated assumptions.

ii

There are many different formal definitions of authentication goals, and the
decision of which definition is most appropriate depends on the requirements and
constraints imposed by the larger system. Whether a reported flaw in a protocol
is exploitable depends on the protocol goals and the environment in which the
protocol is deployed. Whether a “secure” protocol is indeed secure depends
on the security model and the level of abstraction used in the analysis. Thus,
the goal of developing a high level methodology that can be used with different
notions of security, authentication, and abstraction is worth considering.

In this thesis, we propose a new methodology, called the structured intuition
(SI), which addresses the issues mentioned above. In the SI, we divide entity
authentication into fine grained properties, which we call FLAGs (fine level
authentication goals). FLAGs are protocol independent goals and represent
one’s expectations in an authentication-as-a-service paradigm. There is a sin-
gle notion of security in our methodology, which is called canonicity, which is
a weaker form of message authenticity. As compared to many contemporary
analysis techniques, an SI based analysis provides detailed results regarding the
design rationales and entity authentication goals of a protocol.

Resumé

Entitets autentificering er en process der verificerer en p̊ast̊aet identitet af en
netværks bruger. Dette kan ses som et simpelt m̊al, men afhængig af anven-
delsen indebærer dette en række behandlingsmetoder, som f.eks. om brugeren
er aktiv p̊a netværket, om brugeren er villig til at kommunikere, og om brugen
er klar over at denne bliver autentificeret. Forskellige kombinationer af s̊adanne
m̊al fører til implementationer af entitets autentificering med forskellige egensk-
aber.

P̊a en ikke autentificeret kanal kan en modstander gøre et falsk krav p̊a en
identitet gældende. Hvis dette lykkes for modstanderen, kan det åbenlyst f̊a
alvorlige konsekvenser for sikkerheden af systemet, f.eks. kan private informa-
tioner vedrørende legitime brugere blive lækket eller sikkerhedspolitiken af et
betroet system kan bliver krænket. P̊a virksomheds niveau kan s̊adanne svigt i
autentificeringen resultere i tab af proprietær teknologi eller af kunders kredit
kort oplysninger. Det kan endvidere ske at et enkelt svigt i autentificeringen kan
p̊avirke systemet i lang tid, f.eks. hvis en modstander er i stand til at installere
et ondsindet program s̊asom et “rootkit”, en bagdør, en “key logger”, en “bot”
eller anden “malware”. P̊a grund af dette anvendes sikkerheds protokoller til at
autentificere netværks brugere, der kan modst̊a selv en modstander med mange
resourcer.

Verifikation af en autentifikation protokol, for at vise at denne er sikker, er en
svær opgave. De fleste rapporterede fejl i autentifikation protokoller stammer
ikke fra en svaghed i de kryptografiske primitiver brugt i disse protokoller. Nor-
malt skyldes problemet fejlagtig anvendelse af disse kryptografiske primitiver
og manglen af en entydig specifikation af protokol antagelser og m̊alsætning.
Derfor er det vigtigt at en autentifikation protokol er analyseret med en klar

iv

m̊alsætning og udtrykkeligt formulerede antagelser.

Der er mange forkellige formelle definitioner af autentifikation m̊alsætning. Hvilke
af disse definitioner der er mest hensigtsmæssig afhænger af de krav og begræn-
sninger der er gældende i et større system. Om en rapporteret defekt i en
protokol kan udnyttes afhænger i høj grad af protokollens m̊alsætning og det
miljø hvor denne protokol anvendes. Hvorvidt en “sikker” protokol faktisk er
sikker afhænger af den sikkkerheds model og det niveau af abstraktion der er
benyttet i analysen. Det er derfor værd at overveje udviklingen af en højniveau
metode, til analyse af autentifikation protokoller, som kan anvendes med forskel-
lige niveauer af sikkerhed, autentifikation og abstraktion.

I denne afhandling præsenterer vi en ny metode kaldet struktureret intuition
(SI), der adresserer de problemer der er nævnt ovenfor. I SI inddeler vi entitets
autentificering i finkornede egenskaber, som vi kalder FLAGs (“Fine Level Au-
thentication Goals”). FLAGs definerer protokol uafhængige m̊alsætninger der
repræsenterer ens forventninger i et autentificering-som-en-service paradigme.
Der er et enkelt sikkerhedsbegreb i vores metode, som vi kalder “canonicity”.
Dette begreb udtrykker en svagere form for besked autenticitet. I sammenligning
med mange eksisterende analyse teknikker giver en SI baseret analyse et mere
detaljeret billede af design rationalerne og entitets autentificering m̊alsætningen
af en protokol

(Oversat af Mads Ingerslew Ingwar)

Preface

This thesis was prepared at the Department of Informatics and Mathematical
Modelling, the Technical University of Denmark, in partial fulfilment of the
requirements for acquiring the Ph.D. degree in engineering sciences. The Ph.D
study has been carried out under the supervision of Christian Damsgaard Jensen
(DTU-Informatics) and Erik Zenner (DTU-Math) in the period of three years
between June-2009 and June-2012.

The thesis introduces a new methodology for the analysis of entity authenti-
cation protocols. The methodology provides significant benefits for a system
developer who is more interested in system level authentication goals and ap-
plication specific security models.

The thesis consists of a summary report, eight chapters and two appendices.
One of the appendices contains a collection of abstracts of the research papers
written during the period 2009-2012, and elsewhere published.

Naveed Ahmed
Lyngby, June 2012

vi

List of Published Papers

We have written the following papers in the period from 2009 to 2012. Most
of these papers are partially overlapping with the contents of this thesis. We,
however, recommend to use this thesis as a reference for the structured intuition
methodology. The abstracts of selected papers can be found in Appendix B. One
of our papers that is based on the research carried out in Fall-2011 at ETH-
Zurich is not listed here, because it will be submitted in July-2012; this paper
presents a new protocol for uncoordinated1 spread spectrum communication.

1. N. Ahmed and C.D. Jensen: Structured Intuition, Accepted for a special
issue of International Journal of Critical Computer-Based Systems, 2012

2. N. Ahmed, C.D. Jensen, and E. Zenner: Private-key Symbolic Encryption
Schemes, In Proceedings of ESORICS-2012, Pisa, pub. Springer, LNCS
Vol. 7459/2012, pp. 557–572, 2012

3. N. Ahmed and C.D. Jensen: Post-Session Authentication, In Proceedings
of the 6th IFIP WG 11.11 International Conference on Trust Management
(IFIPTM VI), Surat, India, 2012, pub. Springer, AICT Vol. 374

4. N. Ahmed and C.D. Jensen: Security of Dependable Systems, Book Chap-
ter in Dependability and Computer Engineering: Concepts for Software-
Intensive Systems, pub. IGI Global, 2011

5. N. Ahmed and C.D. Jensen: Adaptable authentication model: exploring se-
curity with weaker attacker models, In Proceedings of International Sym-
posium on Engineering Secure Software and Systems (ESSoS), Madrid,
9-10 February, 2011, pub. Springer, LNCS Vol. 6542

1I.e., without relying on a shared secret between a sender and a receiver

viii

6. N. Ahmed and C.D. Jensen: Demarcation of Security in Authentication
Protocols, In: 1st SysSec Workshop (SysSec), Amsterdam, July 6th, 2011,
pub. IEEE Computer Society, ISBN 978-0-7695-4530-1

7. N. Ahmed and C.D. Jensen: Definition of entity authentication, In Pro-
ceedings of 2nd International Workshop on Security and Communication
Networks (IWSCN), Karlstad, 26-28 May 2010, pub. IEEE, ISBN 978-1-
4244-6938-3

8. N. Ahmed and C.D. Jensen: Entity authentication: Analysis using struc-
tured intuition, In: 4th Nordic Workshop on Dependability and Security
(NODES), Copenhagen, 3-4 June, 2010, pub. DTU

9. N. Ahmed and C.D. Jensen: Context Aware Identity Delegation, In Pro-
ceedings of 3rd Workshop on Combining Context with Trust, Security,
and Privacy (EuroCAT09), Pisa, 2009 pub. CEUR Workshop Proceed-
ings, vol. 504, 2009, ISSN 1613-0073

10. N. Ahmed and C.D. Jensen: A Mechanism for Identity Delegation at Au-
thentication Level, In Proceedings of 14th Nordic Conference on Secure IT
Systems (NordSec), Oslo, 14-16 October 2009, pub. Springer, LNCS 5838

11. N. Ahmed and C.D. Jensen: An Authentication Framework for Nomadic
Users, In: 3rd Nordic Workshop on Dependability and Security (NODES),
April 27, 2009, pub. Linköping University, Sweden,

Acknowledgements

In the last three years, I owe many people thanks, which are not all mentioned
here. First, I thank Christian Jensen, for giving me the opportunity and the
guidance to pursue my ideas, which helped me to accomplish things I might not
have achieved otherwise; thanks for proofreading my manuscripts and helping
me in improving my writing skills; it had been great working with you. I am
also grateful to my other supervisor Erik Zenner, who asked me right questions,
which forced me to think in precise terms. I thank my officemates, Mads In-
gwar and Davide Papini, for interesting working hours in cheerful moods. I
thank Mads for writing the nice Danish summary. I also spent a significant
time with my good old friend Wajid Minhass, which was always a great plea-
sure. I thank Karin Tunder, for taking good care of everything. I also thank
Ekkart Kindler, Robin Sharp, Sebastian Mödersheim, Patrick Konemann, Be-te
Elsebeth, Harald Störrle, and others.

At ETH-Zurich, I met many amazing people. I specially like to thank Cas
Cremers, who helped me in particular by showing interest in my work and
highlighting many weaknesses. Thanks to the people at the Formal Methods
group: Simon Meier, Michele Feltz, Barbara Geiser, and others. I owe thanks to
Srdjan Capkun for giving me opportunity to work on an interesting project. I
spent many hours working with Christina Pöpper, and learned many important
things.

I very much owe my parents for supporting and helping me to reach at this
stage. I thank my wife; without the ever loving support of her, things might
have been different. At last, but foremost, I thank God for giving me wisdom
and guidance in my life.

x

Contents

Summary i

Resumé iii

Preface v

List of Published Papers vii

Acknowledgements ix

1 Introduction 1
1.1 Problem of Characterization . 4
1.2 Historical Context . 6
1.3 Fine Level Authentication Goals (FLAGs) 8
1.4 Contributions . 13
1.5 Overview of Thesis . 15
1.6 Notations and Conventions . 17

2 Authentication Protocols 19
2.1 Preliminaries . 19
2.2 Cryptographic Functions . 21
2.3 Protocol Narration . 25
2.4 Role Programs . 27

3 Dependency Graph 33
3.1 Dependency Function . 34
3.2 Dependency Graph . 40
3.3 Atomicity of a D-graph . 48
3.4 Protocol Narration as a D-Graph 50

xii CONTENTS

3.5 Case Study 1: Global D-graph 54
3.6 Summary . 56

4 Binding Sequence 57
4.1 D-Graph of a Role Program . 58
4.2 Canonical Messages . 61
4.3 Binding Sequence . 70
4.4 A Simple Protocol . 77
4.5 Case Study 1 . 82
4.6 Summary . 87

5 Authentication Goals 89
5.1 Conceptual Definitions . 90
5.2 Operational Definitions . 94
5.3 Case Study 1 . 106
5.4 Summary . 111

6 Insecure Protocols 113
6.1 NSPK Protocol . 113
6.2 Woo-Lam Authentication Protocol 121
6.3 Summary . 125

7 Adaptable Security 127
7.1 Overview . 129
7.2 RFID System . 130
7.3 Correctness Analysis . 133
7.4 Security Analysis . 140
7.5 Summary . 142

8 Related Work 145
8.1 Definitions . 145
8.2 Analysis of Authentication . 151
8.3 Other Related Work . 158
8.4 Summary . 161

9 Conclusions and Future Work 163
9.1 Conclusions . 163
9.2 Contributions . 165
9.3 Future Work . 168

A Verification of Canonicity 171

B Abstracts of Published Papers 175

List of Figures

1.1 Structured Intuition . 16

2.1 Execution model: rth run of a role program 28

2.2 Successful run in a flow chart . 30

3.1 Example: (a) Functional Relations (b) Dependency Graph 42

3.2 Transitive Equivalence . 43

3.3 Branch Equivalence . 43

3.4 Reflexive Equivalence . 43

3.5 Example of a D-graph: D1 . 47

3.6 Examples of D-graphs: (a) D2, (b) D3, (c) D4, (d) D5 47

3.7 Global D-Graphs of Andrew Secure RPC Protocol 51

3.8 Global Dependency Graph of Working Example 55

4.1 Local D-Graph of Aρ . 59

xiv LIST OF FIGURES

4.2 An example setup to illustrate a canonical message 62

4.3 Comparison between authenticity and canonicity 64

4.4 A harmless re-ordering . 65

4.5 A harmful re-ordering . 65

4.6 Example of a binding sequence 71

4.7 Example of canonical messages that do not constitute a binding
sequence . 72

4.8 An Overview of Models and Requirements 76

4.9 Prorogation of authenticity in reverse direction 80

4.10 Overview of the analysis of the example protocol 81

4.11 (a) Local D-graph of Aρ (b) D-graph on received messages 83

4.12 Local Dependency Graph of Bρ, D2 84

4.13 (a) The graph ~in(∗,D2) (b) ~in(1, in(D2)) (c) ~in(3, in(D2)) . . . 85

5.1 Partial order between FLAGs . 94

5.2 Distinguisher, Semantic checks, and Dependency Functions . . . 97

5.3 Configurations for the Distinguishers of Recog(A�B, .) 98

5.4 Configurations for the Distinguishers of Idnt(A�B, .) 100

5.5 Configurations for the Distinguishers of Wlng(A�B, .) 102

6.1 Global and Local D-graphs of NSPK protocol: Dnspk 114

6.2 The graph ~in(2,Dnspk) . 115

6.3 The graph ~in(1,Dnspk) . 117

6.4 The local D-graph of Bρ: Dwl . 122

LIST OF FIGURES xv

6.5 The graph ~in(∗,Dwl) . 122

xvi LIST OF FIGURES

List of Tables

1.1 List of Common Notations . 18

3.1 Dependency Relations of D-Graph of Fig. 3.1 41

4.1 Example use of cryptographic primitives 68

7.1 Eight RFID protocols . 132

7.2 Concrete Forms of the Generic Protocol 143

9.1 Summary of Contributions . 167

xviii LIST OF TABLES

Chapter 1

Introduction

Today’s society depends heavily on computers. One of the benefits of these
computers is their ability to communicate with each other and engage in what
we call network computing. In most cases, network computing is cost-effective,
due to pooling of network resources, and it provides redundancy to develop
dependable services. In the future, the proliferation of network computing in
every day life is only expected to increase, and our society will become ever
more dependent on the correct operation of computer networks. As the famous
Metcalfe’s law [73, 42] states that the value of a network is a quadratic function
of the number of its users, one can predict an increasing level of economic
dependency on network computing.

Governments, businesses, and individuals as well as semi-autonomous computer
programs use communication networks for storing, processing, and exchanging
private and critical information. The basic network infrastructure normally does
not provide any guarantee to a communicating party about the state of other
parties on the network. Therefore, a layer of protocols is often used for reliable
communication and synchronization of the states of communicating parties.

In many environments, economic and social factors may lure network users to
behave dishonestly. A dishonest party—an adversary—can access and some-
times is able to control the communication. Protection against malicious activ-
ities using various network security mechanisms is among the main objectives

2 Introduction

of building dependable systems.

An important goal of network security is entity authentication, which refers
to the process where one party, the verifier, verifies the claimed identity of
another communicating party, the claimant. Usually, the claimant presents its
claimed identity to a verifier along with some evidence to support the claim.
For instance, to login on a computer, a person normally provides his user-name,
which is the claimed identity, and the password, which constitutes the evidence
that the user-name belongs to the person. To protect the evidence in transit
from an adversary, it is normally protected by a cryptographic scheme. In
many cases, a claim of an identity is not crucial for security, and sometimes the
explicit claim is not even required, such as in a non-interactive biometric based
authentication.

Entity authentication is a natural requirement for communication security and
many forms of access control mechanisms. Authentication not only enables a
gatekeeper to prevent unauthorized parties from using a private network, but
it also allows accountability on the actions of authorized parties. Without any
authentication, an adversary can pretend to be an authorised party and may
be able to play a man-in-middle role between honest parties. For instance, if a
user does not know that whether he is connected to a legitimate net-banking
portal or an adversary controlled fake website then the fake website can play a
man-in-middle role between the user and the real net-banking portal. This may
happen if the user does not properly authenticate his net-banking portal. As a
result, the adversary may be able to steal the credentials of the user [88].

Entity authentication in a network environment is usually achieved using au-
thentication protocols. An authentication protocol is a type of distributed pro-
gram based upon cryptographic functions, which is specifically designed to allow
an honest party to authenticate another honest party in the presence of an ad-
versary.

Many factors prompt security experts to design a new protocol, for instance, a
new application or a change in an application environment often implies new
security requirements and trust assumptions, which may require a new protocol.
A protocol also may be designed to improve the efficiency of an existing protocol
or to achieve a better security guarantee. There are hundreds of published
authentication protocols, e.g., the international standard ISO/IEC 9798 defines
templates for seventeen authentication protocols in part 2 [146], part 3 [144],
and part 4 [145]. Similarly, the survey book by Boyd and Mathuria [40] describes
about two hundred authentication protocols.

In some applications, entity authentication by itself is sufficient, e.g., the domain
of RFID (Radio Frequency Identification) offers many applications where only

3

authentication of RFID tags is required. On the other hand, most applications
do require additional security goals, e.g., in secure communication both entity
authentication and key establishment (for the confidentiality of subsequent data
communication) are typical requirements.
In this thesis, we focus exclusively on the entity authentication goals of a pro-
tocol, even if the protocol is designed to achieve a number of other security
goals.

Security analysis of communication protocols poses many intricate problems.
This is especially true for authentication protocols [70], which are notoriously
difficult to design and analyse. Many seemingly secure protocols have later
turned out to be insecure [58, 96, 6]. Unstated assumptions and fine-level details
further make entity authentication ambiguous to an end-user.

We propose a new methodology for the analysis of authentication protocols. We
call our methodology the structured intuition (SI). It is a high-level methodol-
ogy that analyses a protocol from the perspective of a system developer and
determines which entity authentication goals are achieved by the protocol. The
structured Intuition (SI) relies on some of the known techniques for low-level
security analysis. It is important to note that an authentication protocol may
have been designed to achieve additional security goals, such as voting or key
establishment, but the analysis for those goals is currently beyond the scope of
the structured intuition (SI).

A protocol analysis using intuition has a negative connotation to some people—
and rightly so, because an adversary can always be more intuitive in the con-
struction of his attack strategy. A series of sound arguments (whether formal,
informal, or cryptographic) along with a well defined set of assumptions and se-
curity goals is the right way to claim security, rather than calling one’s intuitive
feeling about the security of a protocol. This kind of intuition must be avoided
in favour of a systematic protocol analysis.

On the other hand, a great deal of intuition is required to discover non-trivial
mathematical proofs, including the cryptographic proofs of entity authentica-
tion [28]. Even in an automated security analysis (such as model checking [97]),
formalizing security goals, assumptions, and implementation constraints require
intuition by security experts, otherwise positive results of a formal analysis
maybe not correspond to actual security [134].

We use the name “structured intuition” for two reasons. First, the SI methodol-
ogy consists of a number of steps, and each step has certain goals that a security
analyst tries to achieve using his intuition. This means that we do not provide
a mechanized (algorithmic) way to carry out each step. We rely on the intuition
of the security analyst to carry out these steps and achieve the required results.

4 Introduction

The intuition of a security analyst is used in a structured way guided by the
steps of the SI methodology.

Second, during the SI based analysis of a protocol, a security analyst learns why
an authentication goal that is achieved is achieved. This information helps to
discover critical parts and hidden assumptions of the protocol. Further, this
information makes an adaptable security analysis easier, namely starting from
authentication goals a security analyst can work backwards to list the required
security assumptions. The SI methodology provides a deeper insight in protocol
security, and, in a sense, a complete SI based analysis represents the intuitive
understanding of different aspects of a protocol.

Formulating a new methodology for the analysis of authentication protocols is in
fact a meticulous undertaking with a large scope. Given the limited time frame
for this PhD project, we have to make a trade-off between the scope and the
depth of our research. In the scope, the SI methodology is a workable solution
that enables the validation of authentication properties for a wide variety of
protocols. In the depth, we describe the steps of the SI methodology in a
sufficient level of detail that qualifies the presented work as plausibly sound.

The style of our presentation can be called light-crypto; the rigour and precisions
that is expected in traditional cryptographic proofs is not used due to the large
scope of our work. Similar to formal security models [62], we use symbolic
abstractions for cryptographic functions, which allows us to convey the main
ideas of our approach in a concise manner. We believe that it is not too hard
to describe the SI methodology with appropriate computational models. In the
following we present some highlights of the SI methodology.

1.1 Problem of Characterization

Entity authentication is always used as a service in a larger system, e.g., a file
transfer program may rely on an authentication protocol to initialize secure
transfer of data to a far-end party by verifying its identity and agreeing on a
session key. Usually, a system developer is not a security expert, and therefore,
he often expects the underlying security service to be a plug-and-play type,
similar to other network services. Unfortunately, such an expectation from an
authentication protocol can be dangerous, as we explain in the following.

Intuitively, entity authentication is a process that provides some kind of as-
surance to a verifier about the identity of a claimant, but when it comes to
concrete requirements there seems to be no common definition of authentica-

1.1 Problem of Characterization 5

tion among security experts [97, 40, 54, 140]. For example, the international
standard ISO/IEC 9798 part 1 defines entity authentication as follows [78].

Entity authentication mechanisms allow the verification, of an en-
tity’s claimed identity, by another entity. [And] the authenticity of
the entity can be ascertained only for the instance of the authenti-
cation exchange.

Now, as per the definition, if an entity A receives a fresh signed nonce from
B that A has generated earlier, should it be considered to meet the above
definition?
The message is signed which satisfies the first part of the definition; and the
message is fresh for A, which fulfils the second requirement of the definition.
Still, this may be not satisfactory, e.g., one counter-argument is that the signed
message does not convey the willingness of B to A, and, for instance, B maybe
have signed the message for another party C. 1

In fact, the term entity authentication entails different sets of requirements de-
pending on its use in a given application. Consequently, different end-users (sys-
tem developers) may interpret entity authentication differently. As Boyd states,
“it is not the responsibility of the implementer to work out what a protocol
achieves.” [38] For security, multiple interpretations are certainly dangerous; if
a system developer over-estimates the authentication goals of a protocol then
any security guarantee of the protocol becomes void.

Generally speaking, a protocol goal should clearly correspond to some service-
oriented authentication requirement and should not encompass superficial re-
quirements, the so-called “accidental features.” [79] Security analysis is a hard
problem and trying to verify a specified goal that has little to do with actual
service requirements makes little sense.

In this thesis, we rely on existing techniques of protocol analysis to get security
assurance, but these techniques only solve a part of the problem. In this regard,
our contribution relates to specifying what actually needs to be verified and to
provide a high-level methodology that can assert a guarantee with respect to
service-oriented authentication goals.

A protocol is a distributed program containing a sequence of messages exchanged
between parties, and each local execution of the protocol by a protocol party is

1Abadi and Needham [1] also indicate this problem in the context of Denning-Sacco public
key protocol [58] and address the problem in their third principle for the design of crypto-
graphic protocols.

6 Introduction

called a run of the protocol. It is natural to specify authentication requirements
in terms of runs and protocol messages that are sent and received by a protocol
party. In doing so, however, a number of issues arise, which make it difficult to
relate high-level service requirements to low-level operational requirements on
runs and messages. In the following section, we briefly look into some existing
approaches to highlight the main issues that later justify our research goal. A
detail comparison with the related work is presented in Chapter 8.

1.2 Historical Context

The work on authentication protocols started in 1978 with the seminal paper of
Needham and Schroeder [117]. A large number of new protocols and verifica-
tion techniques have been proposed since then [105, 90]. For our purpose, the
work of Roscoe [133], which makes the concepts of extensional and intensional
specification explicit, is most relevant here.

Intensional style captures the intent of a designer and refers to the pattern of
messages and events as anticipated by the designer of a protocol. An example
specification is as follows: a successful run of a protocol implies that the messages
occurring in the run are all received in the same order as specified in the protocol.

On the other hand, extensional style refers to specifying protocol goals inde-
pendent of the protocol. Extensional specifications are in terms of the local
knowledge (or state) of a party who executes a protocol. An example specifi-
cation is as follows: a successful run implies that an honest peer entity is now
ready for further communication.

Most security analysts favour the intensional style [133, 28] or trace (run) based
extensional style [97], because such properties can be encoded in a precise way
in formal models. For example, most of the cryptographic definitions of au-
thentication are some variation of matching conversation [59, 28, 31], which is
informally defined as follows.

At the time that Alice accepts the other party’s identity (before
she sends or receives a subsequent message), the other party’s record
of the partial or full run matches Alice’s record. [59]

This intensional style definition is in terms of messages occurring in a protocol.
The proof of security essentially shows that if authentication is accepted by
an authenticating party then its record of the run is the same as that of the

1.2 Historical Context 7

authenticated party.
Similarly, another definition of entity authentication is as follows.

[A property] P guarantees entity authentication of B with respect
to A if whatever hostile environment is considered, it can never oc-
cur an event commit(A,B) [meaning A has successfully terminated
the protocol] when run(B,A) [meaning B has at least started the
protocol] has not occurred previously. [69]

This extensional style definition is in terms of runs of a protocol and belong to
the class of trace-based properties. Its validity can be asserted, e.g., by checking
all possible execution of a protocol in an adversarial environment (possibly with
some boundary assumptions).

We note that none of these two definitions are service-oriented, namely it is un-
clear what kind of assurance is provided to the larger system if a protocol meets
these definitions. While using an authentication protocol, a system developer is
more interested in properties, such as whether a successful run means that the
far-end party is currently present on the network and whether the far-end party
knows that the local party has authenticated it. This calls for a further analysis
to conclude the service-oriented goals of a protocol.

One may argue that it is easy to interpret the meaning of protocol terms to
understand the service-oriented goals that a protocol achieves. We believe there
are at least two problems with this argument. First, entity authentication is not
a monolithic goal and in fact more than a dozen different fine-level goals cor-
respond to two-role authentication protocols2. Therefore, the interpretation of
authentication goals is not always straight forward. Second, if there is no formal
mapping between security guarantees and service-oriented goals then it is quite
possible that different system developers may arrive at different interpretations.

It is worthwhile to mention that some early forms of extensional specifica-
tions [44, 150] do have some service-oriented flavour in them. In BAN logic [44],
which does not provide any definition of authentication, it is possible to come
up with a specification of service requirements in terms of beliefs held by peer
entities. Unfortunately, these approaches suffered from various weaknesses in
their security models [39, 100]. Boyd [38] also probe this problem, but he only
describes two service-oriented goals informally.

A new protocol is often introduced to address vulnerabilities identified in an
existing protocol. In many cases, however, exploitation of these vulnerabilities

2See fine-level authentication goals (FLAGs) in Chapter 5.

8 Introduction

may be not practical and, moreover, not all application suffer because of the
identified vulnerabilities. This motivates us to find a new way to reason about
the security of an authentication protocol, which incorporates the actual security
requirements of an application and which considers the environment in which
the protocol is intended to be deployed. For a system developer, the distinc-
tion between security and insecurity of a protocol depends on his expectations
and assumptions about the protocol. In this thesis, we demonstrate that our
methodology is useful in this regard, because it provides a fine grained analysis
of an authentication protocol.

1.3 Fine Level Authentication Goals (FLAGs)

In this section, we outline our interpretation of entity authentication, which is
from the perspective of a system developer. Our formal interpretation of entity
authentication appears in Chapter 5.

Entity authentication is not a monolithic goal, instead it consists of a number
of primitive goals, which we call fine level authentication goals (FLAGs). Each
FLAG captures one aspect of entity authentication. In the following, we describe
each FLAG from the local perspective of a verifier Alice. We use the name Bob
for the party who is the claimant in the authentication process.

(1) Recognition: If Alice verifies that the claimant is the same party with
whom Alice has communicated before then Alice is said to achieve the
recognition of the claimant (without necessarily knowing the identity of
the claimant).

Entity recognition does not require that Alice knows the claimant Bob, and
therefore the real identity of the claimant is not important. An example
of an entity authentication protocol is the Jane-Doe protocol [99]. We can
also relate this concept to everyday life. Let us say Alice receives a hand-
written document in her mailbox, and from the handwriting she may be
able to convince herself that the author is the same person whose document
she received last week. She does not know when these documents were
written, who wrote them, and who is supposed to read them, but she can
recognize the author.

(2) Identification: If Alice verifies that the claimed identity of Bob can be
linked to the record of Bob in Alice’s identification database then Alice is
said to achieve the identification of Bob.

Continuing with the everyday scenario, let us say that Alice finds a doc-
ument signed by her boss Bob, which she can identify by comparing the

1.3 Fine Level Authentication Goals (FLAGs) 9

signature to the known signature of Bob. She may be not able to know for
whom and when Bob wrote this document (the document could be many
years old). Clearly, Alice can identify Bob from the document, but she
cannot establish additional modalities. In an actual protocol, this docu-
ment maybe corresponds to a message that is signed by Bob, which Alice
can verify using Bob’s public key. An example of identification protocol
is YA-TRIP [152], which is a protocol that achieves identification of an
RFID tag, without achieving any other FLAG.

(3) Operativeness : If Alice verifies that the party who claims to be Bob is
currently active (alive) on the network then Alice is said to achieve the
operativeness of Bob.

Continuing with the everyday scenario, let us say Alice finds a report,
and Alice concludes that this report was written within last ten minutes,
because it contains a reference to an earthquake that occurred ten minutes
ago. Now, she may not know who wrote this report and for whom this
report was written, but she can establish the recentness of the report and
correspondingly the operativeness of the writer.

Note that the operativeness goal does not require that Alice verifies the
identity of Bob. The operativeness goal only requires that, by the end of a
protocol execution, Alice has the guarantee that whoever is at the far-end
is participating in the protocol execution, namely the far-end execution is
not just a replay from the past. For instance, if Alice receives a message
encrypted by Alice’s public key and the message contains a random num-
ber that Alice has recently broadcasted then Alice can conclude that the
sender is operative.

The meaning of currently active can be interpreted in slightly different
manners depending on the protocol used by Alice and Bob. Sometimes
different terminology is used in the literature to refer to the concept of
operativeness, such as the liveness of a claimant or freshness of the evi-
dence of authentication. The operativeness goal alone is not so useful, and
it often appears in combination with other FLAGs. YA-TRAP [152], the
improved version of YA-TRIP, achieves both identification and operative-
ness of an RFID tag.

(4) Willingness If Alice verifies that the party who claims to be Bob wants
to communicate with Alice then Alice is said to achieve the willingness of
the claimant.

Let us say Alice receives a questionnaire that contains specific questions
about her research activities. Now, she can conclude that someone has
sent this questionnaire specifically for her, although she may not know
who wrote it and when it was written. The willingness goal requires that
the party pretending to be Bob provides its consent to communicate with

10 Introduction

Alice, e.g., if Alice receives a message encrypted by Alice’s public key then
Alice can conclude that someone has sent this message to her. Similar to
the operativeness goal, the willingness goal alone is not so useful on its
own, and it often appears in combination with other FLAGs, e.g., the
willingness and identification goals are achieved from a signed message
that contains the identity of an intendant recipient.

(5) One-sided Authentication If Alice verifies that the claimant is Bob,
who is currently active and ready to communicate with Alice, then Al-
ice achieves one-sided authentication for Bob.

Clearly, one-sided authentication occurs when the identification, opera-
tiveness, and willingness goals are achieved for the Bob. As we explain in
Chapter 5, the three FLAGs (on which one-sided authentication depends)
must be achieved from a single cryptographic evidence. Here the evidence
corresponds to a binding sequence, which is a novel concept introduced in
this thesis and defined over multiple messages of a protocol. The binding
sequence is formally introduced in Chapter 4. In the literature, one-sided
authentication is also referred to as single-sided or unilateral authentica-
tion.

Continuing with the everyday scenario, let us say that Alice sends a doc-
ument to Bob requesting a few holidays. If after five minutes she receives
the document signed by Bob then she essentially achieves one-sided au-
thentication of Bob from the received document. This is because she had
sent this request only five minutes ago, so it must be recently signed by
Bob. Since the request was personalized for Alice, Bob must have known
that he is signing this document for Alice, and therefore Bob’s willingness
can be concluded by Alice. In an actual protocol, if Alice receives a signed
message from Bob that contains a recent time-stamp and the identity of
Alice then Alice achieves one-sided authentication of Bob.

(6) Pseudo One-sided Authentication If Alice verifies that a recognized
claimant is currently active and ready to communicate with Alice then
pseudo one-sided authentication is achieved.

This goal is similar to one-sided authentication, except that the identifi-
cation goal is replaced by the recognition goal. Pseudo one-sided authen-
tication occurs when the recognition, operativeness, and willingness of a
claimant are achieved.

(7) Confirmation If Alice verifies that Bob knows that a FLAG G has been
achieved then Alice is said to achieve a confirmation on the goal G from
Bob.

The confirmation goal is a second order FLAG, i.e., the FLAG that con-
firms that another FLAG is achieved. To understand its role, note that
each FLAG is defined from the perspective of Alice, therefore, e.g., if the

1.3 Fine Level Authentication Goals (FLAGs) 11

far-end party Bob authenticates Alice then Alice cannot know about this
authentication directly. For Alice, one way of determining the success of
this authentication is to receive a confirmation message from Bob. This
FLAG is the basis of achieving the next two FLAGs.

(8) Strong One-sided Authentication If Alice achieves one-sided authenti-
cation of Bob and further Alice receives the confirmation that Bob knows
about this one-sided authentication then strong one-sided authentication
is achieved.

This type of assurance is typically required in applications where a subse-
quent action is expected from the far-end party, e.g., without any confir-
mation from Bob, Alice may start streaming a TV channel to Bob while
Bob is re-authenticating himself to Alice.

(9) Mutual Authentication If Alice achieves one-sided authentication of Bob,
and further Alice receives the confirmation that Bob has achieved one-
sided authentication of Alice then Alice is said to achieve mutual authen-
tication for Bob.

Note that merely achieving one-sided authentication twice in opposite di-
rection (by executing a one-sided authentication protocol twice) does not
imply mutual authentication, as demonstrated by Bird et al. [30]

In our view, FLAGs represent the most common goals that a system developer
might expect from the term entity authentication. We, however, do not claim
the completeness of our list of FLAGs, and one may consider other goals to be
relevant for entity authentication. Also note that we have not invented these
FLAGs; in fact, these FLAGs appear in the literature, sometimes with different
names and sometimes only implicitly. In this regard our contribution is twofold.
First, we have identified these primitive goals, and we now present them in
a single framework. Second, we provide a methodology that can be used to
determine which FLAGs are achieved by a given protocol.

The definitions of FLAGs that we introduced in this section are useful to un-
derstand the natural meanings of FLAGs, but such informal definitions are of
little value for the protocol analysis. The formal meanings of FLAGs, which we
call operational definitions, are presented in Chapter 5.

It is important to make a distinction between message authentication (data ori-
gin authentication) and entity authentication. Message authentication provides
an assurance that a message has not been tampered with and establish the
identity of the party who have send the message. Classic techniques to achieve
message authentication include message authentication codes (MAC) and dig-
ital signatures. Message authentication is an important tool that can be used

12 Introduction

to achieve entity authentication, but similar to any other cryptographic tools
(such as an encryption or hash function) it can be misused: we may not get any
entity authentication even in the presence of message authentication. Message
authentication is also not necessary for entity authentication. To understand
this, consider the following examples.

If Alice receives a message signed by Bob’s private key then Alice can conclude
that this message must be sent by Bob, assuming that Bob keeps his private key
secret. Now, if Alice was only interested in achieving the (timeless) identification
of Bob, then this signed message is sufficient, but if her goal was to achieve the
operativeness (i.e., Bob is currently there) and willingness (Bob is executing the
protocol with Alice) then certainly signed message is not sufficient. For this
purpose, Bob may include the current timestamp, and the name Alice in his
signed message. Similarly, to achieve mutual authentication, carefully designed
multiple messages are often required. On the other hand, Alice can identify
Bob without relying on message authentication. For example, Bob may send
a digest that is computed on the current timestamp and a secret key that is
shared between Alice and Bob.

In correspondence with our fellow researchers, it seems that protocol analysts
have the view that a “good” authentication protocol must provide the identifi-
cation and operativeness (sometimes referred to as the liveness of the claimant),
and the protocol should bind the claimant and verifier’s identities to messages
that authenticate the claimant. A “good” protocol is also expected to pre-
vent replay and reflection attacks. This point of view is quite natural, because
security experts tend to be overly cautious and they try to specify security re-
quirements for the worst-case scenario. This extreme view representing what
could go wrong is security-centric, because it does not capture the perspective
of a system developer, as we explain in the following.

We believe that authentication requirements depend on the system where the
authentication protocol is deployed. For instance, in many applications, re-
flection attacks are not possible, because a device may be single threaded and
therefore only able to execute one role of the protocol3. In other applications,
operativeness of a claimant may not be required or even possible, e.g., if a
stateless device does not have a source of randomness or synchronized clock.
Similarly, some applications require mutual authentication between a client and
a server, and in others one-sided authentication of the client may suffice.

In our view, a protocol is good if the goals achieved by the protocol match the
application requirements and constraints. A good protocol in one application
is not necessarily good in another application of authentication. Therefore, a

3For instance, the initiator role or the responder role in a two-party protocol

1.4 Contributions 13

better approach is to formulate a set of service-oriented entity authentication
goals, which in our case are FLAGs, and then, depending on the application,
a system developer can decide which FLAGs are required in his system. This
means that the definition of entity authentication will depend on the system.
A security analyst can determine which protocols achieve the required FLAGs.
The final decision can be made by the system developer by considering the
relative resource requirements and setup assumptions of the candidate protocols.

To achieve any form of entity authentication, the type and number of protocol
messages depend on setup assumptions. Even with the same setup assumptions,
there are many different ways to construct an authentication protocol. There
is also a sheer number of different possibilities for authentication requirements.
For instance, consider an authentication protocol for Alice and Bob that consists
of two role programs, which are executed locally by Alice and Bob respectively.
At the end of an execution, Alice and Bob can achieve different sets of FLAGs.
If we only consider three FLAGs, identification, operativeness, and willingness
then there are eight combinations of these FLAGs for each of the parties. This
means that at the protocol level there are 634 different combinations for authen-
tication requirements. Arguably, all of these sixty three combinations are useful
in different applications.

1.4 Contributions

The main goal of our project is to enable a system developer to better under-
stand entity authentication as a service and provide techniques to operationalise
this service-oriented understanding in the design and verification of actual pro-
tocols. On the one hand, this will remove the vulnerabilities in the actual use
of authentication, on the other hand, this will allow better trade-offs between
security and resources. To achieve this goal, we address the following questions
in the project.

1. What are the service-oriented goals of entity authentication?

2. Given a set of service-oriented goals, how one can verify them in actual
protocols?

3. How one can achieve some kind of trade-off between goals, resources, and
security?

4There are 8 × 8 = 64 combinations, but one combination represents the case when the
both parties achieve no FLAG.

14 Introduction

The contributions that are reported in this thesis are as follows.

1. We surveyed the literature to examine the goals of commonly used entity
authentication protocols. As a result, we develop a hierarchy of authenti-
cation goals, which are called fine-level authentication goals (FLAGs).

2. We propose a new methodology, which we call the structured intuition
(SI), which can be used to analyse a protocol for FLAGs. Further contri-
butions are related to the SI methodology.

(a) We introduce the concept of a dependency graph (D-graph) for model-
ling the functional dependencies among the messages of an authen-
tication protocol. A protocol as a D-graph is not only fundamental
to the structured intuition (SI) but we believe that this model is also
useful in the broader field of protocol analysis.

(b) We demonstrate that the security of an entity authentication pro-
tocol can be reduced to a simpler security goal, which we call the
canonicity requirement. Roughly speaking, a message is a canonical
message if it is generated by following the rules of a protocol. It is
sufficient to show that certain received messages are always canoni-
cal; no other type of security analysis is required for the purpose of
entity authentication.

(c) We demarcate security and correctness requirements of an authenti-
cation protocol. A security requirement is validated by taking into
account the role of a network adversary, and in the SI this corresponds
to the canonicity of certain messages of a protocol. The correctness
defines what is expected from a protocol by protocol users, and this
corresponds to a set of FLAGs.

(d) We illustrate that the SI methodology is useful in analysing security
as an inverse problem: starting from a set of FLAGs, one tries to
determine the required security assumption, such that a given pro-
tocol achieves these FLAGs. This is especially useful for analysing
protocols under weaker attack models and with application specific
assumptions.

One of the distinctive aspect of the SI methodology is the definition of entity
authentication, which is directed to the needs of system developers. The hier-
archy of FLAGs only represents authentication properties that are commonly
expected from an authentication protocol, and therefore we do not make any
claim about its completeness.

The SI approach is not orthogonal to cryptography or formal methods, as it
relies on these methods for security analysis; the difference comes from the

1.5 Overview of Thesis 15

actual definition of security. The SI-methodology is a high-level methodology
and a security analyst can employ many existing analysis techniques within the
SI framework.

1.5 Overview of Thesis

The thesis is arranged in the order in which our methodology is applied to an
authentication protocol. We also use a running example alongside. In Chapter 2,
we introduce the definitions of an authentication protocol and a role program. In
Chapter 3, we introduce the notion of a dependency graph (D-graph), which is
central in the SI methodology. In a way, a D-graph is a static model representing
atomic relations among the messages of a protocol. A D-graph is constructed
using a protocol narration5. A protocol narration is a sequence of message flows
between honest parties. This is a common style of protocol specification in the
literature [40].

The structured intuition consists of three main steps, as shown in Fig. 1.1.
In Chapter 4, we present step 1 and step 2. In step 1, we model a protocol from
an execution perspective, namely in terms of the role programs of the protocol.
A local dependency graph is a model of a role program. In step 2, we describe
a way to formulate security requirements, namely which of the messages of the
protocol need to be canonical. Combing the results of step 2 and step 3 results
in a binding sequence. The notion of a binding sequence enables us to demarcate
security analysis from correctness analysis.

In Chapter 5, we describe step 3 of the SI methodology. We introduce the
hierarchy of FLAGs (fine-level authentication goals). The correctness analysis
derives FLAGs from a binding sequence6 of a protocol.

In Chapter 6, we apply our approach to two more protocols. In Chapter 7, we
use the SI framework to solve security as an inverse problem. In particular,
we apply our approach to evaluate the security of a set of RFID identification
protocols. In this chapter, we also demonstrate that how trade-off between
security and resources can be achieved. In Chapter 8, we compare our work to
some of the existing approaches. In Chapter 9, we conclude our work with some
discussion and directions for future work.

5The protocol narration is a common way of specifying an authentication protocol, in the
form of a sequence of messages between honest parties [34, 49].

6A protocol may have multiple binding sequences.

16 Introduction

Figure 1.1: Structured Intuition

1.6 Notations and Conventions 17

1.6 Notations and Conventions

Some of the abbreviations that we use in the thesis are listed in Table 1.1.

18 Introduction

∧ in a predicate means logical and
∨ in a predicate means logical or
: in a predicate or set (in the set-builder notation)

means such that
⇒ material implication

Mi ← msgi A message variable Mi on binary strings, which is
assigned with a message msgi

Mi = Mj Two variables Mi and Mj contain the same value
Mi‖Mj Concatenation of two binary strings that are assigned

to Mi and Mj

Mi →Mj An arc from Mi to Mj in a (dependency) graph
Mi \Mj Set subtraction, i.e., {M : M ∈Mi ∧M /∈Mj}

N The set of natural numbers starting from 1:
{1, 2, 3, . . . }

m Number of role programs that constitute an m-role
protocol

m The set {1, . . . ,m}
n0 Number of flows in a protocol narration
nj Number of flows in the narration of j-th role pro-

gram, where j ∈m
n0 The set {1, . . . , n0}
nj The set {1, . . . , nj}
H(.) Hash Function

EKAB (.)/DKAB (.) Encryption/Decryption using a secret key KAB

shared between A and B
EPkA(.) and DSkA(.) Encryption and decryption using a public key (PkA)

and a private key (SkA) respectively
NA A nonce of a party A, e.g., a sufficiently long random

number, time stamp, or sequence number
RA A random number (RA is a nonce and also has the

property of unpredictability for network parties, in-
cluding the adversary.)

Table 1.1: List of Common Notations

Chapter 2

Authentication Protocols

In this chapter, we introduce the notations, definitions, and assumptions asso-
ciated with an authentication protocol, which we later use in the presentation
of our methodology. An authentication protocol is specified as a narration of
messages that are exchanged between the protocol parties. This is the most
common style of protocol specification [34, 49]. In the following section, we
start with some preliminaries, before defining a generic protocol narration.

2.1 Preliminaries

A communication network provides connectivity between parties, and enables
them to send and receive messages. We use the words party, entity, and principal
interchangeably. The letters A, B, C, S, Ti∈N, and Ri∈N are variables on the
identities of parties.

A strategy is a distributed program, which is executed by a number of network
parties. We are mainly interested in two types of strategies:

1. an authentication protocol, which is a known strategy;
2. an adversarial strategy, which is an unknown strategy.

20 Authentication Protocols

An adversarial strategy is designed by an adversary. Although we can only guess
about the adversary’s state of mind, we know that his strategy is constrained by
his capabilities. It is typical to assume that the adversary is bounded in terms
of computation power, he does not know all the secrets that are shared among
network parties, and he does not have access to the sources of randomness used
by honest parties to generate their random challenges. Our assumptions about
the adversary are specified in the next chapter. In this chapter, we lay down
the details of an authentication protocol—the known strategy.

An authentication protocol is executed by network parties while communicating
with each other in the presence of an adversary. Therefore, the main challenge
in the design of an authentication protocol is to provide security against any
foreseeable adversarial strategy.

A party can behave in two different ways on the network. First, a party may
behave honestly, namely the party follows a given protocol and respects the
setup assumptions of the protocol, such as keeping its private key secret. In this
case, a party can be considered as a set of trusted programs. Second, a party may
not behave honestly, namely it deviates from the protocol. Such deviations may
be unintentional, such as due to implementation errors or adversarial actions,
but we assume that such deviations cannot occur for an honest party.

An adversary may be able to use many honest and dishonest parties to devise
his attack strategy. The notion of honesty and dishonesty is only meaningful in
a single session (i.e., a single execution of a protocol). A party may follow the
protocol in one session, but in another session it may not follow the protocol as
per an adversarial strategy.

In the structured intuition methodology, an authentication protocol is consid-
ered secure if, in a session, an honest party A of the protocol supposedly interacts
with another honest party B of the protocol then A achieves a certain set of
FLAGs (the protocol goals) for B. If B is dishonest then FLAGs are meaning-
less. This is because one cannot expect that a dishonest party will indeed be
willing to communicate despite saying or even that it will keep its private-key
secret.

Our notion of security can be compared to that of classic multi-party compu-
tation (MPC1). In MPC, it is usually assumed that the communication is on
authenticated channels [12], and the main challenge of an MPC protocol is to
achieve the goals of the protocol even if some of the protocol parties are dishon-
est. Usually, it is assumed that the majority of the parties is honest.

1The Chapter 7 of Goldreich’s book [74] provides an excellent introduction to MPC.

2.2 Cryptographic Functions 21

In the SI, the local perspective of a protocol is important, because FLAGs are
locally achieved by a party after the execution of its part of the protocol. A
protocol consists of a number of role programs, which are executed by protocol
parties to communicate with each other and achieve FLAGs. An example of
role programs is the specification of LySa processes in LySa calculus [34]. A
role program is denoted by ρj∈N(.). The notations Aρ, Bρ, Sρ, T

ρ

i∈N, and R
ρ

i∈N
are variables on role programs.

A protocol that consists of m role programs is called an m-role protocol. In
the example protocols considered in this thesis, m is either two or three, which
respectively corresponds to a two-role protocol and a three-role protocol in which
the third party is a trusted server.

It is quite common to use the name m-party instead of m-role, but we use the
name m-role to highlight a couple of points. First, it is possible to construct
a protocol in which the same role program is executed by different parties and
these different parties cannot distinguish their respective roles. Thus, the num-
ber of parties executing an m-role protocol can be more than m. For example,
in Boyd’s conference key agreement protocol [37], there are two role programs
but an execution of the protocol involves a large number of parties. Second,
we draw a distinction between a role program of a protocol and a party of a
protocol. This distinction is required to understand the concept of a binding
sequence, which we introduce in Chapter 4.

The specification of a protocol consists of communication and functional parts.
The communication part describes the sending and receiving of protocol mes-
sages between the role programs of the protocol. The functional part describes
how a message that is to be sent is computed and how the verification of a
received message is carried out.

2.2 Cryptographic Functions

Cryptographic functions are the main tools for designing the functional part
of an authentication protocol, because they help to create asymmetry between
what an adversary can do and what an honest party can do, which allows
honest parties to achieve protocol goals. First we introduce the notations used
for cryptographic functions and then we describe the meaning of these functions
in the structured intuition.

Secret-key (or symmetric-key) encryption is denoted by EKAB (.), which stands
for encrypting a plaintext of a variable length to a ciphertext, using the secret

22 Authentication Protocols

key KAB shared between A and B. Similarly, DKAB (.) denotes the correspond-
ing decryption scheme that transforms a ciphertext back to the plaintext if KAB

is the correct one. Encryption and decryption using a public key PkA and a
private key SkA are denoted by EPkA(.) and DSkA(.) respectively. The notation
SSkA(.) stands for the signature function using A’s private key SkA. A hash
function is denoted by H(.). A nonce generated by a party A is denoted by NA.
A nonce is a sufficiently long random number, time stamp, or sequence number.
A random number generated by A is denoted by RA, which is also a nonce with
the additional property of unpredictability for all network parties including the
adversary.

To specify the meaning of these cryptographic functions, it is important to decide
the level of abstraction used for modelling these functions. We take secret-key
encryption as a representative example to explain the underlying trade-off. The
arguments for other cryptographic functions can be presented along similar lines.

In general, a secret-key encryption scheme enables two honest parties that share
a key to privately communicate over a network, in such a way that a dishon-
est man-in-middle, the adversary, is unable to gain any non-trivial information
about the communication. The requirements of cryptographic encryption may
include left-right indistinguishability (IND) and non-malleability (NM), which
can be characterized in different attack settings [91]. A common instantiation
of EKAB (.) that provides both IND and NM security is the CBC2 mode of
encryption along with an message authentication code (MAC), using encrypt-
then-MAC method [24].

Over the years, many abstractions of cryptographic encryption have been pro-
posed. The most popular abstraction is the Dolev-Yao model [61]. In this sym-
bolic model, two types of simplifications are introduced. Firstly, binary strings
and functions are replaced by symbolic terms and derivation rules. In particular,
this results in idealized encryption functions—either an adversary can decrypt
a symbolic ciphertext (e.g., if he can derive the key) or the adversary gets abso-
lutely no information about the plaintext. The second simplification is related
to the capabilities of an adversary, namely the adversary is modelled as a non-
deterministic strategy that is limited to selecting its actions from a small set of
(pre-defined) logic rules. The security models that use these two abstractions
are commonly referred to as symbolic/formal security models.

A symbolic model is simpler than its cryptographic counterpart, and therefore
one can avoid relatively complicated and long proofs of traditional cryptography.
More importantly, computers can do the tedious job of proving (and similarly
verifying) the proofs of security. Unfortunately, any security assurance in a sym-

2Cipher-block chaining [64]

2.2 Cryptographic Functions 23

bolic model does not automatically translate to the underlying computational
cryptography and, therefore, to its hardware/software implementation. In any
implementation of symbolic encryption, a system designer has to make certain
security critical decisions, related to, e.g., mode of encryption, block alignment,
and message authentication code. Many attacks targeting the implementation
of encryption are known [29, 125]. Not long ago, many research efforts spurred
to address this obvious gap between symbolic and computational cryptography,
most notably, Abadi and Rogaway [3], and Backes, et al. [10] independently
published interesting initial results.

The SI methodology is not tied to a particular level of abstraction, such as
Dolev-Yao model [61] or Bellare-Rogaway model [28]. Also, different steps of
the SI can be carried out with different level of abstractions. In the presentation
of the SI in this thesis, we use symbolic abstractions of cryptographic functions,
so that our main ideas can be conveyed in their simplest forms. This means that
the default assumptions are as follows, which we make stronger by considering
only a subclass of all polynomial-time adversaries:

• We assume the model of a cipher for both secret-key and public-key en-
cryption schemes, namely the mapping between a plaintext and its cipher-
text is defined by a pseudo-random permutation (PRP).

Note that the requirements for a cipher are different from that of an en-
cryption scheme, because a cipher or PRP is not a randomized function,
and therefore it does not provide IND-security (or semantic security) [91].
A cipher generates the same ciphertext if input is the same, but a cipher
generates a random ciphertext for a new plaintext. An encryption scheme,
such as CBC or CFB, is based on a cipher and uses an initialisation vector,
which randomises the output of the encryption scheme.

The output of a cipher is non-malleable however. For example, this means
that EKAB (NA‖NB) cannot be modified to generate EKAB (NA‖N ′B), where
NB 6= N ′B , without the knowledge of KAB .

Although the assumption of a PRP as a cipher is used in traditional
cryptography, there is an important difference between our assumption
and the cryptographic one. In cryptography, a cipher is of fixed length,
and this fixed length is called the block size of the cipher, e.g., for AES the
block size is 128 bit. On the other hand, in our assumption, a plaintext
can be of any length, because we are using a symbolic abstraction, e.g., we
say there is a nonce NA but we never specify the length of NA. The length
of a plaintext can span the multiple blocks. Therefore, our assumption is
much stronger than that of traditional cryptography.

• We assume the random oracle model [25] for a hash function H(.), i.e., a
digest (the output of a hash function) has the uniform distribution.

24 Authentication Protocols

• Similarly, we assume the random oracle model for a signature function
SSkA(.), i.e., the signature of a message has the uniform distribution.

With these assumptions, there is always a negligible probability of errors asso-
ciated with cryptographic functions, e.g., on seeing a ciphertext an adversary,
who does not know the key, can guess the plaintext with at least a negligible
probability (in the security parameter of the encryption function).

On the other hand, we make our presentation of the SI even simpler by intro-
ducing more abstraction: we define an adversary model for which we can avoid
writing the negligible probability of errors associated with PRP and random
oracle models. The adversary model that is assumed in the SI is defined in the
next chapter.

Next, we define the notion of a message variables, which is extensively used in
an SI based analysis.

Definition 2.1 (Message Variable) A variable M of a protocol is called a
message variable if it has the following properties:

1. (Semantics) The variable M is on the range of a known probabilistic func-
tion.

2. (Communication) The value of M is sent or received on the network as
per the protocol specification.

3. (Length) The length of the message variable is fixed and a priori known.

The value of a message variable is called a message, which is communicated over
the network during an execution of the protocol. Clearly, a message is an atomic
value in a sense that it cannot be further parsed into meaningful components.
A few examples of message variables are as follows:

• The value of a variable A, which is on the identities of network parties, may
represent a received message in a protocol. In such a case, A is a message
variable, whose semantics are determined by the uniform distribution on
the identities of network parties. Also note that the value of A is an atomic
value.

• A protocol may have a message variable M = H(A‖NA). The value
of H(A‖NA) is an atomic value, where H(.) is a hash function and NA
is a nonce. The value of H(A‖NA) cannot be further parsed into two
meaningful values. The semantics of M are defined by H(A‖NA).

2.3 Protocol Narration 25

• A protocol may have a message variable M = EPkA(A‖NA). The value of
EPkA(A‖NA) is an atomic value, where EPkA(.) is a public-key encryption
function. The value of EPkA(A‖NA) cannot be further parsed into two
meaningful values. Note that the values of A and NA cannot be obtained
by parsing the binary string corresponding to EPkA(A‖NA).

• A variable M = EPkA(A‖NA), EPkA(NA) cannot be a message variable,
because the value of EPkA(A‖NA), EPkA(NA) consists of two atomic values.

2.3 Protocol Narration

A common way of specifying an authentication protocol is in the form of a
protocol narration [34, 49]. A protocol narration consists of a sequence of flows:

Definition 2.2 (Flow) A flow3 represents a set of messages that can be sent
from a sender to a receiver in parallel.

Now, we define a generic protocol narration, which consists of n0 flows.

Definition 2.3 (Generic Protocol Narrations Π) For 1 ≤ i ≤ n0, let

1. the list of m role programs be Roles = ρ1(.), . . . , ρm(.).
2. Mi be a list of all message variables in the i-th flow.

3. Fi
def
= T ρi −→ Rρi : Mi, i.e., in the i-th flow Mi is sent by T ρi ∈ Roles and

received by Rρi ∈ Roles.

A generic protocol narration is as follows:

Π
def
= [Fi : 1 ≤ i ≤ n0]

In simple words, a sequence of flows between m role programs is called a protocol
narration of an m-role protocol. A protocol narration is denoted by Π. A
protocol narration mainly describes the communication part of the protocol
specification. Usually, a protocol narration also provides enough information
about the functional part so that a security expert can write detailed versions
of the role programs of the protocol.

The list of message variables in a protocol narration is denoted by mv(Π),
i.e., mv(Π) = M1, . . . ,Mn0

; note that the message variables are place holders

3The term flow is also used in the same context in Bellare-Rogaway model [28].

26 Authentication Protocols

for messages, i.e., the values that are sent or received are assigned to message
variables. If a message has multiple receivers then multiple flows can be used
to specify such a transmission.

In this thesis, we consider two-role protocols (m = 2), and three-role protocols
(m = 3) that include the role of a trusted third party. Our theoretical model
assumes an arbitrary value of m, but the validation with m > 3 is left as a part
of future work.

2.3.1 Case Study 1: Protocol Narration

As a running example, we consider the five-pass authentication protocol from
the international standard ISO-9798 part 2 [146, 51]. The protocol is a three-
role protocol based on symmetric-keys and the notion of a trusted third party.
The protocol consists of five flows among three role programs. The protocol
narration, without optional text fields, is as follows:

(1) Aρ −→ Bρ: M1 = RA
(2) Bρ −→ Sρ: M2 = R′B ,M3 = RA, A
(3) Sρ −→ Bρ: M4 = EKBS (R′B‖KAB‖A),M5 = EKAS (RA‖KAB‖B)
(4) Bρ −→ Aρ: M6 = EKAS (RA‖KAB‖B),M7 = EKAB (RB‖RA)
(5) Aρ −→ Bρ: M8 = EKAB (RA‖RB)

The protocol narration consists of eight message variables, five flows, and three
role programs. The initiator role program is Aρ, the responder role program
is Bρ, and a server role program is Sρ. A party A plays the initiator role and
executes Aρ. In flow (1), the program Aρ sends a random number RA (as a
nonce) to another role program Bρ. The party B plays the responder role and
executes the role program Bρ. In flow (2), the program Bρ forwards the received
nonce along with its own nonce R′B to another role program Sρ. A trusted party
S executes the program Sρ.
The trusted party S is assumed to share long term keys with each of the network
parties, including A and B. With the party A, the shared key is KAS , and with
the party B, the shared key is KBS . In flow (3), the role program Sρ sends two
ciphertexts to Bρ, one for B and one for A, containing a session key KAB and
respective nonces. In flow (4), the program Bρ forwards A’s ciphertext along
with a new ciphertext created using KAB and containing a new random number
RB . In the last flow, the program Aρ sends back RB and RA encrypted using
the session key KAB .

2.4 Role Programs 27

2.4 Role Programs

An m-role protocol is a distributed program that is to be executed by a number
of network parties while communicating in the presence of an adversary. The
SI methodology relies on the local perspective of a protocol party to draw con-
clusions about the overall state of the protocol execution. A role program is the
part of the computation and communication carried out by one of the protocol
parties.

It is also possible to write a “universal” role program that emulates any of
the m role programs at run-time. To exclude this possibility, we assume that
a role program always sends and receives the same types of messages in each
execution. Note that a dishonest party does not execute a role program; the
malicious program of the dishonest party, however, could be a slight variation
of a role program, such as swapping of two messages in a flow.

Similar to a protocol narration, we specify the communication part of a role
program as a role narration.

Definition 2.4 (Role Narration) A role narration Πj∈m of the j-th role pro-
gram ρj(.) is a subset of the protocol narration, Πj ⊆ Π, such that, for each
flow Fi ∈ Πj , either the sender of Fi or the receiver of Fi is ρj(.).

A role program does not necessarily participate in each flow of the protocol.
The flows in which a role program does not participate as a sender or receiver
are not included in the role narration.

The execution model that we envisage for a party is shown in Fig. 2.1, which
is presented as a sequence diagram. In the figure, three processes are shown:
a calling routine, a role program ρj(constj), and a communication interface.
The calling routine provides an interface to a role program for higher level
applications, and the communication interface represents a transport layer that
ensures reliable inter-party communication over a network.

To start an execution, either the calling routine receives a request from a peer
entity to execute a role program, as indicated by the arrow with label (1), or the
calling routine starts a run by itself after receiving a request from an application.
For example, the former case occurs if the peer entity is running the initiator
program in a two-role protocol, and the latter case occurs if a user requests to
authenticate a peer entity.

The calling routine invokes a copy of a role program, as illustrated by the arrow

28 Authentication Protocols

Figure 2.1: Execution model: rth run of a role program

with label (2) in Fig. 2.1. A single execution of a role program is called a run.
A role program ρj∈m(constj) is invoked with a list of constants constj , which
may include the values of long term keys, public keys of peer entities, assumed
identities of peer entities, and the random numbers that are to be used in the
run4. A constant is a known value at the start of a run. We use a bar on a term
that is a constant in a role program, e.g., Ā for an identity that is supplied as
a constant to a role program. A role program may have a number of internal
variables, but in the SI only message variables are important.

A party may execute multiple copies of the same or different role programs in
parallel. A role program sends and receives messages using the communication
interface, which provides low level communication services, such as transmission
control and routing. This communication phase is indicated by label (3) in
Fig. 2.1.

4This concept of providing input to a role program is similar to the initial knowledge in an
AnB specification [112].

2.4 Role Programs 29

The list of message variables of a role program ρj(.), whose role narration is
Πj , is denoted by mv(ρj(.)) or mv(Πj).

5 If Π is the corresponding protocol
narration then

mv(ρj(.)) = [x : x ∈ mv(Π), receiver(x) = ρj(.) ∨ sender(x) = ρj(.)]

We distinguish between the variables corresponding to received messages and
sent messages. The list of variables for received messages is denoted by Rxj ,
and that for sent (or transmitted) messages is denoted by Txj . In ρj(constj),
the values that can be computed from constj and Rxj are called known values.
A variable in Txj is always assigned with a known value.

We require that a message variable in Rxj is assigned with a semantically
correct, received message (See Def. 2.1). The semantic correctness6 of a message
is ensured by following the functional requirements as specified in the protocol
narration. For instance, if ρj(.) expects to receive a message for a ciphertext
EK(NA‖NA + 1) and K is known then any received message that is decrypted
to msg1,msg1 + 1, where |msg1| = |NA| , is a semantically correct message.
If, however, the key K is not known then any message with the right length,
i.e, |EK(NA‖NA + 1)|, is a semantically correct message. If such a semantic
check fails then the program does not terminate immediately. We assume a
time-out mechanism that waits for a semantically correct message for a pre-
specified period of time. Although semantic checks are not important in our
methodology, they are necessary to avoid trivial denial of service attacks, e.g.,
to protect against random messages that can be easily sent by an adversary.

We assume independent runs, namely no two runs communicate with each other
locally7 or share common variables. We also assume that all terms of a protocol
are distinct from the terms of any other protocol that is executed in the network,
namely we do not consider secure composition of different protocols. A role
program completes its communication part if one of the following events occurs:

• A time-out event occurs that signals that the waiting time for the arrival
of a semantically correct message is elapsed.

• All message variables in Rxj have been assigned.

In the former case, the run terminates with an error message. In the latter
case, the run verifies certain dependency relations among the messages, which
we describe in Chapter 4. If the verification fails, the run must terminate with

5With the slight abuse of notations, we are using the same functional notation mv(.) to
denote message variables of a role program and that of the protocol, but this is essentially
harmless, as the distinction between the two cases is always clear from the context.

6 The requirement of semantic correctness is similar to pattern matching [34].
7Note that this does not exclude the possibility of a reflection attack, in which two runs

on the same party communicate via an external network.

30 Authentication Protocols

Figure 2.2: Successful run in a flow chart

an error message. If the verification succeeds then certain correctness checks are
carried out; the correctness checks are described in Chapter 5. If the correctness
checks also succeed then the run is called a successful run. This flow is also
illustrated in Fig. 2.2.

A successful run generates a list of outputs Outputj , as indicated by the arrow
with label (4). The contents of Outputj depend on the authentication goals of
the role program, e.g., Outputj may consist of the identity of the peer entity
that participated in the run. Usually, the role programs that only achieve entity
authentication (without achieving additional goals such as key establishment)
generate a binary output corresponding to the success or failure of a run.

We assume an honest party uses its authentication credentials (e.g., private
keys) only for an authentication protocol. We assume that the implementation
of an honest party is secure8, and that an adversary cannot directly access the
internal states of an honest party. Similarly, the security issues due to side
channels are considered outside the scope of our model, e.g., timing, power,
electromagnetic and acoustic analysis9. We also do not consider an adversary
who is interested in denial-of-service (DoS) attacks.

2.4.1 Case Study 1: Role Programs

For our example protocol (ISO-9798 part 2 [146, 51]), the narration of a role
program can easily be obtained from the protocol narration (Page 26), by omit-

8For small systems, one may be able to remove this assumption by including the analysis
for secure information flow, e.g., using type systems [155], to ensure the safe behaviour of all
programs.

9http://tau.ac.il/~tromer/acoustic

http://tau.ac.il/~tromer/acoustic

2.4 Role Programs 31

ting those flows in which the role program is not a sender or a receiver. In this
way, the narration of the initiator program Aρ is as follows.

(1) Aρ → Bρ: M1 = RA
(4) Bρ → Aρ: M6 = EKAS (RA‖KAB‖B),M7 = EKAB (RB‖RA)
(5) Aρ → Bρ: M8 = EKAB (RA‖RB)

The narration of the responder programBρ is the same as the protocol narration,
because Bρ takes part in all the flows. The narration of the server program Sρ

is as follows.

(2) Bρ → Sρ: M2 = R′B ,M3 = RA,M
′
3 = A

(3) Sρ → Bρ: M4 = EKBS (R′B‖KAB‖A),M5 = EKAS (RA‖KAB‖B)

32 Authentication Protocols

Chapter 3

Dependency Graph

In this chapter, we introduce the notion of a dependency graph (D-graph), which
is fundamental to the structured intuition (SI) methodology. A D-graph is a
type of digraph (directed graph). We say a digraph is weakly connected if the
underlying undirected graph is connected1. A D-graph is a weakly connected
digraph that is constructed using a set of protocol messages.

The structure of a D-graph represents certain functional dependencies among
protocol messages. In this chapter, we present D-graphs using a global perspec-
tive, namely we assume that one can freely use all of the messages of a protocol
in the construction of a D-graph. This means that we do not associate the
resultant D-graph to a particular role program of the protocol.

The global perspective, however, is not an operational view of protocol execu-
tion. An association between a D-graph and a protocol party is essential so that
the party can verify the D-graph, but this concern is not relevant in the global
perspective that we use in this chapter.

The main purpose of using the global perspective is to introduce the reader
to different components of a D-graph and provide an intuitive feeling of its
relevance to entity authentication. A local perspective of protocol execution

1A strongly connected digraph is a digraph in which it is possible to reach any node starting
from any other node by traversing arcs.

34 Dependency Graph

is presented in the next chapter. The distinction between the global and local
perspectives is the same as pointed out by Steve Schneider [138] between a user’s
view and a “God’s view.”

3.1 Dependency Function

Let us consider two variables M1 and M2, such that M2 is a function of M1:
M2 = f(M1). A dependency function (D-function) captures the intuition that
if a party can compute the value of M2 by computing f(.) then the party must
have the complete knowledge of M1. In other words, M2 depends on M1, and
there is no feasible way to compute M2 without knowing the value of M1.
For example, f(.) can be the square root function, and clearly a party cannot
compute the square root of a number without knowing the number. This depen-
dency condition does not hold for every function, e.g., f(.) can be defined as the
least significant bit (LSB) of the input, and in this case one can compute M2 (the
LSB of M1) without completely knowing M1.2 A cryptographic hash function
is a D-function, which also serves as a good mental model of D-functions.

In this section, we generalize the concept of dependency and introduce a depen-
dency assumption and a generic D-function.

Definition 3.1 (Dependency Assumption) Let a collision in a function f(.)
be an event of finding input and input′, such that f(input) = f(input′) for
input 6= input′. An adversarial strategy that finds a collision in f(.) does not
succeed.

The dependency assumption holds for most of the functions used in the con-
struction of authentication protocols, e.g., encryption, decryption, and identity
functions are injective functions. For non-injective cryptographic functions, such
as secure hash and signature functions, the probability of a collision is conjec-
tured to be small, and therefore the dependency assumption holds for these
functions with an overwhelming probability.

A commonly used function in authentication protocols is the exclusive-or (Xor)
function, however, the Xor function of two arbitrary messages does not preserve
the dependency assumption. If M3 = M1 ⊕M2 then there are a large number
of values for M1 and M2 that result in the same output, e.g., for two bit vectors
00⊕ 11 = 01⊕ 10 = 10⊕ 01 = 11⊕ 00. On the other hand, if either M1 or M2

2In this example, an adversary may be able to replace the original value of M1 with the
value of his choice M ′

1 such that M1 and M ′
1 have the same LSBs.

3.1 Dependency Function 35

is a known constant in a protocol then the Xor function reduces to an injective
function, for which the dependency assumption holds trivially.
Next, we define a dependency function using the dependency assumption.

Definition 3.2 (Dependency Function) A function y = Dep(x,aux) is called
a dependency function (or D-function) if

1. y = Dep(x,aux) is a non-deterministic polynomial time function, where x
is a variable on binary strings, and aux is a possibly empty list of variables
on binary strings.

2. the dependency assumption of Dep(.) holds with a probability of 1 − ε,
where ε is a negligible function in the size of the security parameter of the
D-function.

We say that y depends on x if y = Dep(x, .), and, since an adversary may have
non-zero probability of finding a collision in Dep(.), the dependency of y on
x is interpreted in a probabilistic sense. For instance, if y = H(x) then the
dependency of y on x cannot hold with a probability of 1, due to the possibility
of finding collisions in the hash function.

In Def. 3.2, x and aux are respectively referred to as the main argument and
the auxiliary argument. The reason to distinguish between the domains of x
and aux for a D-function will become clear in the next section where we use
D-functions to construct dependency graphs. Roughly speaking, x represents a
message variable that is assigned with a message that is communicated between
two protocol parties. On the other hand, aux stands for any data that is
necessary to compute the D-function.
A few examples of a D-function are as follows:

1. IfM1 = EPkA(RA) andM2 = EPkA(RA+1) thenM2 = Dep1(M1, SkA, PkA)
and M1 = Dep2(M2, SkA, PkA) are the D-functions from M1 to M2 and
from M2 to M1 respectively, where PkA and SkA are a public/private key
pair:

Dep1(M1, SkA, PkA) : Dep2(M2, SkA, PkA) :
(1) x1 ← DSkA(M1) (1) x1 ← DSkA(M2)
(2) x2 ← EPkA(x1 + 1) (2) x2 ← EPkA(x1 − 1)
(3) return x2 (3) return x2

Note that for a D-function, there is no restriction regarding who should
be able to compute the D-function. In this example, the D-functions can
only be computed by A, because only A knows his private key SkA, but
this is not relevant to the definition of a D-function.

36 Dependency Graph

2. If M1 = EPkA(RA‖RB) and M2 = EPkA(RA + 1) then no D-function
exists from M1 to M2, because M2 does not depend on RB , and therefore
collisions can be generated by changing the value of RB . On the other
hand, there is a D-function from M2 to M1:

Dep(M2, RB , PkA, SkA) :
(1) x1 ← DSkA(M2)
(2) x2 ← EPkA(x1 − 1‖RB)
(3) return x2

3. If M1 = RA and M2 = RA + 1 then M2 = Dep(M1) and M1 = Dep(M2)
are the D-functions, which are defined by the increment function and the
decrement function respectively.

A mental trick to locate a D-function is as follows: only if each part of M1 is
necessary to compute M2 then the function from M1 to M2 may be a D-function
of the form M2 = Dep(M1, .). The main requirement for M2 = Dep(M1, .) is
the same, i.e., the dependency assumptions of M2 = Dep(M1, .), as per Def. 3.1,
must hold. In the first example above, all parts of M1 must be known to compute
M2, and vice versa. In the second example, RB is not required to compute M2.

3.1.1 Behind the Abstraction of a D-function

There are a few aspects of the above definition that deserve further elaboration,
namely the generic nature of the definition, non-determinism, and the role of
cryptographic keys in D-functions. First, in Def. 3.2, it is not specified how x
and aux are assigned in a protocol. In fact, the way x and aux are assigned
makes the above definition generic:

• An injective function is trivially a dependency function, since there cannot
be any collisions in the injective function.

• For a non-injective D-function, the dependency assumption may hold with
a high probability.

– If x and aux can be freely assigned by an adversary then the de-
pendency function needs to be “collision resistant” in a traditional
cryptographic sense [132], e.g., this case occurs if a party receives the
digest of a commitment and the commitment is to be revealed later
in the protocol.

– If x and aux are assigned by an honest party then the dependency
function needs to be a second preimage resistant function [132], e.g.,
if a party receives a signature on the nonce that the party has sent
earlier.

3.1 Dependency Function 37

It is known that collision resistance implies second preimage resistance, but
collision resistance does not guarantee onewayness (preimage resistance) of the
function [132]. This means that a non-injective D-function is not necessarily a
oneway function.

It is important to note that the dependency assumption holds due to the nature
of a function and the type of function arguments. Therefore, some functions of
a protocol are inherently D-functions and others are not, and it does not matter
whether a particular party (e.g., an adversary) can or cannot compute them.

The second aspect of Def. 3.2 may seem unrealistic, because it allows non-
deterministic functions. Clearly, non-determinism implies that a dependency
function may not be even computable by a protocol party, because parties are
not expected to compute any super-polynomial function.

A non-deterministic function, however, can be verified in a polynomial time if the
party knows the correct values of non-deterministic choices required to compute
a D-function. These choices are usually referred to as an NP-certificate. In
fact, an efficient verification of a D-function is precisely the requirement in our
methodology. This requirement is stated in the next chapter when we discuss
the execution of role programs.

As an example of non-determinism, consider a party A that receives two mes-
sages, M1 = NA and M2 = EPkA(NA‖NB). If the nonce NA is known to A,
but the nonce NB is not known, then A cannot compute M2 by only using M1

in the encryption function. The party A, however, can compute M1 from M2

using the corresponding decryption function, but the function that maps M2

to M1 using the decryption function is not a D-function in this particular case.
This is because one can generate a large number of values for M2 that map to
M1 by simply changing the value of NB .

In this example, the encryption function is a dependency function, because one
cannot generate two values of M1 that maps to the same value of M2. The de-
pendency function based on the encryption function is clearly non-deterministic
due to unknown value of NB ; NB is the NP-certificate of the dependency func-
tion. Nevertheless, the party can easily verify the dependency function using
the decryption function.

The verifiability of a D-function is discussed in the next chapter, where we use
the dependency functions to model the role programs of a protocol. Since we
are using a global perspective in this chapter, the issue of non-determinism is
not relevant—an NP-certificate can always be a part of the auxiliary arguments
of a D-function.

38 Dependency Graph

The third aspect that is worth considering is the role of a cryptographic key in a
D-function. For example, consider an encryption function, which can be written
in two different ways: EKAB (NA) or E(KAB , NA). The first style indicates a
family of functions from which a specific function is selected using the secret
key KAB . The second style indicates that there is just one encryption function
whose first argument is the secret key. In the first style, the encryption function
is written as an injective function, while in the second style, the encryption is
written in a form that represents a non-injective function.

Indeed both styles are correct ways of specifying cryptographic encryption, how-
ever, they lead to different forms of D-functions and D-graphs. For the first style,
a key is always implicit and never appears as a main or auxiliary argument of a
D-function, and for the second style, the key is treated as an ordinary function
argument. A long term key, which is a priori known, can be made implicit in a
D-function, because such a key is always a part of the local knowledge of a party
and can be used for later derivation of authentication goals. Both styles can be
used in the modelling of a protocol in our SI methodology, and both leads to the
same authentication properties, although with slightly different formalizations
of intermediate steps.

In this thesis, we prefer the first style, in which a long term cryptographic
key appears implicitly and is not treated as an ordinary function argument.
This choice not only results in simpler versions of D-graphs but this style is also
intuitively appealing3. The reader must note that keys that are freshly generated
during a session must be treated as ordinary arguments, e.g., in EKAB (NA‖K ′AB)
the key K ′AB is an ordinary argument similar to NA.

When using a key as the main argument of a D-function, one must be careful
however. For example, consider two messages M1 = KAB and M2 = EKAB (R).
One may be tempted to treat this encryption function as a D-function with
R as an auxiliary argument: M2 = Dep(M1, R). Unfortunately, the resultant
function is not a D-function. This is because any value of M1 can be mapped to
a fixed value of M2 by using the right value for R. Also note that Dep(M1, R)
is a non-injective function.

In a network environment, there are two ways in which an adversary can com-
pute the output of a dependency function. Firstly, he can compute a dependency
function locally if he knows the correct values of its arguments, which may in-
clude private keys of honest parties. Alternatively, an adversary can rely on the

3A cipher is traditionally modelled as a family of functions. A value of the key represents
the choice that a party makes and this value is then treated as a constant within a protocol
execution. The subscript notation in the first style represents this fact that the key is fixed.
Traditionally, the arguments of a function are variables, and therefore it is natural to not treat
the key as a function argument.

3.1 Dependency Function 39

network, namely he may able to use other parties to compute a D-function, e.g.,
by eavesdropping on the communication between honest parties or by using an
honest party as an oracle.

3.1.2 Adversary

The SI methodology can be applied with different (application specific) adver-
sarial models, as long as the dependency assumption holds, i.e., an adversary
cannot feasibly find collisions in a D-function. For entity authentication, a pas-
sive adversary, who only eavesdrop on a network, is essentially harmless. There-
fore, a realistic adversary is more powerful than a passive adversary. There is an
upper limit however. The upper limit corresponds to the most powerful attacker
that can be safely used in the presented version of the SI methodology. If the
capabilities of an adversary do not respect this upper limit then some of the
results presented in the thesis may not hold. In the following, the adversary is
defined as a class of strategies I0.

Definition 3.3 (Adversary Class I0) Let the class I be the set consisting of
all the strategies that can be executed with the following capabilities:

• The computation of any polynomial-time function (computationally bounded
adversary)

• A network interface that allows eavesdropping, deletion, modification, and
insertion of messages (adversary controlled network)

• The capability to corrupt any network party that is not currently executing
the protocol; the corrupted party becomes an adversary (insider adversary)

The class I0 ⊂ I are those strategies in I for which the dependency assumption
holds.

The reason to define the class I0 as a subset of I is twofold. First, it allows us to
state security arguments without explicitly mentioning the negligible probability
of error in dependency functions. Second, it allows us to avoid a technical
issue that arises in the formalization of collision resistance in a hash (and non-
injective) functions [131], as explained in the following.

The dependency assumption of a D-function holds if an adversary cannot find
collisions in the D-function, but, e.g., an unkeyed hash function contains a large

40 Dependency Graph

number of second preimages. On average, a hash function (e.g., based on SHA-
256) that maps 1024 bit input to 256 bit output contains 21024−256 input values
that map to the same output. Therefore, it is quite probable that an attack
strategy I ∈ I exists that finds some of these collisions, but it is only the case
that no one is yet able to find the attack strategy. It is merely our belief, rather
than a mathematical truth, that no one will be able to find the attack strategy
in the future [131]. Thus a non-injective function cannot satisfy the dependency
assumption for the class I. The definition of class I0 is a way to address this
technical problem, and, for instance, a strategy I ∈ I0 cannot be a strategy that
finds second preimages in a hash function.

3.2 Dependency Graph

Informally, a weakly connected digraph is a dependency graph (D-graph) if
each of its arcs corresponds to a D-function. This concept is formalized in the
following definition.

Definition 3.4 (Dependency Graph) Let D = (nodes(D), arcs(D)) be a
digraph, where nodes(D) is the set of nodes (vertices) and arcs(D) is the set of
anti-reflexive arcs4 (edges) of D. The digraph D is a dependency graph if the
following conditions hold in D:

1. (Dependency Arcs) ∀(Mi → Mj) ∈ arcs(D) : Mj = Dep(Mi, .), where
Dep(Mi, .) is a D-function.

2. (Full Connectivity) ∀Mi ∈ nodes(D),∀Mj ∈ nodes(D) : walk(Mi,Mj),
where walk(Mi,Mj) is the predicate representing the existence of a walk
between the nodes Mi and Mj .

In the above definition, the first condition states that for each arc of a D-graph
it is the case that the head of the arc is the output of a D-function and the tail
of the arc is the main argument of the D-function. In the second condition, the
predicate walk(Mi,Mj) stands for the requirement that all pairs of dependency
nodes are connected in the underlying undirected graph.

As an example of a D-graph, consider two variables M1 and M2 such that
M2 = EPkA(M1) (encryption of M1). Let the D-graph on the nodes M1 and M2

be denoted by D, which is defined as follows:

4An anti-reflexive arc does not have the same head node and tail node, i.e., M1 → M2

implies M1 6= M2.

3.2 Dependency Graph 41

nodes(D) ={M1,M2 : M2 = EPkA(M1)} (3.1)

arcs(D) ={M1 →M2,M2 →M1 : M2 = EPkA(M1),M1 = DSkA(M2)}

Here, the arc M1 →M2 is a dependency arc, which is defined by the encryption
function and the public key PkA as an auxiliary argument, and the arcM2 →M1

is another dependency arc, which is defined by the decryption function and the
private key SkA as an auxiliary argument. Since the mapping between M1 and
M2 is bijective, therefore we do not need to specify the decryption function in
this D-graph.

For the auxiliary arguments of a D-function, one can use other dependency nodes
or any known data (in the protocol) that is required to compute the D-function.
The known data refers to the values that are known to protocol parties or can
be computed during the protocol execution.

Dependency Function Definition Auxiliary
Argument

D-arc

M3 = Dep1(M1,aux1) H(M1‖aux1) M2 M1 →M3

M3 = Dep2(M2,aux2) H(aux2‖M2) M1 M2 →M3

M7 = Dep3(M3,aux3) H(aux3‖M3) M4 M3 →M7

M6 = Dep4(M3,aux4) H(M3‖aux4) M5 M3 →M6

M7 = Dep5(M4,aux5) H(M4‖aux5) M3 M4 →M7

M6 = Dep6(M5,aux6) H(aux6‖M5) M3 M5 →M6

Table 3.1: Dependency Relations of D-Graph of Fig. 3.1

A more detailed example of a D-graph is shown in Fig. 3.1. In Fig. 3.1-(a),
functional relations between seven messages are shown, which are based on a
hash function H. These relations are M3 = H(M1‖M2), M6 = H(M3‖M5),
and M7 = H(M4‖M3). In Fig. 3.1-(b), the corresponding dependency graph is
shown, in which arcs are dependency functions. These D-functions are listed in
Table 3.1.

3.2.1 D-graph Relations

Typically, a D-graph D that consists of all possible arcs, constructed using all
possible D-functions between the nodes, contains a large amount of redundan-
cies. It will be useful if there exist a (structurally) simpler D-graph D′ that

42 Dependency Graph

Figure 3.1: Example: (a) Functional Relations (b) Dependency Graph

3.2 Dependency Graph 43

Figure 3.2: Transitive Equivalence

Figure 3.3: Branch Equivalence

Figure 3.4: Reflexive Equivalence

44 Dependency Graph

represents all the dependency relations of D. Therefore, graph equivalence is
important to make further analysis easier.

First we define arc level equivalences that can be used to make two equivalent
D-graphs equal. There are three types of such equivalences, which are as follows:

1. The first type is a transitive equivalence, which is defined as follows. Let
M1, M2 and M3 be three nodes of a D-graph.

{M1 →M2,M2 →M3,M1 →M3} ≡{M1 →M2,M2 →M3}
≡{M1 →M3,M2 →M3}
≡{M1 →M2,M1 →M3} (3.2)

To understand why a transitive equivalence holds, consider Fig. 3.2, where
three D-graphs are shown, which are defined by the D-functions M2 =
Dep1(M1,aux1), M3 = Dep2(M2,aux2), and M3 = Dep3(M1,aux3).
The D-function Dep3(M1,aux3) can be constructed by using the other
two D-functions Dep1(.) and Dep2(.), and by defining aux3 = aux1,aux2.
Any other construction of Dep3(.) is merely another way of computation,
but it does not change the mapping between M1 and M3. Therefore, not
drawing either M2 → M3 or M1 → M3 does not change the dependency
information expressed by these graphs. Therefore, we say that these three
D-graphs as equivalent D-graphs.

Example: Let us consider three variables M1 = NA, M2 = EK1(M1), and
M3 = EK2(M2). The D-functions corresponding to M1 →M2, M2 →M3,
and M1 →M3 are M2 = Dep1(M1,K1), M3 = Dep2(M2,K2), and M3 =
Dep3(M1,K1,K2). Clearly, any two of these three D-functions involve the
computation of the two original encryption functions. Therefore, a third
D-function is redundant.

2. The second equivalence is called a branch equivalence. Once again, let M1,
M2 and M3 be three nodes of a D-graph. A branch equivalence is defined
as follows:

{M1 →M3,M2 →M3} ⇒
{M1 →M3,M2 →M3} ≡{M1 →M3} ≡ {M2 →M3} (3.3)

In other words, if {M1 → M3,M2 → M3} exists then, e.g., {M1 → M3}
and {M2 → M3} are equivalent. It is a pre-condition that {M1 →

3.2 Dependency Graph 45

M3,M2 → M3} exists, because this ensures that, e.g., the D-function
of M1 →M3 also contains M2 in its auxiliary arguments.

To understand why this equivalence holds, consider Fig. 3.3, where we
have M3 = Dep1(M1,aux1 = M2) and M3 = Dep1(M2,aux2 = M1).
The auxiliary arguments may contain other variables, but that will not
affect the branch equivalence. These two D-functions only differ in the
ordering of their arguments. The two arcs M1 →M3 and M2 →M3 have
the same underlying D-function. Therefore, the three D-graphs shown in
Fig. 3.3 are equivalent.

3. The third equivalence is a reflexive equivalence, which is defined as follows:

{M1 →M2,M2 →M1} ⇒
{M1 →M2,M2 →M1} ≡{M1 →M2} ≡ {M2 →M1} (3.4)

This equivalence is shown in Fig. 3.4, where we haveM2 =Dep1(M1,aux1)
and M1 = Dep2(M2,aux2), such that Dep2(.) is the inverse function of
Dep1(.). Clearly, both dependency functions represent the same injective
mapping between M1 and M2. The verification of any one of the functions
implies the verification of the other function. Therefore, three D-graphs
shown in Fig. 3.4 are equivalent.

Definition 3.5 (D-graph Equivalence) Two D-graphs D and D′ are equiv-
alent, denoted by D ≡ D′, if both can be made equal by applying transitive
(Equation 3.2), branch (Equation 3.3), or reflexive (Equation 3.4) equivalences.

Clearly, D ≡ D′ implies nodes(D) = nodes(D′), but D ≡ D′ does not imply
arcs(D) = arcs(D′). For example, the D-graph D2 in Fig 3.6-(a) is equivalent
to D1 in Fig 3.5, and both D-graphs have the same set of nodes but they have
different set of arcs. Similarly, for our earlier example in Equation 3.1, we have
the following equivalence relations among arc sets.

nodes(D) ={M1,M2 : M2 = EPkA(M1)}
arcs(D) ={M1 →M2,M2 →M1 : M2 = EPkA(M1),M1 = DSkA(M2)}

≡{M1 →M2 : M2 = EPkA(M1)}
≡{M2 →M1 : M1 = DSkA(M2)}

We use the notation equiv(D) to denote the set of all D-graphs that are equiv-
alent to the D-graph D. A D-graph is always equivalent to itself, i.e., D ∈

46 Dependency Graph

equiv(D).
Next, we define subgraph and proper subgraph relations5.

D ⊆ D′
def
= ∃De ∈ equiv(D),∃D′e ∈ equiv(D′) :

nodes(De) ⊆ nodes(D′e) ∧ arcs(De) ⊆ arcs(D′e) (3.5)

Similarly the proper subgraph relation is as follows:

D ⊂ D′
def
= ∃De ∈ equiv(D),∃D′e ∈ equiv(D′) :

nodes(De) ⊂ nodes(D′e) ∧ arcs(De) ⊂ arcs(D′e) (3.6)

A D-graph D is a subgraph of D′ if an equivalent D-graph of D′ contains all of
the arcs and nodes of D. For example, we have D3 ⊆ D2 in Fig 3.6, which also
happens to be a proper subgraph, i.e., D3 ⊂ D2.
Next, we define a maximal D-graph.

Definition 3.6 (Maximal D-graph) A maximal D-graph is a D-graph that
is not a proper subgraph of any other D-graph for a given set of nodes.

Note that a maximal D-graph is a subgraph of all of its equivalent D-graph,
which means that the following predicate is true for a maximal D-graph D.

∀D′ : D ⊆ D′ ⇒ D ≡ D′ (3.7)

That is to say, for each D-graph D′ of which D is a subgraph, it must be the
case that the two D-graphs are equivalent. In simple words, there may be more
than one maximal D-graphs, but all of them are equivalent.

Definition 3.7 (Distinct D-graphs) Two D-graphs D and D′ are distinct
D-graphs only if they do not have any node in common, i.e.,
nodes(D) ∩ nodes(D′) = φ.

For example, in Fig. 3.6, D4 and D5 are distinct D-graphs, because they do not
share any node.

5By borrowing the terminology from the set theory: subset and proper (strict) subset

3.2 Dependency Graph 47

Figure 3.5: Example of a D-graph: D1

Figure 3.6: Examples of D-graphs: (a) D2, (b) D3, (c) D4, (d) D5

48 Dependency Graph

Definition 3.8 (Leaf Nodes) Let D be a D-graph and the predicate path(Mi,Mj)
is true if {Mi,Mj} ⊆ nodes(D) and there is a directed path from Mi to Mj fol-
lowing dependency arcs. A set of leaf nodes, leaf(D), is a set with the minimal
order for which the following predicate is true:

∀Mi ∈ nodes(D), ∃Mj ∈ leaf(D) : path(Mi,Mj)

That is to say, for each node of a D-graph there exist a leaf node such that there
is a directed path from the node to the leaf node. Each node of a D-graph can
reach some leaf node by following a directed path. We note that the requirement
of minimal order implies the following:

• A node with no outgoing arc is a leaf node.
• Any node on a closed directed cycle is a leaf node. A closed directed cycle

is a path that does not have an exiting arc, i.e., starting from any node on
a closed cycle one always traverses back to the same node. We only need
to choose one node on a directed cycle, because multiple leaf nodes on the
same directed cycle are redundant.

Depending on which node of a closed directed cycle is selected as a leaf node,
there may be more than one different sets of leaf nodes (with the same mini-
mal order). For examples, in Fig. 3.5, we have leaf(D1) = [M3,M9,M10] or
leaf(D1) = [M6,M9,M10]. Although a set of leaf nodes is not unique, this does
not pose any problem in the structured intuition (SI), and each set of leaf nodes
can be used with the same results.

The intuition behind the definition of leaf nodes is that a security property,
which we call canonicity and define in the next chapter, propagates on a D-graph
in reverse direction. This means that if one validates the canonicity of the leaf
nodes of a D-graph then the canonicity holds for all nodes of the D-graph. This
reduces the amount of effort required in an SI based security analysis.

3.3 Atomicity of a D-graph

Now, we present a property that holds on a D-graph in the presence of any
adversarial strategy that belongs to the class I0. We write msg ∈ nodes(D) to
represent that the nodes of D are assigned with a list of values msg such that
the dependency functions of D can be verified with the resultant values.

Proposition 3.9 (D-Graph Atomicity) Let D be a D-graph. There is no
I ∈ I0 that computes msg1 and msg2, where msg1 6= msg2, such that a set of

3.3 Atomicity of a D-graph 49

leaf nodes of D have the same value in the two assignments msg1 ∈ nodes(D)
and msg2 ∈ nodes(D).

Proof. Using a contrapositive argument, we show that if the proposition does
not hold then an adversary can generate collisions in a D-function. Since we
assume that an adversary I ∈ I0 cannot find collisions in a D-function, we
conclude that the proposition holds.

Let us assume that I ∈ I0 computes msg1 ∈ D and msg2 ∈ D such that the
leaf nodes have the same values. Since msg1 6= msg2, there exists a non-leaf
node Mx ∈ nodes(D) that has different values in msg1 and msg2. By the
definition of leaf messages, there is at least one directed path starting from Mx

to a leaf node Ml: Mx → · · · →Ml.

Traversing on the path backwards, let M ′l be the tail of an arc whose head is
Ml, i.e., M ′l →Ml or Ml = Depl(M

′
l , .). If M ′l has different values in msg1 and

msg2 then this means Depl(.) is not a dependency function. Therefore, for the
class I0, M ′l gets the same value in both msg1 and msg2.

Going backwards, consider M ′l as the head of an arc, and let a message M ′′l be
the tail of the arc: M ′′l →M ′l →Ml. We can apply the previous arguments once
again, to conclude that M ′′l gets the same value in msg1 and msg2. Repeating
these steps all along the path, eventually we reach Mx, thus concluding that
Mx has the same value in both msg1 and msg2.

This conclusion contradicts with the premise that the node Mx is on the path,
because Mx must get different values in msg1 and msg2. Hence, the proposition
holds for all strategies in I0. �

The above proposition can be applied to any subgraph of a D-graph. To get an
intuitive sense for the relevance of Proposition 3.9 to entity authentication, note
that the collision-resistance of a hash chain is a special case of Proposition 3.9. In
Lamport’s password authentication scheme [93], which is similar to S/Key [86],
the atomicity of the hash chain is a necessary condition. In a similar way,
the atomicity of a D-graph is a necessary condition to conclude various entity
authentication goals, as we explain in the following chapters.

50 Dependency Graph

3.4 Protocol Narration as a D-Graph

The theory of a D-graph, as introduced in the previous section, is quite inde-
pendent from the notion of a protocol. In fact, one can define a D-function, a
D-graph, and the associated notions on any set of data variables, and whether
these variables represent communication messages is not important. We con-
sider the model of a D-graph as a modelling tool, which we believe can be applied
in other applications. For instance, a hash chain, which is a special D-graph, is
a cryptographic tool that can be used beyond authentication protocols. Never-
theless, the main reason for introducing a D-graph in this thesis is to model an
authentication protocol.

A D-graph is a graphical representation of the dependency functions that exist
among protocol messages. To distinguish between the D-graphs of a protocol
and a role program (presented in the next chapter), we respectively refer to them
as a global D-graph (for a protocol narration) and a local D-graph (for a role
narration). In these D-graphs, most of the nodes represent message variables,
but the rest of the nodes represent, what we call, interim variables:

Definition 3.10 (Interim Variable and Interim Node) LetM1 andM2 be
two message variables, such that neither M1 depends on M2 nor M2 depends
on M1. If there exist a variable M3, where M3 ∈ tr(M1) ∪ tr(M2), such that
both M1 and M2 depends on M3 then M3 is called an interim variable and the
corresponding node in the D-graph is called an interim node.

For example, let the two message variables be M1 = EPkA(RA, RB) and M2 =
EPkC (RC , RB). Clearly, neither M1 depends on M2 nor M2 depends on M1,
but both M1 and M2 depends on RB . In this case, we can invent an interim
variable M3 = RB . Now, we can construct a D-graph on M1 and M2 with the
arc set {M3 →M1,M3 →M2}.
We define a global D-graph for a protocol narration Π as follows.

Definition 3.11 (Global D-graph) A D-graph D is a global D-graph of a
protocol narration Π if

• mv(Π) ⊆ nodes(D), i.e., all message variables in the protocol narration
are contained in the node set of D.

• nodes(D) \mv(Π) is a set of interim nodes of mv(Π).6

6Here, nodes(D) \ mv(Π) is the standard subtraction on sets, which is defined as {M :
M ∈ nodes(D) ∧M /∈ mv(Π)}.

3.4 Protocol Narration as a D-Graph 51

Figure 3.7: Global D-Graphs of Andrew Secure RPC Protocol

As we know, a message variable is a variable that corresponds to a received or
sent message in a protocol. A global D-graph spans all of the message variables
of the protocol narration and a number of interim nodes. The main reason to
introduce the interim nodes is to achieve complete connectivity in a D-graph. An
interim node helps in creating a walk between a pair of dependency nodes that
are otherwise not connected. A global D-graph is always a maximal D-graph
with respect to the message variables of the protocol, because it contains all of
the message variables. The above definition allows multiple global D-graphs for
a protocol narration, but all the the D-graphs must be equivalent, namely they
all have the same sets of nodes.

As an example of a D-graph, consider a narration of the Andrew secure RPC
protocol [136].

F1
def
= Aρ −→ Bρ : A,M1 = EKAB (NA)

F2
def
= Bρ −→ Aρ : M2 = EKAB (NA + 1‖NB)

F3
def
= Aρ −→ Bρ : M3 = EKAB (NB + 1)

F4
def
= Bρ −→ Aρ : M4 = EKAB (K ′AB‖N ′B)

The narration consists of two role programs Aρ and Bρ executed by two network
parties A and B respectively. The function EKAB (.) represents a symmetric
encryption function using a long term secret key KAB shared between A and
B. The terms NA and NB are the nonces that are generated by A and B
respectively.

The authentication goals of the protocol are not relevant in the dependency
analysis. We are only interested in the dependency functions that exist among
the message variables: M1, M2, M3, and M4. We do not use an identity that
appears in plaintext for the construction of a D-graph, therefore, the term A in
the first flow is not used.

52 Dependency Graph

The two global D-graphs corresponding to the above narration are shown in
Fig. 3.7. The first D-graph is on the first three message variables and can be
constructed without introducing an interim node. The message variable M4 is a
dependency node defined by a D-arc that originates from interim variables; the
variables K ′AB , N

′
B are interim variables because they do not directly correspond

to any communication messages.

Note that, unlike the key K ′AB , we do not use KAB as an interim node to connect
the two D-graphs. This is because an arc from KAB to any of the other message
variables does not correspond to a D-function. For instance, KAB → M1 is
not a valid dependency arc, because one can freely change the value of KAB

without changing a fixed value of M1. Let us say we fix the value of M1 to m1.
Now, different values for NA and KAB can be computed: NA = DKAB (m1).
Since collisions are possible, the mapping from KAB to M1 does not meet the
requirements of a dependency function.

Similarly, there is no D-arc from M2 = EKAB (NA+1‖NB) to M3 = EKAB (NB +
1), because M3 does not depend on NA and, therefore, one can easily create
collisions by simply changing the value of NA. Intuitively, an arc M3 → M2

means that all parts of M3 are used to compute M2, which is not the case in
the reverse direction.

As per Def. 3.11, a protocol must correspond to a connected digraph. If a “pro-
tocol” corresponds to multiple (disconnected) D-graphs, it effectively becomes
a collection of protocols in our methodology. Therefore, Andrew secure RPC
“protocol” is a collection of two protocols, i.e., F1, F2, F3 is one protocol and F4

is another protocol. As we explain later, multiple D-graphs essentially means
multiple binding sequences and each of the binding sequence is used indepen-
dently to derive authentication properties.

When identifying the D-functions in a protocol narration, one must be careful
not to form vacuous D-functions. For example, if a message variable M1 is to be
assigned with a random value then we can always invent another interim variable
M2 such that M2 is the decryption of M1 with a certain key. Clearly, now we
can draw dependency arcs between M1 and M2. Indeed, we can continue this
process to form a infinitely large D-graph. To avoid this problem, we require
that one must not invent new variables that are not already present in a protocol
narration.

3.4 Protocol Narration as a D-Graph 53

Session

By definition, each message variable of a protocol narration is a node of a
global D-graph. In an execution of the protocol, sent and received messages
(i.e., values) are assigned to message variables: mv(Π) ← msg, where msg
is the transcript of the sent and received messages. If the D-functions of G
hold on the assigned values then the assigned list of values is an instance of G
msg ∈ nodes(G).

An instance of a global D-graph is also referred to as a session of the protocol.
A session is a legal transcript of a protocol execution, because the membership
of the global D-graph means that the protocol functions are satisfied with the
values that occur in the session. In an operational sense, a session of an m-role
protocol is generated in an execution in which m role programs communicate
with each other and then they terminate successfully.

It is important to note that a session is just a list of values that can occur in an
execution of the protocol. A session does not mean that such an execution has
actually happened on the network between honest parties. For example, in An-
drew secure RPC protocol, if we assume that an adversary knows the shared key
KAB then this assumption does not affect the shape or verification of the global
D-graphs shown in Fig. 3.7. With this assumption, a session of the protocol
can be generated by an adversary, but even the adversary generated session is
a legal transcript that can occur (may be in the future) between honest parties.
In particular, the notion of a session (or the membership of a D-graph) does not
capture the security aspect of a protocol that provides protection against a net-
work adversary. Further discussion is in the next chapter, where we introduce
security requirements.

Conventions for D-graphs

There are many ways in which the construction process of a D-graph can be
somewhat standardized. As the analysis of all equivalent D-graphs provide the
same results, we adopt a few conventions for this purpose:

• (Direction of Arcs) The direction of an arc should follow the execution of
a protocol in the use of a reflexive equivalence.

• (Nearest Neighbours) Dependency arcs should be drawn between the near-
est neighbours if an argument occurs in two different previous flows in the
use of a transitive equivalence. For instance, if M1 = NA,M2 = EK(NA)

54 Dependency Graph

and M3 = EK(NA+1) represent first, second and third flows of a protocol
respectively then M1 → M3 is not drawn, because the nearest neigh-
bour from where NA can be extracted is M2. The resultant arc set is
{M1 →M2,M2 →M3}.

• (Plaintext Identities) In the construction of a D-graph, we do not use the
identities of parties that appear in plaintext in a protocol narration.

• (Single Node) A single node is a D-graph if it is the output of a D-function
and the main argument of the D-function is an input to the protocol.

The D-graphs that we draw in this thesis comply to these conventions. With
these conventions, the D-graphs of most of the commonly used authentication
protocols contain arcs pointing in the direction of a protocol execution, or side-
wise (between messages in a flow). It is certainly not possible to always adhere
to these conventions.

3.5 Case Study 1: Global D-graph

We continuing with our running example, the five-pass authentication proto-
col from the international standard ISO-9798 part 2 [146, 51]. The protocol
narration, without optional text fields, is as follows:

(1) Aρ −→ Bρ: M1 = RA
(2) Bρ −→ Sρ: M2 = R′B ,M3 = RA, A
(3) Sρ −→ Bρ: M4 = EKBS (R′B‖KAB‖A),M5 = EKAS (RA‖KAB‖B)
(4) Bρ −→ Aρ: M6 = EKAS (RA‖KAB‖B),M7 = EKAB (RB‖RA)
(5) Aρ −→ Bρ: M8 = EKAB (RA‖RB)

The global dependency graph is drawn in Figure 3.8. Note that an identity
function is a dependency function, which is trivially collision free, therefore one
can draw an arc between two occurrence of a message, namely between M1 and
M3.

In the D-graph, KAB is a protocol term (but is not a message variable); KAB

acts as an interim node. The purpose of the interim node KAB is to create
walks between message variables, M4, M5, and M6.

3.5 Case Study 1: Global D-graph 55

Figure 3.8: Global Dependency Graph of Working Example

Following the conventions, certain arcs are not drawn, e.g., M1 → M6, M1 →
M7, M1 → M8, M3 → M1. The corresponding definitions of dependency func-
tions are trivial and are listed below.

(1) M3 = Dep1(M1): return M1

(2) M4 = Dep2(M2,KBS ,KAB , A): return EKBS (M2‖KAB‖A)

(3) M5 = Dep3(M3,KAS ,KAB , B): return EKAS (M3‖KAB‖B)

(4) M7 = Dep4(M3,KAB , RB): return EKAB (RB‖M3)

(5) M6 = Dep5(M3,KAS ,KAB , B): return EKAS (M3‖KAB‖B)

(6) M4 = Dep5(KAB ,KBS , R
′
B , A): return EKBS (R′B ,KAB‖A)

(7) M4 = Dep5(KAB ,KAS , RA, B): return EKAS (RA,KAB‖B)

(8) M6 = Dep5(KAB ,KAS , RA, B): return EKAS (RA,KAB‖B)

(9) M8 = Dep5(M7,KAB): x1, x2 = DKAB (M7);
return EKAB (x2‖x1)

56 Dependency Graph

In these D-functions, we have freely used protocol terms as auxiliary arguments,
so that the D-functions can be computed in a global perspective. As mentioned
in the start of this chapter, a global D-graph is not an operational model of the
protocol. In an actual execution, the D-functions are computed (or verified) by
protocol parties, which in this example are A, B, and S. Clearly, not all of the
above D-functions can be computed by A or B alone.

The main purpose of the global perspective is to introduce the reader to the
notions of a D-function, a D-graph, and a session, in a minimal setup. In the
next chapter, we describe D-graphs from the perspective of a protocol party.

3.6 Summary

In this chapter, we introduced the notion of a generic dependency function
(D-function). A D-function is a mapping for which it is infeasible for a compu-
tationally bounded adversary to find two different values in the input domain
that map to the same value in the output domain. An injective function, such as
an encryption, decryption, or identity function, is a D-function. A non-injective
function, such as a hash or signature function, could be a D-function depending
on its cryptographic properties and the types of its arguments. We introduced
an adversary class I0 as a set of strategies for which the dependency assump-
tion holds. This formulation allows us to employ D-functions without explicitly
mentioning their negligible probability of errors. We introduced the notion of a
dependency graph (D-graph), which is a fully connected digraph, in which an
arc corresponds to a D-function, the head node of the arc is the main argument
of the D-function, and the tail node of the arc is the output of the D-function.
Each instance of a D-graph is atomic in a sense that an adversary in I0 cannot
find another instance such that the both instances have the same values for
the leaf nodes. For example, assuming that a hash function is a D-function,
no adversary in I0 can find two instances of the hash chain that share the leaf
node. We described how a protocol narration can be modelled as a D-graph,
which we refer to as a global D-graph. An instance of a global D-graph is also
called a session of the corresponding protocol. At last, we modelled the five-pass
protocol of ISO-9798 part 2 as a global D-graph.

Chapter 4

Binding Sequence

This chapter describes the first and second steps of the structured intuition
methodology. As described earlier, a protocol is specified as a narration. A
protocol narration consists of a number of role programs that communicate with
each other in a series of flows. In the first step, we model each role program as
a set of D-graphs.

The second step consists of specifying the security requirements and deriving the
binding sequences of a role program. For this purpose, first, we define the notion
of a canonical message, and elaborate on its verification aspect. In particular, we
require certain messages, which roughly corresponds to the leafs of a D-graph,
to be canonical messages. The verification of canonicity is the only part of our
methodology that requires to consider the dynamic behaviour of a protocol in
the presence of a network adversary. A binding sequences of a role program
consists of received messages that are canonical and linked together through a
D-graph. A binding sequence is generated in a single session, and it is used to
derive different authentication properties.

58 Binding Sequence

4.1 D-Graph of a Role Program

A local D-graph represents the structure of message variables of a role program.
The structure is determined by the dependency functions that exist among the
message variables. Unlike a global D-graph, verification of the D-functions of a
local D-graph is an essential requirement, which is defined as follows:

Definition 4.1 (Verification of D-function) A D-functionMi′ = Dep(Mi, .)
is verifiable in j-th role program ρj(.) if ρj(.) can efficiently verify that functional
mapping between Mi′ and Mi is consistent with that of Mi′ = Dep(Mi, .).

In a D-graph, only known values can be used as auxiliary arguments, which
include the constants and received messages of a role program. The verification
of a dependency function Mi′ = Dep(Mi, .) means that one can construct a
function in the corresponding role program that carries out one of the following
tasks.

1. The role program computes the D-function Mi′ = Dep(Mi, .) itself, e.g.,
Dep(Mi, .) may stands for an encryption function for which the key and
other required inputs are known in the role program.

2. The role program knows the required NP-certificate1, which is then used
to assert that the values of Mi and Mi′ are related by the dependency
function, e.g.,
• signature verification if Mi′ is a signature on Mi; here the public key

acts as an NP-certificate.
• verification via a trusted third party; the reply from the trusted party

plays the role of an NP-certificate.

One can assume a verification function is efficient if it can be computed in a
polynomial time, but the exact interpretation of efficiency is a subject of further
interpretation depending on a given implementation, e.g., an efficient function
on a personal computer may turns out to be infeasible on a smart card due to
memory constraints. For the j-th role program, a local D-graph is defined as
follows.

Definition 4.2 (Local D-graph of Role Program) A D-graph Dj is a lo-
cal D-graph of a role program ρj(.) if

1. Dj is a maximal D-graph on the message variables mv(ρj(.)).
2. the set nodes(Dj) \mv(Π) consists of interim nodes of mv(ρj(.)).

1As previously described, a D-function is a non-deterministic polynomial time function.
An NP-certificate consists of non-deterministic choices made by the function.

4.1 D-Graph of a Role Program 59

3. the D-functions of Dj are efficiently verifiable in ρj(.).

Unlike, a global D-graph, the D-functions of a local D-graph must be verifiable
by the corresponding role program; mere existence of dependency functions
among messages is of no use if the role program cannot verify the dependency
functions.

A local D-graph is a maximal D-graph on the message variables mv(ρj(.)) of a
role program ρj(.). As we know, a maximal D-graph is not a subgraph of any
other D-graph that can be constructed on a given set of nodes. The reason for
this requirement is that we want to maximize the size of a binding sequence,
and the size of a binding sequence cannot be larger than the number of nodes
(message variables) in a local D-graph. The larger a binding sequence is, the
more authentication goals can be derived.

There may be more than one local D-graphs on mv(ρj(.)), but each of the local
D-graphs is a distinct D-graph. Two distinct D-graphs do not have a common
node. If two D-graphs are not distinct then they cannot qualify to be maximal,
because the two D-graphs can then be combined to obtain a larger D-graph.

As an example of local D-graphs, we consider Andrew secure RPC protocol once
again. Since this is a two-role protocol, the narration of each of the two role
programs is the same as that of the protocol. In the initiator program, denoted
by Aρ = ρ1(NA,KAB), the list of flows is as follows.

F1
def
= Aρ −→ Bρ : M1 = EKAB (NA)

F2
def
= Bρ −→ Aρ : M2 = EKAB (NA + 1‖NB)

F3
def
= Aρ −→ Bρ : M3 = EKAB (NB + 1)

F4
def
= Bρ −→ Aρ : M4 = EKAB (K ′AB‖N ′B)

Figure 4.1: Local D-Graph of Aρ

Unlike the global D-graphs of the protocol, in the initiator program, the message
M4 cannot be regarded as a local D-graph, because the terms K ′AB and N ′B are

60 Binding Sequence

not known to Aρ (without using M4 itself), and therefore Aρ cannot verify this
function2. This means that M4 is not a dependency node for Aρ. The resultant
local D-graph is shown in Fig 4.1.

Note that we use a different form of the D-function for M1 → M2, compared
to the D-function used for M1 → M2 in the global D-graph. This is because
NB is not a known value in Aρ. The resultant function Dep1(.) is now a non-
deterministic function, precisely because NB is not known. The role program
can verify the dependency relation using the decryption function. With similar
arguments for the responder program Bρ, there are two D-graphs, which are
the same as the two global D-graphs shown in Fig 3.7.

The analysis of any of the equivalent local D-graphs provides the same results.
We use the same conventions as we introduced for global D-graphs:

• (Direction of Arcs) The direction of an arc should follow the execution of
the role program in the use of a reflexive equivalence.

• (Nearest Neighbours) Dependency arcs should be drawn between the near-
est neighbours if an argument occurs in two different previous flows in the
use of a transitive equivalence.

• (Plaintext Identities) In the construction of a local D-graph, we do not
use the identities of parties that appear in plaintext in a role narration.

• (Single Node) A single node can be considered as a D-graph if it is the
output of a D-function and its main argument is a constant of the corre-
sponding role program.

We define the meaning of a dependency compliant run (DC-run) of a role pro-
gram ρj(.). We write msg ∈ nodes(Dj) to represent that the nodes of Dj

(message variables) are assigned values from a message list msg and the D-
functions of Dj can be verified with this assignment.

Definition 4.3 (DC-Run) Let msg be a list of messages occurring in a run of
a role program ρj(.), whose D-graphs are in the set Gj . The run is dependency
compliant (DC) only if the predicate ∀Dj ∈ Gj : msg ∈ nodes(Dj) is true.

Here, Gj denotes the set that consists of the D-graphs of j-th role program.
In a DC-run, ρj(.) verifies the dependency arcs of all of its D-graphs with the
assignments by the messages sent and received in a run. If the verification fails
then ρj(.) outputs an error signal.

2In the traditional cryptographic definition [77], an encryption function is not expected to
protect the integrity of a ciphertext.

4.2 Canonical Messages 61

As described in the previous chapter, an instance of a global D-graph represents
a session of the corresponding protocol. Since a role narration is a subset of a
protocol narration, an instance of a local D-graph represents a partial session
of the protocol.

A partial session is a list of values that can occur during the execution of a role
program while communicating with expected role programs at far-ends. Similar
to a session, a partial session does not mean that this execution has already
occurred. For instance, consider the previous example of the initiator role pro-
gram of Andrew secure RPC protocol. A list of values for M1, M2, and M3,
on which Dep1(.) and Dep2(.) hold, is a partial session defined by the messages
of the initiator program; as per the definition of a D-graph, this list is an in-
stance of the local D-graph shown in Fig. 4.1. This list can occur in the initiator
program while communicating with the responder program. The dependency
relations, however, do not guarantee that this list has (already) occurred while
communicating with the responder program. The initiator program may have
communicated with an adversary to generate this partial session. To guarantee
that a partial session has occurred, canonicity of messages plays an important
role, which we describe in the next section.

4.2 Canonical Messages

The set of terms that appear in the message variable Mi is denoted by tr(Mi),
e.g., if Mi = EKAB (RA‖RB) then tr(Mi) = {KAB , RA, RB}. For a protocol
narration Π, the list of message variables is mv(Π), and for Mi ∈ mv(Π) the set
of terms in Mi is tr(Mi).
Similarly, the list of message variables in j-th role program is mv(ρj(.)), and for
Mi ∈ mv(ρj(.)) the set of terms in Mi is tr(Mi). e.g., if Mi = EKAB (RA‖RB)
then tr(Mi) = {KAB , RA, RB}. Clearly, each term of a role program corre-
sponds to a term of the protocol.

To address the individual runs of a role program in a concise manner, we intro-
duce a notational artefact. For a role program ρj(.), let ρj = {ρ1

j , . . . , ρ
r
j , . . . , ρ

c
j}

be a set consisting of the pointers to the previous runs in the network. Note
that the set ρj contains the pointers to the runs from all the parties that have
executed ρj(.).

Definition 4.4 (Canonical Message) Let

1. Mi∈N ∈ Rxj be a variable for a received message in the role program ρj(.).

62 Binding Sequence

Figure 4.2: An example setup to illustrate a canonical message

2. Mi′∈N ∈ Txj′ be a variable for a sent message in the role program ρj′(.)
such that tr(Mi) = tr(Mi′) and flow(Mi) = flow(Mi′).

A received message msg for Mi is a canonical message in a DC-run of ρj(.) if

msg is the value of Mi′ in ρr
′

j′ , where ρr
′

j′ ∈ ρj′ is an existing run3 of ρj′(.) by
some honest party.

We illustrate the above definition in Fig. 4.2, in which a snapshot of the execu-
tion of a two-role protocol on four honest entities X1, X2, X3, and X4 is shown.
The protocol consists of two role programs ρ1(.) and ρ2(.). The snapshot con-
tains three runs of ρ1(.) on X1: ρ1

1, ρ
2
1, and ρ3

1. Similarly, there are four runs of
ρ2(.), but they are on different parties.

In Fig. 4.2, each role program contains a message variable Mi that maps to the

3Note that we do not require ρr
′

j′ to be a DC-run.

4.2 Canonical Messages 63

same set of terms. The program ρ1(.) receives a value from the network and
assign it to a variable corresponding to Mi. The program ρ2(.) is the sender of
Mi, i.e., the value of Mi is assigned in ρ2(.), and ρ2(.) sends the assigned value
on the network.

As per Def. 4.4, Mi is a canonical message in a DC-run of ρ1(.) if there exist a
run of ρ2(.) on the network that has previously sent this message. The inputs
of OR block in the figure indicates that any of the runs of ρ2(.), whether it is on
X2, X3 or X4, satisfies our requirement. The output of OR block indicates that
multiple runs of ρ1(.) may receive the same canonical message, thus indicating
a non-injective assignment; in other words, a canonical message can be replayed
in multiple runs.

A canonical message is a message on which the sender and receiver programs
agree, e.g., for Andrew RPC protocol, the initiator and the responder programs
must agree on the value of M3 = EKAB (NB + 1) if the value of M3 is to be
considered a canonical message. For a canonical message, the sender of the
message and the freshness of the message are not important. That is why, the
run ρr

′

j′ is not bound to a party in Def. 4.4.

It is important to realise the difference between a canonical message and an
authentic message4. In the context of a protocol, an authentic message is gen-
erated by a particular role program, in a particular flow, and by a particular
honest5 party. On a receiver of an authentic message, the origin of the message
must be clear, where the origin is defined by three attributes: the identity of
the party; the role program used by the party, and the flow in which the mes-
sage occurs in the role program. Formally, these requirements correspond to a
non-injective agreement on a message [97].

On the other hand, canonicity requires that it must be clear to a receiver of a
canonical message that the message is sent by a particular role program, in a
particular flow, and by some honest party. Canonicity requirement does not bind
the message to a particular sender party. A comparison between authenticity
and canonicity is illustrated in Fig. 4.3.

For example, let us consider two parties A and B that share a secret key
KAB . The parties A and B execute a two-role protocol that has only one
flow: EKAB (T), where T is a time-stamp. If the receiver role program on A
receives a message for EKAB (T) then A concludes that this message is either
sent by A or B. The message EKAB (T) is not authentic, because it cannot be
associated with one sender party, but the message is a canonical message.

4An authentic message provides data origin authentication.
5An honest party is one who executes a role program as per the protocol specification.

64 Binding Sequence

Figure 4.3: Comparison between authenticity and canonicity

The canonicity of a message is closely related to the existing notion of non-
injective agreement in Lowe’s authentication hierarchy [97]. The canonicity is a
non-injective agreement on a message between two role programs, but without
any regard to the parties that are executing these role programs. For instance,
consider a situation in which Alice believes that she has completed a run while
communicating with Bob, but actually Alice’s run was with Bill. This situation
does not prevent achieving canonicity, but this situation is not allowed for a
non-injective agreement.

On the other hand, the non-injective agreement on a message implies that the
message is a canonical message. Therefore, a non-injective agreement can be
used as a formal requirement of canonicity in existing security models. In the
running example at the end of this chapter, we use a model checker to verify
non-injective agreement to conclude the canonicity of messages.

In Def. 4.4, we use the two conditions tr(Mi) = tr(Mi′) and flow(Mi) =
flow(Mi′), instead of a simple but more strict condition Mi = Mi′ . The con-
dition Mi = Mi′ implies tr(Mi) = tr(Mi′) and flow(Mi) = flow(Mi′). The
reason is that, in some protocols, it is trivial for an adversary to change the
order of messages within a flow while playing a man-in-middle role between the
two role programs. Sometimes, it does not change the agreement on the val-
ues of protocol terms (tr(Mi) = tr(Mi′)) but it may change the agreement on
message variables (Mi 6= Mi′). Since we derive authentication properties from
the values of protocol terms and the flows in which they occur, such re-ordering
“attacks” are not harmful for the purpose of entity authentication. For further
explanation, consider the following two related example.

4.2 Canonical Messages 65

Figure 4.4: A harmless re-ordering

Figure 4.5: A harmful re-ordering

The first example of re-ordering is shown in Fig. 4.4. Here, a role program Aρ

executed by A sends two nonces to a role program Sρ executed by a trusted
server S. The server S shares long term keys KAS and KBS with A and B
respectively. The first nonce NA is A’s nonce and the second nonce is B’s
nonce. An adversary, who controls the network, change the order of messages.
This change of order does no affect the server, because it still believes that NA
is from A and NB is from B. Therefore, both Aρ and Sρ agree on protocol
terms as well as on the flow number.

Now, consider the second example in Fig. 4.5. Here, the re-ordering is done
only between nonces. As a result, the server program Sρ now believes that NA
is from B and NB is from A. In other words, there is a disagreement on the
protocol terms. This attack, however, cannot be mounted because Aρ can detect

66 Binding Sequence

the problem during the verification of encryption function, which now contains
A’s identity instead of B’s identity.

4.2.1 Importance of Canonicity

The decision whether an authentication goal is achieved is made on a per run
basis. We say that a far-end party is acting honestly in a run if the far-end
party follows the protocol and executes the expected role program. A claim of
honesty of a party is only valid within the scope of a run.

There may be alternate ways to define the meaning of a far-end party being
honest, e.g., one may insist that a party can be honest even if it is not follow-
ing an expected role program, or honesty should be defined over all possible
executions. It is not clear to us how these alternate ways can be specified and
whether they are more relevant to entity authentication.

We now present a context that makes it clear why canonicity is important.
Assume that a transcript of messages msg is received in a run of a role pro-
gram ρj(.). The role program can easily decide whether the run is dependency
compliant, by verifying the D-functions of the local D-graphs of ρj(.) with the
assignments from msg. If the verification succeeds then ρj(.) concludes that
msg is a legal transcript of the protocol.

The legal transcript msg, however, does not imply that this transcript is the
result of an execution of the protocol between honest parties, because msg may
be computed by an adversary without following the protocol. The transcript
msg can occur in an honest execution, because it satisfies the dependency re-
lations, but one cannot conclude that whether such an execution has already
occurred.

The notion of a D-function is too abstract to decide whether a received message
is from an honest party. For example, an identity function and an encryp-
tion function, which both are dependency functions, are in fact very different
functions in terms of providing protection against adversarial interference. In-
evitably, we have to consider actual instantiations of a D-function. Not only the
instantiations of a D-function but also the adversary capabilities and environ-
ment assumptions are important to distinguish between a message that can be
sent by an honest party and a message that is actually sent by an honest party.
A security analysis answers this question.

A canonical message is sent by some honest party following the protocol. A
receiver may not know the sender of a canonical message, but the receiver does

4.2 Canonical Messages 67

know the message is not created by an adversary. In a general sense, when a
canonical message is received, one concludes that the message is actually sent
by some honest party. The canonicity, which is defined on a message, can be
carried to a complete run using the atomicity property of a D-graph. In this
way, canonicity is used to distinguish between an execution that can (possibly)
occur and an execution that has actually occurred between honest parties.

4.2.2 Verification of Canonicity

In the structured intuition, we do not prescribe a general procedure for the veri-
fication of canonical messages, and a proof that a received message is a canonical
message will depend on the actual protocol and method used for security anal-
ysis. For this purpose, an operational interpretation of Def. 4.4 is as follows: A
message of a protocol is a canonical message if an adversary cannot compute
the message without following the protocol and running the role program that
computes the message.

In some examples that appear later in the thesis, we use informal arguments
to claim the canonicity of a message. More rigorous proofs of canonicity can
be constructed, e.g., a proof that reduces the canonicity of a message to the
security of a cryptographic primitive used in the message. Some hints on how
to construct proofs for the canonicity goal are as follows.

Symmetric encryption and message authentication using long term keys of a
party, and signing a message using the private key of a party, are the examples of
functions for which it is reasonable to assume that an adversary cannot compute
these functions locally, without making use of honest parties. This assumption
holds under a typical attacker model, but if a long term key can be compromised,
if encryption can be broken, or if signatures can be forged then this assumption
does not hold. Further, an adversary may able to use a party as an oracle to
get the desired output. Therefore, it is essential to analyse a protocol for the
presence of such oracles.

The security analysis of public key encryption requires a bit more attention,
because all parties can compute the encryption function, including an adversary.
In order to distinguish between what is sent by an adversary (not following
the protocol) and what is sent by an honest party (following the protocol),
a common technique is to rely on an extra protocol flow, which we call the
interrogation step. The technique is similar to an authenticated recipient [79]
or an authentication test [83].

In the interrogation step, an honest party A encrypts a list of message, [M1,

68 Binding Sequence

Channel
Name

Example Meaning

Insecure
Channel

A −→ B : NA No guarantee about the sender or
the receiver

Confidential
Channel

A −→ B : EPkB (NA) No guarantee about the sender;
the receiver is B

Canonical
Channel

A −→ B : EKAB (NA) The sender is either A or B; No
guarantee about the receiver

Authentic
Channel

A −→ B : NA,SSkA(NA) The sender is A; No guarantee
about the receiver

Secure
Channel

A −→ B : EKAB (A‖B‖NA) The sender is A; The receiver is
B

Table 4.1: Example use of cryptographic primitives

...,Mi, ...,Mn], such that at least one of those message, say Mi, is a confidential
message. The ciphertext, EPkB (M1‖...‖Mn), is then sent to a party B, where
PkB is the public key of B. If A later receives a message that is a function of
this confidential message then this guarantees that B has received the earlier
messages in the interrogation step. Further, at some point B has emitted a
message that contains Mi.

(Interrogation) Aρ → Bρ: EPkB (M1‖...‖Mi‖...‖Mn)
(Reply) Bρ → Aρ: M ′i

Here, the messages M ′i and Mi are related by a D-function, namely the D-arc
M ′i → Mi holds, e.g., M ′i = Mi. Clearly, if Mi is confidential then A gets
the guarantee that M ′i is indeed sent by B after decrypting EPkB (M1‖ ...‖Mi‖
...‖Mn), but if Mi is not confidential then an adversary can compute the reply
itself. A further analysis is required to reach on any additional conclusions
regarding the reply. For instance, if the reply contains other messages besides
M ′i than this does not necessarily mean that these messages are also sent by B.

The use of different cryptographic primitives can be described in terms of chan-
nel notions that are introduced by Maurer and Schmid [103]. These notations
are summarized in Table 4.2.2. For example, we say that a nonce NA is sent
on an authentic channel by A if NA is accompanied by the signature on NA
computed using A’s private key.

To detect typing problems, we term two different messages as type-compatible

4.2 Canonical Messages 69

for a receiving party if an adversary can replace one with the other without the
possibility of being detected by the party, i.e., the party recognize both of these
messages as valid messages satisfying the local dependency graph. Therefore,
in a security analysis, one must consider the probability of replacing a message
with any of its compatible messages occurring in the protocol.

Note that replacing a message in a run with a different message from a pre-
vious run is not a typing attack if both of these messages are assigned to the
same message variable. For example, in the role program Bρ of Andrew secure
RPC protocol, a message for M3 can be replaced with another message for M3.
The protection against this type of replacement is guaranteed by the local de-
pendency graph, which guarantees that the messages of the role program are
interconnected.

In the following, we present a useful property of a D-graph that allows to verify
the canonicity of all of the nodes by only verifying the canonicity of a sub-set
of the nodes.

Proposition 4.5 (Propagation of Canonicity) Let Mi and Mi′ be the two
nodes on a path, Mi → · · · → Mi′ , of a local D-graph Dj of ρj(.), such that
sender(Mi) = sender(Mi′) and flow(Mi′) ≥ flow(Mi). In a DC-run, if the
value of Mi′ is a canonical message then the value of Mi is also a canonical
message, in the presence an adversary strategy I ∈ I0.

Proof. Let msgi and msgi′ be the two received messages for Mi and Mi′

respectively in a run ρrj of ρj(.). The message msgi′ is a canonical message,

namely it is sent by a role program ρk(.) in a run ρr
′

k , where k 6= j. Since

flow(Mi′) ≥ flow(Mi), the run ρr
′

k has already sent a message msg2i for Mi

such that the path msg2i → · · · → msgi′ can be verified. If msg2i 6= msgi then
it means that there is a collision in one of the dependency functions on the path.
As per our assumption, no strategy in I0 generates such collisions. Therefore,
we conclude that msg2i = msgi and the value of Mi is a canonical message. �

For example, in a hash chain the canonicity of the leaf node is enough to conclude
the canonicity of the rest of of the nodes. Note that the condition flow(Mi′) ≥
flow(Mi) is necessary because ρr

′

k may not be a DC-run, e.g., if Mi′ occurs in

an earlier flow then ρrj cannot conclude that msgi was once sent by ρr
′

k . Due to

flow(Mi′) ≥ flow(Mi), we know that msgi was once sent by ρr
′

k .

The canonicity is not propagated in a forward direction, e.g., if M1 is a canon-
ical message in a dependency arc M1 → M2 then M2 may not be a canonical

70 Binding Sequence

message. This can be seen by considering the underlying dependency function:
M2 = Dep(M1,aux1). By changing the value of aux1, an adversary may able
to change the value of M2 for the same value of M1.

4.3 Binding Sequence

As described earlier, a partial session of a protocol is an instance of a local D-
graph of the protocol. A partial session is a list of values that can occur when
honest parties execute the protocol. A binding sequence provides a guarantee
to a role program that the partial session has already occurred. This is essen-
tially achieved by requiring that each message in a partial session is a canonical
message.

Definition 4.6 (Binding Sequence) A binding sequence βj is a list of canon-
ical messages in a run of ρj(.), such that all of the canonical messages have
occurred in a single partial session.

A sublist of a binding sequence is also a binding sequence. A binding sequence,
which is defined on a list of messages, is an extension of canonicity requirement,
which is defined on one message. A canonical message is also a binding sequence
of length one, but a list consisting of more than one canonical messages may not
be a binding sequence, because these canonical messages may belong to different
partial sessions.

A binding sequence is generated in a single execution of a protocol. The messages
of a binding sequence are sent by parties acting honestly in the protocol flows
corresponding to these messages. Each message in a binding sequence is sent
by a certain role program and for a certain message variable. For instance, in
a two-role protocol, a binding sequence in the initiator program is the list of
messages sent by a single execution of the responder program.

In Fig. 4.6, we extend our earlier example and elaborate on the meaning of a
binding sequence with a snapshot of execution of a two-role protocol. The two
role programs are ρ1(.) and ρ2(.). Three runs of ρ1(.) are shown in the left side
of the figure; these runs occur on a party X1. Similarly, on the right side of the
figure, four runs of ρ2(.) are shown, which occur on the parties X1, X2 and X3.

The role program ρ2(.) is the sender of a list of messages that are assigned to
M1, M2, M3, and M4, and the program ρ1(.) is the corresponding receiver. The
OR-block in the middle indicates that any of the four paths on the right can
be connected to any of the three paths on the left. Each such path leads to a

4.3 Binding Sequence 71

Figure 4.6: Example of a binding sequence

72 Binding Sequence

Figure 4.7: Example of canonical messages that do not constitute a binding
sequence

4.3 Binding Sequence 73

binding sequence, i.e., a list of canonical messages assigned to M1,M2,M3,M4

in a single run of ρ2(.) is sent to a run of ρ1(.).

The receiver of a binding sequence may not know the identity of the party who
has sent the list; in the figure, e.g., the run ρ1

1 may not be able to conclude that
from which run of ρ2(.) the binding sequence was sent. Similarly, the receiver
of a binding sequence may not know whether the binding sequence is fresh or
it is being replayed; this is indicated in the figure with the output of OR-block,
i.e., the same binding sequence is accepted by multiple runs: ρ1

1, ρ2
1, and ρ3

1.

A list of canonical messages may not be a binding sequence, because an adver-
sary can mix the canonical messages from different sessions. This is illustrated
in Fig. 4.7 by modifying the example of Fig. 4.6. Here, the received messages,
although are canonical, are assigned in different runs of the role program ρ2(.).

Next, we present an operational definition that provides a method to obtain a
guarantee that a list of message variables in a role program is associated with a
binding sequence. This operational definition meets the requirement stated in
Def. 4.6.

Let Dj be a local D-graph of a role program ρj(.). The nodes of Dj repre-
sents message variables that are assigned by one of the m role programs of the
protocol. We define two subgraphs of Dj : ~in(∗,Dj) and ~in(k,Dj).

The graph ~in(∗,Dj) is constructed on the messages variables corresponding
to received messages in the role program ρj(.); the received messages can be

from any other role program. The graph ~in(k,Dj) contains the nodes of Dj

that correspond to the messages sent by the role program ρk(.) and received by
ρj(.), for k 6= j. Clearly, the graph ~in(k,Dj) is a subgraph of ~in(∗,Dj) and the
following relation holds:

node(~in(∗,Dj)) =

m⋃
k=1

node(~in(k,Dj)) (4.1)

Proposition 4.7 (Computing a Binding Sequence) If

• Dj is a local D-graph in ρj(.)

• the lists leaf(~in(k,Dj)), for 1 ≤ k ≤ m, consist of canonical messages

then node(~in(∗,Dj)) is always assigned with a binding sequence of ρj(.), in
presence of an adversarial strategy I ∈ I0.

74 Binding Sequence

Proof.

As per Def. 4.6, a binding sequence is generated in a partial session that has
already occurred. Therefore, to show that a list of received messages msg is
a binding sequence, two conditions must be satisfied. First, msg is a partial
session, and, second, all messages in msg are canonical messages.

For the first condition, we know that a list of values represents a partial session
if the list belongs to a subgraph of a local D-graph. Therefore, the first condition
translates to verifying that msg ∈ ~in(∗,Dj). If Dj is verifiable in ρj(.) then
~in(∗,Dj) is also a verifiable D-graph. This is because the excluded messages,
i.e., the sent messages in ρj(.), can be included in the auxiliary arguments of

the D-functions of ~in(∗,Dj). Since Dj is verifiable in ρj(.), we conclude that

node(~in(∗,Dj)) represents a partial session.
For the second condition, we proceed as follows.

All message variables in node(~in(∗,Dj)) must correspond to canonical messages.

The D-graph ~in(∗,Dj) can be decomposed in to m − 1 subgraphs: ~in(k,Dj),
for 1 ≤ k ≤ m and k 6= j. From the statement of the proposition, we know that
the leafs of each of ~in(k,Dj) are canonical messages, i.e., for every value of k,

leaf(~in(k,Dj)) consists of canonical messages.

From the definition of leaf nodes, we know that there is a directed path from
each node of the graph ~in(k,Dj) to some node in leaf(~in(k,Dj)):

∀Mi ∈ node(~in(k,Dj)),∃Mj ∈ leaf(~in(k,Dj)) : path(Mi,Mj)

Each node in ~in(k,Dj) represents a message that is sent by the k-th role pro-
gram. From Proposition 4.5, we know that canonicity is propagated in the
opposite direction on a path over the messages that are sent by the same role
program. Thus, canonicity is propagated to all nodes of ~in(k,Dj) starting from

leaf(~in(k,Dj)). Further, using Equation 4.1, we conclude that all nodes of
~in(∗,Dj) are canonical messages. This completes the proof. �

Essentially, a binding sequence of a role program is implied by the verification
of a local D-graph of the program and the verification of canonicity of certain
messages in the D-graph. A binding sequence correspond to a single local D-
graph; multiple local D-graphs correspond to multiple binding sequences. This
means that a role program may have a number of binding sequences, due to
multiple (distinct) local D-graphs. In the example protocol of the previous
chapter in § 4.4, the hash chain constitute a single local D-graph for the role
program Aρ and its nodes constitute a binding sequence for Sρ.

4.3 Binding Sequence 75

In summary, the computation of a binding sequence involves two main steps.
First, we write the role programs of a protocol and build local D-graphs for each
role program. Second, we prove that nodes of each local D-graph are canonical
messages. The lists of nodes in each local D-graph then represent the binding
sequences for the corresponding role program.

At last, an overview of different graphical models is shown in Fig. 4.8. A global
D-graph models a protocol from a global perspective and represents a session
of the protocol. A local D-graph of a role program is a sub-graph of the cor-
responding global D-graph and therefore represents a partial session. Then,
further down in the figure, we have two more sub-graphs of a local D-graph,
corresponding to the binding sequence and canonicity requirements of a role
program.

76 Binding Sequence

Figure 4.8: An Overview of Models and Requirements

4.4 A Simple Protocol 77

4.4 A Simple Protocol

In this section, we present an example protocol that has a relatively simple D-
graph, which brings out the basic intuition behind the notions of a D-graph and
a binding sequence. We consider a two-role protocol that is based on the classic
method of Lamport [93], and it is similar to, e.g., S/Key [86] and the Jane-Doe
protocol [99].

The protocol uses a hash chain to generate one-time passwords for authentica-
tion. A hash chain is a sequence of values in which the next value is obtained by
applying a hash function to the current value. The hash function is denoted by
H(.). We assume that the hash function is second pre-image resistant, namely
the probability of finding an input that maps to the same output, as another
pre-specified input maps to, is negligible. A formal definition can be found in
any standard cryptographic literature [132].

4.4.1 Protocol

Our two-role protocol consists of two role programs Sρ and Cρ. The program
Sρ is executed by a server that hosts a number of client databases. The program
Cρ is executed by a client to communicate with the server in order to create,
update, read, and delete its database. The server neither knows the identities
of clients nor it shares any secret with the clients. The goal of the protocol is
to provide an authentic channel between a database and an anonymous client.

Each database that is created on the server is protected by a password, which
means that a request to add, delete, or search for any record must be accom-
panied by password based authentication. Let pass be the password chosen
by a client. The first request from a client to the server is for creating a new
database. In particular, the first request contains Hn(pass), where Hn(.) stands
for n successive applications of the hash function and n is a large number, e.g.,
n = 1000. The last request from a client to the server is to delete the client’s
database.

A message constituting the i-th request from a client to the server for accessing
its database is of the form [Hn−i(pass), cmdi], where i < n, cmdi is some valid
query to the database, and i can only increase monotonically in subsequent
requests. A sequence of n requests constitute our protocol. Consequently, the
protocol consists of n flows, and its narration is as follows.

78 Binding Sequence

(0) Cρ −→ Sρ : Hn(pass), cmd0

(1) Cρ −→ Sρ : Hn−1(pass), cmd1

(2) Cρ −→ Sρ : Hn−2(pass), cmd2

.

.
(n) Cρ −→ Sρ : pass, cmdn

The protocol messages constitute a hash chain, yn → yn−1 → · · · → y0, where
yi = Hn−i(pass), for instance yn = pass, and y0 = Hn(pass). This hash chain
is the D-graph of the protocol. In this D-graph, the direction of arrows follows
the direction in which the hash function is applied, as shown below.

One can imagine that the server program also replies back to the client program,
but such replies are of no interest to us. Similarly, a client may choose to
terminate the protocol before making n requests, however, such cases can be
included by assuming n to be a run-time variable rather than a constant.

The protocol is executed in a network that connects a large number of clients to
a server. Each client can execute multiple copies of the role program Cρ using
different passwords in order to manage multiple databases. The server runs
multiple copies of Sρ in parallel to serve all active runs of the client program.

We assume the presence of a weak network adversary:

• The adversary is computationally bounded.6

• The adversary is an insider, i.e., the adversary can act as a client.
• The adversary can write a new message, read a messages of another client,

and delete a messages sent by another client.
• The adversary cannot modify a message sent by another client, i.e., he

cannot delete and read a message at the same time.

This last assumption is reasonable in a wireless broadcast scenario, where it
is hard for an adversary to jam and read messages at the same time [130]. If
an adversary can delete and read a message at the same time then clearly the
adversary can change the client’s request to his will.

6This assumption is implied by the second pre-image resistance of a hash function.

4.4 A Simple Protocol 79

An adversary can also invoke a number of runs of Cρ to create his own databases
on the server. We, however, assume that an adversary cannot act as a server,
which is a reasonable assumption if the routing address of the server is known.
Inevitably, there are many tacit assumptions regarding maximum size of a
database, a limit on the life time of a database, maximum size of the data
embedded in a request, randomness of passwords, etc.

4.4.2 Properties

When Sρ receives yn in the last flow, the computation of the hash chain is
complete in Sρ. We are interested in the information that the server obtains after
a DC-run of Sρ. Some of the information is obvious, such as the server knows
which requests were made and whether a hash chain was computed correctly by
a client. The server’s ability to verify a hash chain (D-graph) is important in our
methodology, but here we choose to highlight another aspect of the protocol,
which is as follows.

After a DC-run of Sρ, the server concludes that, with a high probability, there
must be a matching run of Cρ that has previously occurred on a client. In other
words, there is just one copy of the client program (with a single password)
with whom a copy of the server program has communicated. In the following,
we analyse why the D-graph of the protocol, i.e., the hash chain, implies a
matching run.

The underlying network provides an atomic channel for the duration of a single
request, because an adversary cannot modify a request. The first request to
create a new database is a (pseudo) authentic message7 sent by an anonymous
client; the message is authentic because there is no database associated with the
client initially. Thus, the authenticity of the first request is guaranteed by the
setup assumptions.

After the first request a new database is crated for the client. Now, subsequent
requests to manage the newly crated database are considered authentic only if
they are from the same client. The authenticity of subsequent requests cannot
be guaranteed by only using the setup assumptions, because an adversary may
able to send subsequent requests on behalf of a client.

The following observation is important: a guarantee of authenticity propagates
on a hash chain, from a node to the previous node (the reverse direction). This

7The identity of the party who sends a pseudo authentic message is not important [113].
For brevity, we are using the term authenticity to mean pseudo authenticity in this example.

80 Binding Sequence

Figure 4.9: Prorogation of authenticity in reverse direction

means that if the value of y0 is an authentic message then so does the values of
y1, . . . , yn. Unless an adversary finds a second pre-image in the hash function,
it cannot be the case that the client program has generated the values in any of
its n flows that differ from the values that the server program has received.

The propagation of authenticity is illustrated in Fig. 4.9, where two hash chains
corresponding to two runs of the client program Cρ are shown. The hash chain
in the left side of the figure is generated when a client Bob executes Cρ, and
the hash chain on the right side is generated when a client Bill (who may be
an adversary) executes Cρ. The arrow from y′i+2 to y1 represents the case if
the two runs of Cρ generate two different values for y2 and y′i+2 such that
H(y2) = H(y′i+2), where 0 ≤ i ≤ n − 2. This means that the adversary has
successfully found two values, y2 and y′i+2, that generate a collision in the hash
function H(.). Since we assume that H(.) is second pre-image resistant, it is
reasonable to conclude that an authentic message y1, in flow (1), implies an
authentic message y2, in flow (2).

If the client’s password remains secret then the values for y1, . . . , yn are all sent
by the same client running Cρ. Therefore, a DC-run of Sρ implies a matching
run of Cρ executed by the client who knows pass.

4.4 A Simple Protocol 81

Figure 4.10: Overview of the analysis of the example protocol

4.4.3 Binding Sequence

For our two-role protocol, a list consisting of authentic messages that is sent in
a single run of the client role program is a binding sequence of the server role
program. In fact, we do not require messages to be authentic; we only require
the messages to be canonical, which is a weak form of message authentication,
as discussed before.

A binding sequence, which consists of canonical messages, is sent by some honest
party. The receiver of a binding sequence may not know the identity of the
sender. Similarly, a binding sequence may not provide any guarantee for its
freshness, i.e., a binding sequence can be replayed by an adversary.

A binding sequence is sufficient to derive fine level authentication goals (FLAGs)
without relying on any other security property. Authentication goals are derived

82 Binding Sequence

from a binding sequence in a constructive manner, e.g., we say that the server
executing Sρ achieves the identification of a client executing Cρ if the program
Sρ can locally compute a function that maps Sρ’s binding sequence to the the
identity of the client. The construction of such a function in Sρ serves as a proof
that the role program Sρ achieves the identification goal for a client.
The overall structure of our analysis is shown in Fig. 4.10.

Coming back to our example, the reader may have noticed that the trivial
verifiability of the D-graph (hash chain) in Sρ is due to our choice of this simple
protocol. In general, a party may not know all of the values of the terms
occurring in a protocol. Similarly, the proof of canonicity (or authenticity) for a
received message is a non-trivial task, because an adversary may be able to insert
new messages. These issues are discussed in the next chapter. In this chapter,
we only introduce the concept of a dependency graph, without deliberating its
verifiability aspect.

4.5 Case Study 1

We once again consider the five-pass authentication protocol from ISO-9798 part
2, which is listed below:

(1) Aρ −→ Bρ: M1 = RA
(2) Bρ −→ Sρ: M2 = R′B ,M3 = RA, A
(3) Sρ −→ Bρ: M4 = EKBS (R′B‖KAB‖A),M5 = EKAS (RA‖KAB‖B)
(4) Bρ −→ Aρ: M6 = EKAS (RA‖KAB‖B),M7 = EKAB (RB‖RA)
(5) Aρ −→ Bρ: M8 = EKAB (RA‖RB)

The protocol consists of three role programs. The narration of a role program
can be obtained from the protocol narration by omitting those flows in which
the role program is not a communication partner. The analysis for the three
role programs is in the following.

4.5.1 Initiator program: Aρ
def

= ρ1(R̄A, K̄AS, Ā, B̄)

The role narration is as follows.

4.5 Case Study 1 83

(1) Aρ → Bρ: M1 = RA
(4) Bρ → Aρ: M6 = EKAS (RA‖KAB‖B),M7 = EKAB (RB‖RA)
(5) Aρ → Bρ: M8 = EKAB (RA‖RB)

The narration of Aρ consists of four messages variables. The four messages con-
stitute a single local D-graph, which we denote by D1 and is shown in Fig. 4.11-
(a). The local D-graph contains four arcs corresponding to four D-functions.
These D-functions are clear from the role narration and are listed below.

Figure 4.11: (a) Local D-graph of Aρ (b) D-graph on received messages

(1) M6 = Dep1(M1,KAS ,KAB , B): return(EKAS (M1‖KAB‖B))

(2) M7 = Dep2(M1,KAB , RB): return(EKAB (RB‖M1))

(3) M8 = Dep1(M7,KAB): x1, x2 ← DKAB (M7);
return(EKAB (x2‖x1))

Since Aρ only communicates with the role program Bρ, the two subgraphs
~in(2,D1) and ~in(∗,D1) are the same. The graph ~in(2,D1) is shown in Fig. 4.11-
(b), in which there are two leaf nodes, M6 and M7. These two variables are
required to be assigned with canonical messages. If the canonicity can be verified
then the binding sequence is β1 = node(~in(∗,D1)) = [M6,M7]. We later describe
the canonicity verification using a model checker.

84 Binding Sequence

4.5.2 Responder program: Bρ def

= ρ2(R̄B, R̄
′
B, K̄BS, Ā, B̄)

The narration of the role program Bρ is the same as the protocol narration,
because Bρ takes part in all the flows. The role narration is as follows.

(1) Aρ → Bρ: M1 = RA
(2) Bρ → Sρ: M2 = R′B ,M3 = RA, A
(3) Sρ → Bρ: M4 = EKBS (R′B‖KAB‖A),M5 = EKAS (RA‖KAB‖B)
(4) Bρ → Aρ: M6 = EKAS (RA‖KAB‖B),M7 = EKAB (RB‖RA)
(5) Aρ → Bρ: M8 = EKAB (RA‖RB)

The local D-graphs constructed on the message variables of Bρ is shown in
Fig. 4.12-(a). Note that the message variable M5 is not included as a node,
because this message cannot be decrypted by Bρ and the dependency function
linking M5 to the D-graph cannot be verified by Bρ. The underlying D-functions
can easily be constructed, as listed below.

Figure 4.12: Local Dependency Graph of Bρ, D2

(1) M4 = Dep1(M2,KBS ,KAB , A): return(EKBS (M2‖KAB‖A))

(2) M4 = Dep2(KAB ,KBS , R
′
B , A): return(EKBS (R′B‖KAB‖A))

(3) M8 = Dep3(KAB , RA, RB): return(EKAB (RA‖RB))

4.5 Case Study 1 85

Figure 4.13: (a) The graph ~in(∗,D2) (b) ~in(1, in(D2)) (c) ~in(3, in(D2))

(4) M3 = Dep4(M1): return(M3)

(5) M7 = Dep5(M3,KAB , RB): return(EKAB (RB‖M3))

(6) M8 = Dep6(M7,KAB): x1, x2 ← DKAB (M7);
return(EKAB (x2‖x1))

The graphs ~in(∗,D2), ~in(1,D2), and ~in(3,D2) are shown in Fig. 4.13. The
message variables M4 and M8 are the leafs in ~in(1,D2) and ~in(3,D2), therefore,
we need to prove the canonicity of messages assigned to M4 and M8. If the
canaonicity requirement can be satisfied then the binding sequence is β2 =
leaf(~in(∗,D2)) = [M1,M4,M8]

4.5.3 TTP program: Sρ
def

= ρ3(K̄AS, K̄BS, K̄AB, Ā, B̄)

A trusted third party (TTP) S executes the role program Sρ. The trusted
party shares long term secrets with all network parties. The narration of the
role program Sρ is as follows.

(2) Bρ → Sρ: M2 = R′B ,M3 = RA,M
′
3 = A

(3) Sρ → Bρ: M4 = EKBS (R′B‖KAB‖A),M5 = EKAS (RA‖KAB‖B)

The local D-graph of Sρ is shown below.

86 Binding Sequence

In the D-graph, for instance, KAB →M4 is a D-arc that corresponds to the D-
function M4 = Dep(KAB ,KBS , R

′
B , A). In this D-graph, there are two received

message variables, M2 and M3. We do no further analysis, because received
messages for M2 and M3 are plaintext messages and cannot be the candidates
of canonical messages against a realistic adversary.

4.5.4 Canonicity Analysis

The canonicity of M4,M6,M7, and M8 can be analysed with different methods
and using different attacker model. For instance, in a cryptographic model, the
canonicity of M6 = EKAS (RA‖KAB‖B), which is a message sent by the server
program, can be proved by the following reduction type argument:
If an adversary I ∈ I0 can compute M6 on a value of RA of his choice, without
using the server program, then I can be used to break the encryption scheme,
assuming that KAS is only shared between A and S, and that A and S are
honest parties.

In this case study, we rely on an abstract analysis. We use a symbolic model
checker, called OFMC (open-source fixed-point model checker), which uses the
classic Dolev-Yao attack model [62] and supports an insider adversary. An
insider adversary is a legitimate network user. In our case, this means that an
adversary shares a long term secret key with the trusted third party S and can
executes the role programs Aρ and Bρ. This attacker model is an abstraction
of our adversary class I0.

We analyse the protocol with the security goal of non-injective agreement on
M4,M6,M7, and M8. A non-injective agreement on a message means that the
message is a canonical message and is sent by a particular party. Therefore, the
non-injective agreement is a stronger security property than canonicity. The
analysis results show that the protocol achieves a non-injective agreement on
M4,M6,M7, and M8, which means that these message variables correspond to
canonical messages. Further details of the verification are in Appendix A.

4.6 Summary 87

This completes the security analysis of our protocol with the following results:

• The binding sequence of Aρ is β1 = [M6,M7].
• The binding sequence of Bρ is β2 = [M1,M4,M8]

The tool OFMC, along with the tutorial and examples, is available online:
http://www2.imm.dtu.dk/~samo

4.6 Summary

In this chapter, we presented an execution model of a protocol in terms of role
programs. We introduced the notion of a local D-graph, which is constructed
on the messages of a role program, using only the local perspective of the role
program. It is required that the D-functions of a local D-graph are verifiable in
the role program. An instance of a local D-graph is a partial session, since a role
program does not participate in every flow of the protocol. We introduced the
notion of a canonical message (which is orthogonal to the notions of a D-function
and a D-graph). If a receiver of a message has the guarantee that this message
is not sent by an adversary and it is sent by an expected role program then the
message is called a canonical message. The receiver of a canonical message may
not know the identity of the sender. We also introduced the notion of a binding
sequence, which is a list of canonical messages that are linked together by a
local D-graph. This means that a binding sequence is a list of values sent by
some honest party in a single partial session. At last, we analysed the protocol
of our case study to demonstrate how to derive its binding sequences.

http://www2.imm.dtu.dk/~samo

88 Binding Sequence

Chapter 5

Authentication Goals

In this chapter, we present the third and last step of the SI methodology, which
is related to the derivation of fine level authentication goals (FLAGs). FLAGs
are the correctness requirements of an entity authentication protocol. There-
fore, the derivation process of FLAGs is also called the correctness analysis. Two
authentication protocols are different for an application (which uses authenti-
cation as a service) if their sets of FLAGs are different. Of course, to achieve
a certain FLAG, different protocols employ different cryptographic techniques
and are based on different setup assumptions, e.g., nonces vs. time-stamps and
public-key vs. symmetric-key ciphers.

In the SI methodology, a FLAG of a role program is derived from a binding
sequences of the role program. (A role program may have multiple binding
sequences.) This derivation process does not consider the dynamic behaviour of
the role program, which can be affected by a network adversary. This is because
a binding sequence is used as an assumption in the correctness analysis. This
allows us to ignore the role of a network adversary. Therefore, we consider the
correctness analysis as a non-security analysis.

With respect to a role program, the validity of a FLAG depends on an adver-
sarial model, because the binding sequence used to derive the FLAG is a result
of a security analysis, which explicitly considers the dynamic behaviour of the
protocol in presence of a network adversary. The notion of a binding sequence

90 Authentication Goals

allows us to demarcate the correctness analysis (the derivation of FLAGs from
a binding sequence) from the security analysis (the derivation of the binding
sequence).

We define each FLAG from two perspectives: a conceptual perspective and an
operational perspective. A conceptual definition describes the concept behind a
FLAG in a natural language and without being protocol specific. A conceptual
definition considers a FLAG as a service as seen from an application point of
view. The operational definition of a FLAG describes the FLAG for a security
analyst so that he can verify the FLAG, namely an operational definition is a
concrete procedure that decides whether or not a FLAG is achieved by a role
program.

In Chapter 1, we have already introduced the conceptual definitions of FLAGs.
In the next section, we simply rephrase these definitions in the context of various
notions that we introduced since Chapter 1.

5.1 Conceptual Definitions

We start by explaining the importance of conceptual definitions. A conceptual
definition specifies the service aspect of a FLAG, which is important to a system
designer, who may not be a security expert and who mainly uses an authentica-
tion protocol as a service in a design process. In our view, the question why a
protocol achieves a particular FLAG is not important in the design of a larger
system. On the other hand, a system designer may well be interested in re-
source requirements and setup assumptions accompanied by an authentication
protocol. The specification of such aspects, however, can be quite independent
of why protocol works and achieves a set of FLAGs.

We define FLAGs from the local perspective of a role program. In the following,
we use the variable A to represent the the local party for which a FLAG is being
defined, and we use B and C to represent two other network parties, where
A 6= B 6= C. The party A is the verifier and the party B is the claimant in the
authentication process.

Definition 5.1 (FLAGs) The conceptual definitions of FLAGs are as follows:

(1) Recognition: If A verifies that B is the same entity with whom A has com-
municated before then A is said to achieve the recognition of B, denoted
by the predicate Recog(A�B, .).

5.1 Conceptual Definitions 91

(2) Identification: Let db be an identification database that is accessible to
A and trusted by A. If A verifies that the claimed identity of B can be
linked to a specific record of db then A is said to achieve the identification
of B, denoted by the predicate Idnt(A�B, .).

(3) Operativeness: If A verifies that the party who claims to be B is currently
active on the network then A is said to achieve the operativeness of B,
denoted by the predicate Oper(A�B, .).

(4) Willingness If an entity A verifies that the party who claims to be B once
wanted to communicate to A then A is said to achieve the willingness of
B, denoted by the predicate Wlng(A�B, .).

(5) One-sided Authentication If an entity A verifies that an identified peer
entity B is currently ready to communicate with A then one-sided authen-
tication is achieved, denoted by the predicate OATH(A�B, .):

OATH(A�B, .) = Idnt(A�B, .) ∧Wlng(A�B, .) ∧Oper(A�B, .)

Here, the use of logical and ∧ implies that the goals Idnt(A � B, .),
Wlng(A � B, .), and Oper(A � B, .) are all achieved together. As it will
become clear in the next section, achieving two FLAGs together actually
means that both FLAGs are derived from the same binding sequence.

(6) Pseudo One-sided Authentication If an entity A verifies that a rec-
ognized peer entity B is currently ready to communicate with A then
pseudo one-sided authentication is achieved, denoted by the predicate
Pseudo-OATH(A�B, .):

Pseudo-OATH(A�B, .) = Recog(A�B, .)∧Wlng(A�B, .)∧Oper(A�B, .)

(7) Confirmation If an entity A verifies that the peer entity B knows that a
FLAG G has been achieved then A is said to achieve a confirmation on G
from B, denoted by the predicate Cnfm(A�B,G, .).

(8) Strong One-sided Authentication If an entity A verifies that an identi-
fied peer entity B is currently ready to communicate with A and B knows
this belief of A then strong one-sided authentication is achieved, denoted
by the predicate Str-OATH(A�B, .):

Str-OATH(A�B, .) = OATH(A�B, .)∧Cnfm
(
A�B,OATH(A�B, .), .

)
(9) Mutual Authentication If an entity A verifies that A and the peer entity

B currently want to communicate with each other, then A is said to achieve
mutual authentication, denoted by MATH(A�B, .):

MATH(A�B, .) = OATH(A�B, .) ∧ Cnfm
(
A�B,OATH(B �A, .), .

)

92 Authentication Goals

A few remarks about each of the above definitions are in order.
The goal recognition does not require that A already knows B. For entity recog-
nition, the real identity of B is not important. Entity recognition only makes
sense for two or more instances of interaction between A and B. As the definition
specifies, entity recognition is achieved if in a later instance of communication
A can verify that B is the same party with whom it has communicated before.

The second FLAG is entity identification, which requires that A is able to verify
the claimed identity of B. Entity identification assumes that A already knows
the identities of all network entities in form of an identification database. The
identification database is a kind of abstraction and it does not imply that A
actually stores the database locally. In the definition, we only assume that A
has an access to the identification database, e.g., B may present its claimed
identity to A signed by a trusted party in a common public key infrastructure
(PKI). In this way, using PKI, A can compute whether the claimed identity is
a valid network identity.

The third FLAG is the operativeness of a peer entity, which requires that the
peer entity B is currently active on the network. This goal does not require that
A verifies the identity of B. The meaning of currently active can be interpreted
in slightly different manners depending on the type of nonce used by A, which we
formalize in the corresponding operational definition. For instance, if the nonce
of A is a time-stamp then the period of the time stamp determines the meaning
of currently active; if the time period is 5-seconds then the operativeness of B
implies that B was there within the 5-second window. On the other hand, if a
sufficiently large random number is used then the operativeness means that the
party pretending to be B has actually participated in the current execution of
the protocol.

The fourth FLAG is the willingness of a party, which requires that the party
pretending to be B provides its consent to communicate with A. Clearly, this
requires that somehow B can identify A and messages sent by B to A are
specifically generated for A. The willingness goal can be used to avoid many
relay and man-in-middle attacks.

The fifth FLAG is one-sided authentication, which is achieved if A achieves
the identification, operativeness, and willingness of B together. (As we see
later, together means achieving these FLAG from the same binding sequence.)
Achieving these three goals ensures three things: the party who claims to be B
is indeed B; B is currently there; and B wants to communicate with A. In other
words, B is currently ready to communicate with A. The next FLAG, pseudo
one-sided authentication, is the same as one-sided authentication, except the
identification requirement is replaced by the recognition requirement.

5.1 Conceptual Definitions 93

It is important to note that for one-sided authentication the three FLAGs must
be achieved together; e.g., if the three FLAGs are achieved using three different
protocols then one cannot conclude that one-sided authentication is achieved.
This is because willingness and operativeness do not require the validation of
the claimed identity of B, and therefore the role of B can be played by different
parties.

The seventh FLAG is the confirmation of another FLAG. In a sense, the confir-
mation is a higher order goal. To understand its role, note that each FLAG is
defined from the perspective of A, therefore, e.g., if a far-end party B authen-
ticates A then A may not know about this authentication. For A, one way of
determining the occurrence of this authentication event is to ask a confirmation
message from B.

The eighth FLAG is strong one-sided authentication, which means that not only
does A achieve one-sided authentication of B but A also confirms that B knows
that A has achieved this goal. This type of assurance is typically required in
applications where a subsequent action is expected from parties, e.g., without
any confirmation from B, A may start streaming a TV channel to B while B is
re-authenticating itself to A.

The last goal in the list is mutual authentication, which requires that both A
and B achieve one-sided authentication. Since FLAGs are defined from the
local perspective of A, the one-sided authentication of A by B is conveyed to A
by the confirmation goal. Note that merely achieving one-sided authentication
twice does not imply mutual authentication; the two one-sided authentication
must be achieved together, from the same binding sequence.

For instance, if A and B use a one-sided authentication protocol and execute
two copies of the protocol in a reciprocal manner then the mutual authentica-
tion is not achieved as per our definition. In many applications, undesirable
behaviours occur if there is no distinction between two one-sided authentication
and mutual authentication. Consider a situation in which A and B execute
multiple sessions with each other in parallel. Without any link between the two
one-sided authentication events, the two events may occur in two different ses-
sions. Similarly, if an authentication protocol establishes a session key besides
entity authentication then it is important that both parties authenticate each
other in the same session and with respect to the same value of key.

A new FLAG can be defined by combining different FLAGs, e.g., a combination
of willingness and recognition is a new FLAG. Similarly, the goal confirmation
can be applied to any other goal, e.g., the confirmation on mutual authentication
implies strong mutual authentication. In this way, the above list of FLAGs can
be extended, but, even with such extension, we do not claim that our list of

94 Authentication Goals

Figure 5.1: Partial order between FLAGs

FLAGs is complete The presented list is merely based on our experience and
represents commonly expected authentication goals.

It is also clear from Def. 5.1 that there is a partial order between FLAGs. The
hierarchical relations between FLAGs that are valid (by definition) are shown in
Fig. 5.1. The FLAGs that appear as the leafs of the graph are called low-level
FLAGs, and the rest of the FLAGs are called high-level FLAGs. A high-level
FLAG depends on low-level FLAGs.

The conceptual definitions of FLAGs specify the service aspect of entity authen-
tication, which is independent of a security model or a concrete protocol. To
show that a FLAG is achieved by an authentication protocol, a security analyst
needs operational definitions of FLAGs, which are presented in the next section.

5.2 Operational Definitions

Formulating the operational definitions of FLAGs require a bit of extra care,
because, first, the link between a conceptual definition and an operational defini-
tion is somewhat intuitive. Second, if an operational definition is overly specific
to a protocol structure and security model then it becomes hard to generalise.
As stated earlier, the abstraction that we use in our operational definitions
is that of a binding sequence, which allows the application of our operational

5.2 Operational Definitions 95

definitions to a wide variety of authentication protocols. In particular, if two
different role programs have the same input and have the same binding sequence
then the both programs achieve the same set of FLAGs.

As described in the previous chapter, a binding sequence is a list of messages
that is generated in one session. This means that if a role program accepts
a sequence of messages as a binding sequence then the program can assume
certain restrictions on the behaviour of a network adversary. In particular, an
adversary cannot modify a message in a binding sequence or mix different bind-
ing sequences, because this violates the very definition of a binding sequence.
If an adversary can modify a message then the message cannot be a canonical
message and therefore the message cannot be a part of a binding sequence.

An adversary, however, can present a receiver with any valid binding sequence,
because a binding sequence is neither linked to a particular sender party nor
does a binding sequence imply freshness of the messages. The main challenges
for the receiver of a binding sequence are, therefore, to decide whether the
binding sequence is from the party who claimed to be its sender and whether
the binding sequence is being replayed. These and similar challenges are the
crux of the correctness analysis and their requirements are embodied in the
operational definition of FLAGs.

We define the operational definitions of FLAGs in a complexity theoretic frame-
work using asymptotic notions. We believe that from these operational proce-
dures deriving the corresponding operational procedures for other formalisms is
not too hard. The operational definitions are based on a type of algorithms,
which we call the distinguisher and which decide whether or not a challenge
sent by an adversary is computed in a particular network configuration.

Definition 5.2 (Distinguisher) Let C1 and C0 be the two authentication
challenges that correspond to two different network configurations. One of the
challenges Cb is presented to a role program ρj(constj), where the value of b is
selected by an adversary. A distinguisher dst(Cb, constj [i]) in ρj(constj) is an
efficient algorithm that determines the correct value of b with a high probability
ph, where ph = 1− ε, for a negligible ε.

The value of b is assigned by an adversary, therefore we cannot always associate
a probability distribution to b. In some protocols, an adversary cannot freely
assign a value to b, because one of the challenges can be inconsistent with the
security assumptions. For example, it may be the case that if an adversary
chooses C0 as an authentication challenge then this implies that the adversary
can compute the private key of a party; since the confidentiality of private keys
is a standard security assumption, one concludes that C0 cannot occur. In such

96 Authentication Goals

cases, there is no need to construct a distinguisher.

All high-level FLAGs are defined in terms of low-level FLAGs. For a low-level
FLAG, we specify two network configurations that generate the two authentica-
tion challenges of the FLAG. One of the configuration corresponds to the case
when the FLAG is achieved. This is called the expected configuration of the
FLAG and is denoted by C1. The other configuration represents the alternate
configuration, namely a configuration in which the FLAG is not achieved, and
it is denoted by C0.

A network adversary can select any of the above two challenges (the value of b)
and present the selected challenge to a role program. The role program does not
have an a priori knowledge about the adversary’s selection. Now, if a security
analyst is able to construct a distinguisher within the role program that correctly
determines the value of b with a high probability then the construction of the
distinguisher serves as a proof that the FLAG is achieved by the role program.

If a role program determines, with the help of a distinguisher implemented in
it, that the value of b is 1 then the program concludes that the challenge is
received from the expected configuration. On the other hand, if b = 0 then the
role program concludes that the challenge is from an alternate configuration.

If a role program is designed to achieve a FLAG G then a run of the role
program must only succeed if the distinguisher of G generates 1. Typically,
a role program achieves a number of FLAGs, and each FLAG correspond to
an implementation of the corresponding distinguisher. A distinguisher is not
an additional verification algorithm at the end of a role program, as it may
seem from the above description. In fact, the functions inside a distinguisher
are a subset of the dependency functions of a role program. Therefore, when
a role program verifies its dependency graphs, all of the distinguishers of the
role program are also computed. The verification of local dependency graphs
fails if any of the distinguishers generates 0. That is why, we do not include
distinguisher algorithms in the following definition of a successful run.

Definition 5.3 (Successful Run) A dependency compliant (DC) run, as per
Def. 4.3, is a successful run.

The relations between different types of verification functions are illustrated in
Fig. 5.2-(a), which shows that dependency functions encompass semantic checks
as well as distinguisher functions. From a methodological point of view, it is,
however, essential to make distinctions among these three types of functions,
as illustrated in Fig. 5.2-(b). The semantic checks are performed during the
communication phase of a role program. Although the semantic checks are not

5.2 Operational Definitions 97

Figure 5.2: Distinguisher, Semantic checks, and Dependency Functions

used in the SI methodology, we recognize their importance in avoiding trivial
denial of service attacks. The distinguishers of a role program are used to assert
that certain FLAGs are achieved, and for the analysis purpose we consider them
as a separate set of algorithms at the end of a role program. Since distinguisher
functions constitute a subset of the dependency functions of a role program,
the distinguisher functions do not need to be implemented; if the dependency
functions are verified then the distinguisher functions are also verified.

As described previously, we use a bar on a term if the term is a constant. A
constant is a value that is passed to a role program by the calling routine, and
it is the value that is known at the start of a run. On the other hand, a variable
is assigned a value during a run; the value assigned to a variable is a function
of received messages and constants.

5.2.1 Recognition

The recognition goal does not depend on the identity of the local party that
executes the role program. Therefore, the recognition of a far-end party is
defined for a role program, instead of a party that executes the role program.
For a straight forward comparison to the conceptual definition, we assume that
the role program that achieves the recognition of B is executed by a party
A. Since this assumption is not necessary, A can be replaced with Aρ in the

98 Authentication Goals

following definition of recognition.

Definition 5.4 (Recognition) Let

1. βj(r), βj(r
′) and βj(r

′′) be the three binding sequences that are received
in three different runs of a role program ρj(constj).

2. another role program ρj′(constj′) sends these three binding sequences.
3. the role program ρj(constj) is executed by a party A in the three sessions.
4. the role program ρj′(constj′) is executed by B in the first and the third

session, and is executed by C in the second session, where C 6= B .
5. the two challenges be C0 = (βj(r), βj(r

′)) and C1 = (βj(r), βj(r
′′)).

The party A is said to achieve Recog(A � B, βA) (the recognition of B by A
based on βj) if one of the following conditions holds.

• The challenge C0 is inconsistent with security assumptions.
• A distinguisher dstrcog(Cb, constj) can be constructed in ρj(constj) for

all choices of B and C.

Figure 5.3: Configurations for the Distinguishers of Recog(A�B, .)

This definition is also illustrated in Fig. 5.3. In the definition, the challenge C1

represents the situation when the recognition of B is achieved. The challenge
C0 represents the situation where the recognition must fail, because the two
parties executing ρj′(constj′) and contributing to the two binding sequences
are different. If one can construct a distinguisher that can correctly determine
the value of b in Cb then clearly this distinguisher can be used to recognize a
party.

Proposition 5.5 The operational recognition is equivalent to the conceptual
recognition.

Proof. First we consider the forward implication: the operational recognition
implies the conceptual recognition. The main idea is to use the distinguisher of

5.2 Operational Definitions 99

the operational recognition to satisfy the requirement of the conceptual recog-
nition.

For this purpose, on A, we create a local database: db ::= {idn : idn ∈ {0, 1}|βj |}.
The database db contains binding sequences, and it may grow to N records,
where N is the total number of network entities. Initially, the database is
empty: db = ε. Each time an instance βj(r) is received, the party A does the
following.

1. A goes through each entry idn in db and query the distinguisher dstrcog(
(idn, βj(r)), const).

2. If the distinguisher returns 1 on a value of idn then this value of idn is
the pseudo identity of the peer entity; this also shows that the peer entity
once existed on the network.

3. If the distinguisher returns 0 on all entries then extend the database by
including a new pseudo identity: db← db∪{βj(r)}. In this case, the party
A concludes that the peer entity never communicated to A before.

Clearly, if the operational recognition holds then A can decide whether or not
A has communicated to the same peer entity before. Therefore, the forward
implication holds. Next, we consider the reverse implication: the conceptual
recognition implies the operational recognition.

In this case, we can use a contrapositive argument: if a distinguisher for the op-
erational recognition does not exists then there exists an efficient attack against
the conceptual recognition. Assuming no distinguisher exists on A, computa-
tionally the following two pairs are equal: (βj(r), βj(r

′′)) ≈ (βj(r), βj(r
′))

and we have βj(r
′′) ≈ βj(r

′). Therefore, A is oblivious to pseudo identities
(binding sequences) of network parties, which is a clear violation of the concep-
tual definition.
Hence, the reverse implication holds and the operational recognition is equiva-
lent to the conceptual recognition. �

5.2.2 Identification

The operational definition of the identification goal can be constructed in a
similar manner as that of the recognition. Once again, the identity of the local
party, who identifies a peer entity, is not important for the identification purpose.
It is actually a role program that identifies a peer entity, but, for convenience,

100 Authentication Goals

we assume that the role program is executed by a party A. The operational
definition is as follows.

Definition 5.6 (Identification) Let

1. βj(r) and βj(r
′) be the two binding sequences that are received in two

different runs of a role program ρj(constj).
2. another role program be ρj′(constj′) that sends these binding sequences.
3. the role program ρj(constj) be executed by a party A in the both runs.
4. B̄ to be a constant in constj .
5. the role program ρj′(constj′) be executed by B in the first run and by C

in the second run.
6. the two authentication challenges be C1 = βj(r) and C0 = βj(r

′).

The party A is said to achieve Idnt(A � B, βj) (the identification of B by A
based on βj) if one of the following conditions holds.

• The challenge C0 is inconsistent with security assumptions.
• A distinguisher dstidnt(Cb, constj) can be constructed in ρj(constj) for

all choices of B and C.

Figure 5.4: Configurations for the Distinguishers of Idnt(A�B, .)

As shown in Fig. 5.4, for b = 1 the network configuration is the same as expected
by A, while for b = 0 the network configuration is not consistent with the
expectation of A. Note that B̄, in the list of constants, represents the identity
of a party whose identification is required. The value of B that is assigned during
the execution is a claimed identity of a peer entity. The above definition specifies
that in order to achieve the identification of B there must exist a distinguisher
that can differentiate the cases when A is communicating with B and when A
is communicating with C, for C 6= B.

Proposition 5.7 The operational identification is equivalent to the conceptual
identification.

5.2 Operational Definitions 101

Proof.[Sketch] The arguments are essentially the same as used in Proposi-
tion 5.5. In the forward implication, the database is already available in form of
an identification database. Therefore, if no match is found we reject the claimed
identity. For the reverse implication, an additional conclusion is that A does
not make an effective use of the identification database. �

5.2.3 Willingness

The willingness goal is concerned with the consent of a peer entity B to com-
municate with A. In particular, this means that A gets a piece of evidence
from which A can conclude that a party who claims to be B wants to commu-
nicate with A. Unlike the previous operational definitions, the party A obtains
the willingness of another role program (and not of the party who executes the
other role program). For convenience, we assume that the other role program
is executed by B. The operational definition is as follows.

Definition 5.8 (Willingness) Let

1. the two binding sequences βj(r) and βj(r
′) are sent in two runs of a role

program ρj′(constj′), which is executed by B.
2. the role program ρj(constj) be the receiver of two binding sequences and

is executed by A and C in the two runs.
3. Ā be a constant in constj .
4. the two challenges be C1 = βj(r) and C0 = βj(r

′).

The party A is said to achieve Wlng(A�B, βj) (the willingness of B by A based
on βj) if one of the following conditions holds.

• The challenge C0 is inconsistent with security assumptions.
• A distinguisher dstwlng(Cb, constj) can be constructed in ρj(constj) for

all choices of B and C.

The condition Ā ∈ constj means that the role program ρj(constj), which
executed by A, knows the identity of A; without knowing the identity of A,
ρj(constj) cannot decide whether a peer entity is communicating with A or
not.

The two configurations involved in the willingness definition are also shown in
Fig. 5.5. For b = 1, the role program executed by B is communicating to A,
which is the expected behaviour. For b = 0, the role program executed by

102 Authentication Goals

Figure 5.5: Configurations for the Distinguishers of Wlng(A�B, .)

B is communicating to another party C and the resulting binding sequence is
being replayed to A. If the role program of A can distinguish between these two
configurations then clearly A can conclude about the consent of B.

Proposition 5.9 The operational willingness is equivalent to the conceptual
willingness.

Proof. First, consider the forward implication: the operational willingness
implies the conceptual willingness. When A gets an instance of a binding se-
quence βj(r) from B then the operational willingness guarantees that βj(r) is
specifically sent for A. This information implies that B achieves identification
for A before sending his willingness, because, otherwise B cannot send different
binding sequences to A and C. Therefore, sending of a binding sequence by B
for A implies the willingness of B to communicate with A.

Similarly, the conceptual willingness implies the operational willingness. Once
again, we use the corresponding contrapositive argument. If a distinguisher for
the willingness does not exist on A then we have βj(r) ≈ βj(r

′), which means
that either B cannot identify peer entities or B does not sends its willingness
in a manner understandable to A. In any case, the local party A cannot get
an assurance that B is willing to communicate with A. Hence, the operational
willingness implies the conceptual willingness. �

5.2.4 Operativeness

The operativeness goal is concerned with the current availability of a peer entity.
Similar to the definitions of identification and willingness, the operativeness
goal is achieved by a role program and not by a party, but for convenience we

5.2 Operational Definitions 103

assume that a party A executes the role program that achieves operativeness.
The operational definition of operativeness is as follows.

Definition 5.10 (Operativeness:) Let

1. βj be a binding sequence of a role program ρj(constj) that is executed
by A.

2. X ⊆ βj be a list consisting of messages sent by a role program ρj′(constj′)
that is claimed to be executed by B.

3. N̄A be a nonce and is a constant in ρj(constj), i.e., N̄A ∈ constj .

If a dependency function can be constructed from N̄A to X in ρj(constj) then
A is said to achieve the operativeness of the party that claims to be B.

Unlike the previous definitions, this definition does not depend on a distin-
guisher, The operativeness only requires the construction of a D-function. If
the required D-function exists then it is not possible to replay the messages in
X, because replaying a message implies the existence of a collision, i.e., two dif-
ferent values of the nonce in two different runs map to the same replayed value
of X.

A nonce can be instantiated by a random number, time stamp, or sequence
number. A true random number is a unpredictable value, which cannot be
computed by dishonest parties, while time-stamps or sequence numbers are
predictable values. These choices are important in the security analysis that
guarantee the canonicity of messages of a binding sequence. Gong [81] provides
a detailed account on the use of different types of nonces in authentication
protocols.

If a nonce is a random number or a sequence number then the calling routine
sends different values of the nonce in different runs. In the case of a time-stamp,
operativeness cannot be guaranteed among the runs that are initialized with the
same time-stamp.

Proposition 5.11 The operational operativeness is equivalent to the conceptual
operativeness.

Proof. First consider the forward implication: the operational operativeness
implies the conceptual operativeness. The operational operativeness guarantees
that for each value of the nonce NA in Def. 5.10, there is a different binding
sequence βj , because, otherwise, there will be a collision in the dependency
function of NA → X, where X ⊆ βj . Therefore, the binding sequence βj must

104 Authentication Goals

be freshly generated by a party who claims to be B, which implies that the
party is currently on the network.

Now, we consider the reverse implication. For this purpose, we can use a contra-
positive argument: if the D-function required for the operational operativeness
in Def. 5.10 does not exist then any old binding sequence can be replayed, which
means that a party who claims to be B may not be currently active on the net-
work. This violates the requirement of the conceptual operativeness. Therefore,
the conceptual operativeness implies the operational operativeness. �

5.2.5 High-level FLAGs

There are a number of high-level FLAGs in the hierarchy shown in Fig. 5.1.
A high-level FLAG depends on one or more low-level FLAGs. Note that a
combination of multiple FLAGs may not correspond to a new high-level FLAG,
because the FLAGs on which a high-level FLAG depends are all achieved from
the same binding sequence.

Definition 5.12 (High-Level FLAGs) The operational definitions of high-
level FLAGs are as follows:

(1) One-sided Authentication: OATH(A�B, βj)
def
= Wlng(A�B, βj)∧Oper(A�

B, βj) ∧ Idnt(A�B, βj)

(2) Pseudo One-sided Authentication: POATH(A � B, βj)
def
= Wlng(A �

B, βj) ∧Oper(A�B, βj) ∧ Recog(A�B, βj)

(3) Confirmation: Let βj = M1||M2 (|| stands for concatenation). Cnfm(A�

B,G, βj)
def
= Idnt(A�B,M2)∧Oper(A�B,M2) and G is achieved in the

flows corresponding to M1.

(4) Strong One-sided Authentication: Str-OATH(A�B, βj)
def
= G∧Cnfm(A�

B,G, βj), where G = OATH(A�B, βj)

(5) Mutual Authentication: MATH(A�B, βj)
def
= OATH(A�B, βj)∧Cnfm(A�

B,G, βj), where G = OATH(B �A, .)

The first high-level FLAG, one-sided authentication, requires that the willing-
ness, operativeness, and identification of B are achieved from the same binding
sequence. Note that the party who claims to be B must be the same in the

5.2 Operational Definitions 105

willingness and operativeness goals, and the same party is then identified as
part of achieving the identification goal. Conceptually, one-sided authentica-
tion guarantees A that whoever claims to be B is indeed B (due to Idnt(.)),
B is currently ready to communicate (due to Oper(.)), and B indeed wants to
communicate with A (due to Wlng(.)).

The second high-level FLAG is the same as the first one except it depends on
entity recognition instead of entity identification. The third high-level FLAG is
the confirmation of another FLAG. Intuitively, A achieves the confirmation of
a FLAG G from B if the following conditions hold:

1. If B knows that G has been achieved.
2. After knowing that G has been achieved, B sends a message to A as a

part of the same binding sequence in which G was achieved.

These conditions are formalized in the operational definition of confirmation,
in which the binding sequence is further divided in two parts. From the first
part, A achieves a FLAG G, and, from the from the second part, A obtains the
confirmation that B knows that G has been achieved. The next two FLAGS
depend on the confirmation goal.

The fourth high-level FLAG is strong one-sided authentication, in which A not
only achieves the one-sided authentication of B but also confirms that B knows
that A has achieved this goal. The fifth high-level FLAG is mutual authenti-
cation. Mutual authentication occurs when two parties A and B authenticate
each other. From A’s view point, the knowledge of the authentication of A by
B is obtained by the confirmation goal.

All of the operational definitions are constructive in nature, namely each def-
inition specifies a requirement for the construction of a concrete distinguisher
function (or a dependency function). If a security analyst is not able to con-
struct a required distinguisher function then this does not necessarily mean that
the corresponding FLAG cannot be achieved. It only means that the security
analysis is not able to find a way to satisfy the definition. It may still be possible
that someone else finds a way to construct the required distinguisher to show
that the FLAG is achieved.

One should understand the meaning of achieving a FLAG in the following sense:

• A security analyst carries out the correctness analysis, which determines
that a certain FLAG is achieved by a role program.

• Now, if a party A executes the role program, which results in a successful
execution of the program, then A is said to achieve that FLAG.

106 Authentication Goals

This view point is captured in the following definition of a successful run.

Definition 5.13 (Successful Run) A DC-run is called a successful run if all
of the distinguishers implemented in the role program return 1.

It may be the case that a role program does not have any distinguisher im-
plementations (see operational definitions of FLAGs). Therefore, dependency
compliance (DC) may be sufficient for a successful run.

The term entity authentication can refer to any subset of FLAGs. The meaning
of correctness of an authentication protocol, therefore, depends on the sets of
FLAGs that the role programs of the protocol achieve. Even if we consider a
simple two-role protocol along with a set of three FLAGs (e.g., identification,
willingness, and operativeness), there are sixty three (63) possible interpreta-
tions of entity authentication1.

As different protocols may achieve different sets of FLAGs, different applica-
tions, which use entity authentication as a service, may also require different
sets of FLAGs. For example, bar-code (or RFID tag) based authentication of
goods at a payment counter may only require the identification of a tag, while
the authentication used for on-line banking usually requires the identification
(using a user-name and a password), operativeness (using a user-specific chal-
lenge) and willingness (by accepting a certificate for the bank’s website) of an
account holder. Therefore, it is important that a system developer correctly
identifies the required set of FLAGs for his application2, and a security analyst
correctly determines the set of FLAGs that a protocol achieves. A mismatch be-
tween achieved FLAGs and required FLAGs may lead to security vulnerabilities
even when the protocol is proved to be secure.

5.3 Case Study 1

We continue with our example of ISO-9798 five-pass authentication protocol
from the previous chapter. The protocol consists of three role programs. For

1There are eight combinations of three FLAGs. Therefore, a role program can achieve
any eight of these combinations. A two-role protocol consists of two role programs. Each
combination of FLAGs of a role program corresponds to eight different combinations of FLAGs
for the other role program. This means that there are 8×8 combinations for the protocol. One
of these 64 combinations corresponds to the case when both role programs achieve no FLAG.
Excluding this combination results in 63 possible interpretations of entity authentication for
a two-role protocol.

2This is a type of pleasantness problem [65].

5.3 Case Study 1 107

each role program, we use the operational definitions of FLAGs to carry out the
correctness analysis of the program. The steps involved in our analysis are as
follows:

• For identification or willingness:
1. We identify the two distinguisher challenges: C1 for an expected

configuration, and C0 for an alternate configuration.
2. We construct a distinguisher that finds the value of b on the input
Cb.

3. We provide arguments supporting that the construction of the dis-
tinguisher is correct, i.e., it indeed generates the correct value of b.

• For the operativeness of B by A (or A by B):
1. We identify a nonce in the role program executed by A.
2. We show that there is a dependency arc from the nonce to a message

sent by B, and the sent message is in the binding sequence of A.

We do not analyse the server program of the protocol, because the server pro-
gram does not have any binding sequence. The analyses of the initiator and
responder role programs are as follows.

Initiator program: Aρ
def

= ρ1(R̄A, K̄AS, Ā, B̄)

Recall that a bar on a term indicates that it is a constant that is supplied to
the role program by the calling routine at the start of an execution. Following
facts about Aρ are known:

1. From the previous chapter, we know that the binding sequence of Aρ is
β1 = [M6,M7], whereM6 = EKAS (RA‖KAB‖B) andM7 = EKAB (RB‖RA).

2. The program Aρ knows that it is communicating with a responder program
Bρ, due to the definition of a binding sequence. A binding sequence is
always sent by expected role programs, which in this case are Sρ for M6

and Bρ for M7.
3. Without further interpretation of β1, the program Aρ does not know

whether Bρ is being executed by B or by another party C, for C 6= B. In
particular, C may be an adversary who is pretending to be B.

For the identification goal, Idnt(A � B, β1), the program Aρ must be able to
identify the party who claims to be B in β1. The identity of B is supplied to
Aρ as a part of the program input.
The two identification challenges are as follows:

108 Authentication Goals

C1 =[EKAS (RA‖KAB‖B), EKAB (RB‖RA)]

C0 =[EKAS (RA‖KAC‖C), EKAC (RC‖RA)] where C 6= B

The first challenge C1 represents the expected configuration when A is indeed
communicating with B. The alternate challenge C0 occurs in a configuration
when A is not communicating with B. In C0, we replace KAB with KAC ,
where KAB 6= KAC , to specify that these are two different values. Similarly, we
replace B with C to specify that these two are different values. An adversary
selects the values of b and presents the challenge Cb to Aρ. The purpose of the
identification distinguisher, which is constructed within Aρ, is to compute the
right value of b, thereby identifying B.

We address the elements of Cb using Cb[1] and Cb[2], e.g., if b = 1 then Cb[1] =
EKAS (RA‖KAB‖B) and if b = 0 then Cb[1] = EKAS (RA‖KAC‖C). The main
idea used in the identification distinguisher is that Aρ receives an authentic
message from B as a part of β1, which implies that B is identified by Aρ. A
construction of the identification distinguisher is as follows:

dstidnt(Cb, K̄AS , B̄, R̄A) :
(1) x1, x2, x3 ← DK̄AS (Cb[1])
(2) x4, x5 ← Dx2

(Cb[2])
(3) If x3 = B̄ ∧ x5 = R̄A return 1
(4) Else return 0

In the distinguisher, if the condition x3 = B̄ holds then A concludes that the
decrypted key x2 is for the communication between A and B. This conclusion
is implied by the setup assumptions of the protocol, namely there is a secure
channel between A and S defined by KAS , and the reply from S includes the
information that who else knows the newly generated session key. If the second
condition x5 = R̄A also holds then it means that it is B that has sent this mes-
sage, because only B is the peer entity that knows the session key x2. Therefore,
if the above distinguisher returns 1 then A concludes that B once existed on
the network.

Note that the functions that are part of this distinguisher are also part of the
dependency graph of Aρ. This means that there is not need to implement this
distinguisher separately, because the verification of the dependency functions
succeed only if b = 1, where b = 1 means A is communicating with B as
expected.

5.3 Case Study 1 109

Next, we consider the operativeness goal, which requires the existence of a de-
pendency arc from the nonce of Aρ to a message of β1 that is sent by Bρ. This
goal is achieved, because there is a dependency arc from RA to EKAB (RB‖RA),
which was shown in Fig. 4.11 on page 83. The message variable EKAB (RB‖RA)
is in the binding sequence β1. Therefore, the goal Oper(A�B, β1) is achieved.

Next, we consider the willingness goal, Wlng(A�B, β1). The message EKAB (RB‖RA)
in β1 is sent by B. The two willingness challenges are as follows:

C1 =[EKAS (RA‖KAB‖B), EKAB (RB‖RA)]

C0 =[EKAS (RC‖KCB‖B), EKCB (RB‖RC)] where C 6= A

The first challenge C1 represents the expected configuration when B is indeed
communicating with A. The alternate challenge C0 occurs in a configuration
when B is communicating with a party C and an adversary forwards the com-
municated messages to A. The challenge Cb is presented to Aρ, in which the
value of b is selected by an adversary. The purpose of the willingness distin-
guisher, which is constructed within Aρ, is to compute the right value of b. The
distinguisher for the willingness is the same as that of the identification goal.
This is because, if the second condition x5 = R̄A holds then it means that it is
B that has sent M7 specifically for A. Therefore, the goal Wlng(A � B, β1) is
also achieved.

The three low level FLAGs are achieved from the same binding sequence. This
satisfies the requirement of one-sided authentication:

OATH(A�B, β1) = Wlng(A�B, β1) ∧Oper(A�B, β1) ∧ Idnt(A�B, β1)

Therefore, the initiator role program achieves one-sided authentication of the
party that is executing the responder role program.

Responder program: Bρ def

= ρ2(R̄B, R̄
′
B, K̄BS, Ā, B̄)

The analysis for Bρ is similar to that of Aρ. From the previous chapter, we
know that the binding sequence of Bρ is β2 = [M1,M4,M8], where M1 = RA,
M4 = EKBS (R′B‖KAB‖A), and M8 = EKAB (RA‖RB).

First we consider the identification goal Idnt(B�A, β2). The two identification
challenges are as follows:

110 Authentication Goals

C1 =[RA, EKBS (R′B‖KAB‖A), EKAB (RA‖RB)]

C0 =[RC , EKBS (R′B‖KCB‖C), EKCB (RC‖RB)]

The first challenge C1 represents the expected configuration when B is indeed
communicating with A. The alternate challenge C0 occurs in a configuration
when B is not communicating with A. An adversary selects the values of b and
the challenge Cb is presented to the role program Bρ. The distinguisher for the
identification is as follows.

dstidnt(Cb, K̄BS , Ā, R̄′B , R̄B)
(1) x1, x2, x3 ← DK̄BS (Cb[2])
(2) x4, x5 ← Dx2(Cb[3])
(2) If x3 = Ā ∧ x5 = R̄B return 1
(3) Else return 0

This distinguisher uses the condition x3 = Ā to determine that x2 is the key
that is only known to A and B. The verification x5 = R̄B assures that A has
sent a message, which is sufficient to conclude that A exists on the network.

Next, we consider the goal of the operativeness of A by Bρ, for which it is
required that a dependency function exists from a nonce of Bρ to a variable
in the binding sequence of Bρ. The term R̄B is a nonce that is mapped to
EKAB (RA‖RB) by a dependency function, and the term EKAB (RA‖RB) is sent
by A. Therefore, the goal Oper(B �A, .) is achieved.
Next, we consider the willingness goal, for which the two challenges are as
follows.

C1 =[RA, EKBS (R′B‖KAB‖A), EKAB (RA‖RB)]

C0 =[RA, EKBS (R′C‖KAC‖A), EKAC (RA‖RC)]

The first challenge C1 represents the expected configuration when A is commu-
nicating with B. The alternate challenge C0 occurs in a configuration when A
is not communicating with B, instead A is communicating with C, for C 6= B.
The distinguisher for the willingness goal is the same as that for the identifica-
tion. The distinguisher is correct for the willingness goal, because only A and
B knows the value of x2, and therefore M8 = EKAB (RA‖RB) is specifically sent
for B by A.

5.4 Summary 111

Since the three low level FLAGs are achieved from the same binding sequence,
we conclude that B achieves one-sided authentication of A:

OATH(B �A, β2) = Wlng(B �A, β2) ∧Oper(B �A, β2) ∧ Idnt(B �A, β2)

This completes the correctness analysis.

5.4 Summary

In this chapter, we described the third step of the SI methodology, which is
the correctness analysis. We introduced the notion of fine level authentication
goals (FLAGs) and provided two types of definitions for each FLAG. First, we
presented conceptual definitions, which define FLAGs from a service-oriented
perspective, in a protocol independent manner. Recognition, identification, op-
erativeness, and willingness are low level FLAGs, because they do not depend
on other FLAGs. There is a partial order between different FLAGs, and there-
fore FLAGs constitute a hierarchy of authentication properties. We presented
the operational definitions of FLAGs, which provide operational interpretations
of FLAGs in terms of a binding sequence of a role program. The conceptual
definition and the operational definition of a FLAG are shown to be equivalent.
Operational definitions of FLAGs are constructive in nature, namely in order to
show that a role program achieves a certain FLAG, a security analyst constructs
a distinguisher function in the role program. The derivation process of a FLAG
is a non-security process, since the binding sequence is used as an assumption,
which means that one does not need to consider the dynamic behaviour of the
role program in the presence of a network adversary. At last, we carried out the
correctness analysis of the protocol of our case study.

112 Authentication Goals

Chapter 6

Insecure Protocols

In this chapter, we analyse two protocols that are insecure in a traditional sense.
The purpose is to show that the qualification of being secure or insecure actually
depends on what one expects from a protocol.

The first protocol is the Needham-Schroeder public-key (NSPK) protocol [117],
which was proposed in 1978. It was believed to be secure until 1996 when Lowe
discovered an attack against the protocol. The second one is the Woo-Lam
entity authentication (WL) protocol [156], for which Abadi [158] discovered an
attack.

6.1 NSPK Protocol

The Needham-Schroeder public-key (NSPK) protocol [117] is a three-role pro-
tocol and consists of seven flows. Out of the seven flows, four flows are used to
obtain the public keys of protocol parties from a trusted server. The protocol
parties can skip these four flows if, e.g., they have already cached the public
keys of each other.

The remaining three flows constitute a two-role protocol, in which it is assumed

114 Insecure Protocols

that protocol parties are already in possession of each other’s correct public
keys. The protocol narration is as follows.

(1) Aρ → Bρ: M1 = EPkB (RA‖A)
(2) Bρ → Aρ: M2 = EPkA(RA‖RB)
(3) Aρ → Bρ: M3 = EPkB (RB)

The protocol consists of two role programs executed by two parties A and B.
In the protocol, RA and RB are two random numbers generated by A and B
respectively. The party A executes the initiator program:

Aρ
def
= ρ1(P̄ kB , S̄kA, R̄A, B̄)

The party B executes the responder program:

Bρ
def
= ρ2(P̄ kA, S̄kB , R̄B , Ā)

Because the NSPK protocol is a two-role protocol, the role narrations of the
two programs are the same as the protocol narration. Also, the global D-graph
of the protocol and the local D-graphs of the role programs are the same, which
are denoted by Dnspk, as shown in Fig. 6.1. The D-graph consists of three
dependency nodes, M1, M2, and M3, and two interim nodes, RA and RB . The
dependency functions of Dnspk are clear from the protocol narration.

Figure 6.1: Global and Local D-graphs of NSPK protocol: Dnspk

6.1 NSPK Protocol 115

6.1.1 Initiator role program ρ1(P̄ kB, S̄kA, R̄A, B̄)

Figure 6.2: The graph ~in(2,Dnspk)

Since ρ1(.) only communicates with the role program ρ2(.), the two subgraphs
~in(2,Dnspk) and ~in(∗,Dnspk), which are used to compute the binding sequence

of ρ1(.), are the same. The graph ~in(2,Dnspk) is shown in Fig. 6.2, in which there
is only one dependency node M2 = EPkA(RA‖RB). For the security analysis,
it is required that the message variable M2 is always assigned with a canonical
message. A canonical message for M2 is a value that is sent by the role program
ρ2(.) in the second flow. We present an informal analysis in the following.

We claim that the canonicity requirement is met by the protocol, because only
B is the peer entity who knows the value of RA. There is no other message in the
protocol that is type-compatible with M2, therefore typing errors cannot occur.
Therefore, it must be either A or B executing Bρ who has sent the message for
M2. This also means that we must require RA to be an unpredictable random
number so that a network adversary cannot compute it beforehand. The use
of other types of nonces, such as a sequence number, may not suffice to satisfy
the canonicity requirement. The resulting binding sequence is as follows (as per
Proposition 4.7):

β1 = node(~in(∗,Dnspk)) = M2 = EPkA(RA‖RB)

Now, we start the correctness analysis to determine which FLAGs are achieved
by A that executes the initiator role program. Although the NSPK protocol
is relatively small as compared to our earlier case study, it is more intricate in
terms of correctness analysis due to the use of public key encryption. The reader
may want to revise our earlier discussion on public key encryption on Pg. 67.

For the identification FLAG, Idnt(A�B, β1), the program Aρ identifies a party
who executes Bρ and claims to be B. The identity of B is supplied to Aρ as

116 Insecure Protocols

a part of its input. The program Aρ knows that it is communicating with a
responder program Bρ, due to the binding sequence of Aρ, which consists of
a message from Bρ. The program Aρ, however, does not know whether Bρ is
being executed by B or by another party C, for C 6= B.

As per the operational definition of identification (Def. 5.6 on Pg. 100), the two
identification challenges are as follows (see Fig. 5.4 on Pg. 100):

C1 =EPkA(RA‖RB) (Expected configuration: B −→ A)

C0 =EPkA(RA‖RC) (Alternate configuration: C −→ A)

The first challenge is generated in a network configuration that is expected by
A, namely Bρ is indeed executed by A. The second challenge is generated when
there is an unexpected configuration, namely Bρ is not executed by A. Clearly,
it is not possible to construct a distinguisher, because the value of RA is the
same in both of the challenges.

Therefore, the only way Aρ can achieve the identification goal, as per the op-
erational definition, is to show that the alternate configuration cannot occur,
namely the alternate configuration is inconsistent with security assumptions.
For this purpose, we note that C0 implies that the party C knows the value of
RA. Since RA is a randomly generated value, it is unpredictable. Assuming that
the private key of B is secret, the value of RA is only disclosed to B. Therefore,
the alternate configuration cannot occur and we conclude Idnt(A � B, β1) is
achieved.

For the operativeness goal, we use the operational definition Def. 5.10. We note
that there is a dependency arc from RA to EPkA(RA‖RB), which meets the re-
quirement of Def. 5.10. Therefore, we conclude that A achieves the operativeness
goal for B: Oper(A�B, β1).

Next, we consider the willingness goal, Wlng(A�B, β1), To validate Wlng(A�

B, β1), we use the operational definition Def. 5.8. The first willingness challenge
C1 occurs when B believes that it is communicating with A. The second chal-
lenge occurs when B believes that it is communicating with C (see Fig. 5.5).
The resultant challenges are as follows:

C1 =EPkA(RA‖RB) (Expected configuration: B −→ A)

C0 =EPkA(RA‖RB) (Alternate configuration: B −→ C)

Note that, in C0, we use RA instead of RC , because in both challenges A is

6.1 NSPK Protocol 117

the communicating partner, and B only believes that C is the communication
partner. Clearly, we cannot construct a distinguisher for the willingness goal,
because the two challenges are equal. Now, we explore the possibility whether
C0 is inconsistent with our security assumptions. The challenge C0 implies that
B believes that it is communicating to C, which means that B has received a
message in the first step of the form EPkB (RA‖C). This message can only be
generated if C or an adversary knows RA. Since RA is an unpredictable nonce,
therefore we conclude that C0 cannot occur. Hence, the willingness of B is
achieved by A.

Since Idnt(A�B, β1), Oper(A�B, β1), and Wlng(A�B, β1) are achieved from
the same binding sequence, we conclude that A achieves one-sided authentica-
tion of B: OATH(A�B, β1).

6.1.2 Responder role program ρ2(P̄ kA, S̄kB, R̄B, Ā)

Figure 6.3: The graph ~in(1,Dnspk)

The role program Bρ only communicates with Aρ, therefore, the two subgraphs
~in(1,Dnspk) and ~in(∗,Dnspk) are the same, as shown in Fig. 6.3. There are
two dependency nodes, M1 and M3, which are required to be assigned with
canonical messages. Note that the node M2 is an interim node in the graph
~in(∗,Dnspk), because it is only used to connect nodes of the graph, but it is not

a part of the graph as per the definition of the function ~in(., .).

The variable M3 is always assigned by a canonical message, because it is only A
and B who know the value of RB . Therefore, it must be either A or B executing
ρ1(.) who has sent the message for M3. The nonce RA must be an unpredictable
random number for the canonicity of M3, otherwise an adversary can compute
a valid value for M3.

The other dependency node in ~in(1,Dnspk) is M1, which does not readily meet
the canonicity requirement. This is because, an adversary may also be able to

118 Insecure Protocols

send a message for M1 while pretending to be A; the value of RA in M1 is not
known to B who executes ρ2(.). The resulting binding sequence is as follows:

β2 = M3 = EPkB (RB)

Now, we carry out the correctness analysis to determine which FLAGs are
achieved by B. For the identification goal, Idnt(B � A, β2), the two identifi-
cation challenges are as follows

C1 =EPkB (RB) (Expected configuration: A −→ B)

C0 =EPkB (RB) (Alternate configuration: C −→ B)

Once again, it is not possible to construct a distinguisher, but we note that the
challenge C0 is inconsistent with our assumptions, because C0 implies that the
party C knows the value of RB . Since RB is a randomly generated value, it is
unpredictable. Assuming that the private key of A is secret, the value of RB is
only disclosed to A. Therefore, we conclude that Idnt(B �A, β2) is achieved.

The operativeness FLAG is also achieved, because there is a dependency arc
from RB to EPkB (RB). Therefore, we conclude that the goal Oper(B � A, β2)
is achieved.

Next, we consider the willingness goal, Wlng(B � A, β2). The first willingness
challenge C1 occurs when A believes that it is communicating with B. The sec-
ond challenge occurs when A believes that it is communicating with C. Again,
the resultant challenges are exactly the same:

C1 =EPkB (RB) (Expected configuration: A −→ B)

C0 =EPkB (RB) (Alternate configuration: A −→ C)

Therefore, we cannot construct a distinguisher for the willingness goal. Now, we
explore the possibility whether C0 is inconsistent with our security assumptions.
The challenge C0 implies that A believes that it is communicating to C. To
avoid this configuration, there must be some message sent to A from which A
learns that that the nonce RB is from B. This information is never conveyed to
A in the protocol. Therefore, we cannot rule out the possibility of computation
of C0 by an adversary.

This completes our analysis of the protocol. Note that in the analysis of willing-
ness we fail to show that the willingness goal is achieved. The SI methodology

6.1 NSPK Protocol 119

does not produce a counter-example, namely a concrete attack trace that shows
that an adversary computes C0. Interestingly, the Lowe’s attack [96] on the
protocol is a counter example that computes C0; this attack does not violate
the validity of any other FLAGs that are achieved by the two role programs. In
the following, we describe the Lowe’s attack in detail.

6.1.3 Lowe’s attack

We discuss the insecurity caused by the Lowe’s attack from the perspective of
the SI methodology. In the attack, it is assumed that an adversary is a legitimate
user of the network. The narration of the Lowe’s attack [96] is listed below, in
which Iρ represents the attack program that is executed by a dishonest party
I.

(1) Aρ −→ Iρ: EPkI (RA‖A)
(1′) Iρ −→ Bρ: EPkB (RA‖A)
(2) Bρ −→ Iρ: EPkA(RA‖RB)
(2′) Iρ −→ Aρ: EPkA(RA‖RB)
(3) Aρ −→ Iρ: EPkB (RB)
(4′) Iρ −→ Bρ: EPkB (RB)

In flow (1), the role program Aρ sends a message to the responder program Bρ

supposedly executed by I. This message is as per the NSPK protocol. The
party I is dishonest, so he does not follow the protocol, namely I executes his
attack program Iρ instead of Bρ. Since I is dishonest, the FLAGs achieved by
A for I are not relevant to the protocol security.

In flow (1′), I pretends to be A and sends a message to B; the message is the
same as in flow (1) but now it is encrypted using B’s public key. In flow (2), B
replies to I assuming it to be A. In flow (2′), B’s reply in third flow is forwarded
to A by the attack program. In the last two flows, the reply from A is forwarded
to B. In this way, B completes a run of Bρ assuming that it was communicating
with an honest party A.

This attack is a valid attack only if

• it is claimed that B achieves a FLAG G for A.
• the FLAG G is not achieved by B in actuality.

Our analysis shows that the responder program Bρ executed by B achieves the
identification and operativeness goals for A who is executing Aρ. The Lowe’s

120 Insecure Protocols

attack does not refute the validity of these goals. The attack does not work if
A does not participate in an attack session, therefore the identification of A is
indeed achieved. The adversary I cannot replay A’s messages to repeat this
attack. Every time the attack program is executed, A must be present in the
attack session. Therefore, the operativeness goal is achieved.

The Lowe’s attack in fact shows that B does not achieve the willingness of A,
because, in the attack, A believes that he is communicating with I. Also note
that the attack does not violate the definition of our binding sequence. The
binding sequence of Bρ, EPkB (RB), was indeed sent by the correct role program
Aρ.

The above discussion shows the difference between the results that are obtained
in a traditional security analysis and in the SI based analysis. Traditionally, the
attack on the NSPK protocol implies that the NSPK protocol is insecure. On
the other hand, our analysis provides a fine-grained picture: the NSPK protocol
is secure if one expects the following FLAGs:

1. One sided authentication of B, OATH(A�B, β1)
2. Identification of A, Idnt(B �A, β2)
3. Operativeness of A, Oper(B �A, β2)

The protocol is insecure if one expects additional FLAGs, such as willingness
of A and strong one-sided authentication of B. Lowe also improves the NSPK
protocol, resulting in the following narration.

(1) Aρ → Bρ: M1 = EPkB (RA‖A)
(2) Bρ → Aρ: M2 = EPkA(RA‖RB‖B)
(3) Aρ → Bρ: M3 = EPkB (RB)

With the new message M2 = EPkA(RA‖RB‖B), the willingness of A is achieved
by Bρ, because now the willingness challenge C0 is inconsistent with protocol
assumptions. The party A knows who has sent RB and therefore its reply to B
conveys the willingness of A to communicate with B.

6.2 Woo-Lam Authentication Protocol 121

6.2 Woo-Lam Authentication Protocol

Woo and Lam [156] devised a protocol to achieves unilateral authentication,
which in the SI methodology translates to the identification and operativeness1

goals for a peer entity. The protocol narration is as follows.

(1) Aρ → Bρ: M1 = A
(2) Bρ → Aρ: M2 = NB
(3) Aρ → Bρ: M3 = EKAS (NB)
(4) Bρ → Sρ: M4 = EKBS

(
A, EKAS (NB)

)
(5) Sρ → Bρ: M5 = EKBS (NB)

The protocol assumes that each network party shares a long term key with an
honest server S. The protocol is a three-role protocol, consisting of three role
programs Aρ, Bρ, and Sρ, which are executed by A, B, and S respectively. The
correctness requirement is that the party A authenticates itself to the party B.

In flow (1), A sends his identity to B claiming that “I am A.” In flow (2), B
sends a nonce to A, which A encrypts using his long term key and sends the
ciphertext back to B in flow (3). In flow (4), B asks the server S to decrypt
the ciphertext along with the information that which key must be used in the
decryption. In the last flow, S returns the nonce back to B, which is encrypted
by B’s long term key. If the decrypted nonce is the same as sent by B then B
is said to authenticate A.
In an actual implementation, one can expect that this narration is extended so
that A receives an acknowledgement indicating whether the authentication was
successful.

The program Aρ is not designed to achieve any authentication goal. Therefore,
we only need to consider the role program Bρ:

Bρ
def
= ρ2(K̄BS , N̄B)

The program Bρ participates in each flow, therefore, the role narration is the
same as the protocol narration. The local D-graph of Bρ is denoted by Dwl and
is shown in Fig. 6.4. The dependency functions of the D-graphs are clear from
the protocol narration. Note that there is no arc between M2 and M3, because
Bρ does not know KAS and cannot verify M2 →M3.

1Although the term operativeness was not used by Woo and Lam, they devised the protocol
to withstand replay attacks by employing a nonce term, which is essentially the same concept
as operativeness.

122 Insecure Protocols

Figure 6.4: The local D-graph of Bρ: Dwl

Figure 6.5: The graph ~in(∗,Dwl)

The two subgraphs ~in(1,Dwl) and ~in(∗,Dwl) are the same, as shown in Fig. 6.5.
The graph ~in(∗,Dwl) consists of two dependency nodes M3 = EKBS (NB) and
M5 = EKBS (NB). A received message for M3 cannot be canonical, because Bρ

does not know KAS and therefore cannot verify the message. The value for M5

is always a canonical message, because this is the only message that the role
program Sρ sends in the protocol and is encrypted by B’s long term key, which
prevents an adversary from creating the message. We conclude that the binding
sequence of Bρ is β2 = EKBS (NB).

6.2.1 Correctness Analysis

Now, we start the correctness analysis to find out which FLAGs are achieved
by the role program Bρ using β2. We start with the identification FLAG. The
two identification challenges are as follows.

6.2 Woo-Lam Authentication Protocol 123

C1 =EKBS (NB) (Expected configuration: A −→ B)

C0 =EKBS (NB) (Alternate configuration: C −→ B)

Since we have C1 = C0, it is not possible to construct a distinguisher for
the identification. We now analyse whether C0 is inconsistent with any of the
protocol assumptions. The challenge C0 implies that that Bρ has previously
sent a message of the form EKBS

(
C‖EKCS (NB)

)
. Sending such a message implies

that B previously received EKCS (NB), which is possible if C is a dishonest party.
The challenge C0 can be computed in the alternate configuration, and therefore
the identification goal cannot be achieved.

For the operativeness FLAG, there is a dependency arc from NA to the binding
sequence, therefore Bρ achieves the operativeness of the party who sends the
binding sequence, which is Sρ. We are interested in the operativeness Aρ, i.e.,
a party claiming to be A is executing Aρ. The further analysis is as follows.

In order to send the binding sequence of Bρ, S must have received a request
of the form EKBS

(
A‖EKAS (NB)

)
. Further, to send EKBS

(
A‖EKAS (NB)

)
, the

role program Bρ must have received EKAS (NB). Although Bρ cannot read this
message, the message EKAS (NB) must be correct, otherwise the server program
will not send EKAS (NB). Therefore, we conclude that the party who claims
to be A is currently present and therefore the operativeness FLAG for Aρ is
achieved.

Now we consider the willingness goal. The two willingness challenges are as
follows.

C1 =EKBS (NB) (Expected configuration: A −→ B)

C0 =EKBS (NB) (Alternate configuration: A −→ C)

Clearly, a distinguisher for the willingness goal cannot be constructed, because
the two challenges are not different. We analyse whether C0 is inconsistent with
any of the protocol assumptions. The challenge C0 implies that that Bρ has
sent a message for EKBS

(
A‖EKAS (NB)

)
. Sending such a message implies that B

previously received EKAS (NB), which is possible even if A is authenticating itself
to a party C, instead of B. Therefore, the role program Bρ cannot conclude
that A is necessarily willing to communicate with B. Thus, the willingness goal
is not achieved.

124 Insecure Protocols

6.2.2 Attacks on the WL protocol

The WL protocol is insecure if a system designer expects it to achieve the
identification or willingness goal. Our analysis shows that the protocol is secure
with respect to the operativeness goal.

Woo and Lam later describes two attacks on the protocol [158]. The first attack
is a kind of typing attack and it does not work if the length of protocol terms are a
priori known, as we assume in this thesis. The second attack, which is attributed
to Mart́ın Abadi, prevents the protocol from achieving the identification of A.
This attack, however, does not prevent achieving the operativeness goal. The
attack narration is as follows.

(1) Iρ1 → Bρ1 : A
(2′) Iρ2 → Bρ2 : Iρ
(2) Bρ1 → I

ρ
1 : NB

(2′) Bρ2 → I
ρ
2 : N ′B

(3) Iρ1 → Bρ1 : rand
(3′) Iρ2 → Bρ2 : EKIS (NB)
(4) Bρ1 → Sρ: EKBS

(
A‖rand

)
(4′) Bρ2 → Sρ: EKBS

(
I‖EKAS (NB)

)
(5) Sρ → Bρ1 : EKBS (NB)

In this attack, an adversary executes two parallel sessions of the protocol, namely
two attack programs Iρ1 and Iρ2 try to authenticate as A and I respectively, to
an honest party B who correspondingly executes two copies of the role program
Bρ1 and Bρ2 .

The party B sends two nonces NB and N ′B to attack programs Iρ1 and Iρ2
respectively. At this point, in flow (3) and flow (3′), the two attack programs
swap their nonces. Since Iρ1 is pretending to be executed by A, it cannot encrypt
N ′B with KAS , and therefore it sends a random bit string to B. On the other
hand, Iρ2 encrypts NB with KIS and sends it back to B.

Since B is not aware of the fact that Iρ1 and Iρ2 have swapped their nonces, the
program Bρ1 sends EKBS

(
A‖rand

)
to the server assuming that rnd was sent by

Iρ1 that is being executed by A. In the parallel session, the program Bρ2 sends
EKBS

(
I‖EKAS (NB)

)
to the server assuming that EKAS (NB) was sent by Iρ2 that

is being executed by I.

WhenB receives EKBS (NB) from the server, Bρ1 concludes that it is communicat-
ing with A while A is not present in the execution. Therefore, the identification

6.3 Summary 125

goal cannot be achieved by B. This was also indicated by our analysis, but this
attack is an example scenario in which the identification goal is not achieved.

Even in the presence of the above attack, the operativeness goal is achieved,
because the adversary cannot repeat the attack transcript. In every instance
of the attack, the adversary must be operative while pretending to be A and
compute a new value of EKIS (NB).

It is trivial to construct an attack that only violates the willingness goal without
violating the identification goal. For this purpose, an adversary proceeds as
follows. When A sends his identity in order to authenticate itself to a party
C, the adversary relays that message to another party B. Now, the nonce is
received from B instead of C. The adversary sends this nonce to A, who then
replies accordingly. There is no further communication of A with C, and the
remaining session completes between C and the server S.

The WL protocol can be improved in several ways to achieve the identification
and willingness goals. For example, Anderson and Needham [6] propose an
improved version of the protocol:

(1) Aρ → Bρ: M1 = A
(2) Bρ → Aρ: M2 = NB
(3) Aρ → Bρ: M3 = EKAS (B‖NB)
(4) Bρ → Sρ: M4 = A, EKAS (B‖NB)
(5) Sρ → Bρ: M5 = EKBS (NB‖A)

There are two important difference between the improved protocol and the orig-
inal WL protocol. First, the identity of A is included in M5, which enables B
to achieve the identification of A, by making the two identification challenges
different. Second, the identity of B is included in M3, which implies that A
provides his willingness to communicate with B.

6.3 Summary

In this chapter, we demonstrated that a structured intuition based analysis pro-
vides more insight into the working of an authentication protocol. On one hand,
an attack on a protocol does not necessarily mean that the protocol is completely
insecure. On the other hand, a secure protocol is only secure with respect to a
certain set of FLAGs, and if the protocol is used in an application where this
set of FLAGs does not meet the application requirements then an adversary

126 Insecure Protocols

may be able to construct an attack. One can also analyse a protocol in more
detail, e.g., in one of our reports [5], we were able to find new vulnerabilities in
Needham-Schroeder secret-key protocol [117] and Denning-Sacco protocol [58],
in their CBC (cipher-block chaining mode) and CFB (cipher feedback mode)
based implementations.

Chapter 7

Adaptable Security

A security model is traditionally based on a model of fixed and an all-powerful
adversary. The use of an all-powerful adversary is motivated by a number of
reasons. First, it is difficult to foresee potential applications of a protocol at
the design time. The assumption of an all-powerful adversary makes security
analysis applicable in a wide variety of applications. For example, the Dolev-
Yao adversary [62] is believed to subsume all conceivable adversaries in most
computer networks; this model is the most common choice in formal security
models [105].

Second, the model of an all-powerful adversary is dictated by the inventor’s
paradox [129], namely it is often easier to analyse an abstract (and general)
version of a security problem, which employs an abstract model of an adversary,
as compared to analysing an application specific version of the problem and
using an application specific model of an attacker. For example, it is easier to
work with the assumption that an adversary can modify a message, as compared
to the assumption that an adversary can change zeros to ones but he cannot
change ones to zeros, such as in impulse transmission [11].

The main advantage of using an all-powerful adversary is that a security guar-
antee against an all-powerful adversary is also valid for any weaker adversary,
but insecurity in the presence of an all-powerful adversary does not imply in-
security for a weaker adversary. The disadvantage of using an all-powerful ad-

128 Adaptable Security

versary model is that not all real-world applications require the highest level
of security [92], because an application environment may limit the attacker’s
capabilities. On the other hand, some applications cannot afford to implement
the required level of security due to resource constraints [43, 95]. These are all
valid concerns for a system developer. Therefore, there exists a demand for a
methodology that enables an application specific analysis or, what we call, an
adaptable security analysis.

The SI methodology can be used as a framework for an adaptable analysis of
authentication protocols, in which the values of different parameters of the au-
thentication model are decided during an analysis. These different parameters
include FLAGs, and assumptions about the adversary and application environ-
ment. In a sense, an adaptable security analysis of a protocol provides results
that are closer to the actual level of security provided by the protocol in a given
application environment.

Usually, entity authentication is just a part of complete correctness requirements
of a protocol; other requirements may include key establishment for instance.
But, there are many applications where only entity authentication is required.
One such application domain, which we consider in this chapter, is RFID (Radio
Frequency Identification). Sarma et al. [135] provide a good introduction to the
RFID technology.

The design of an RFID authentication protocol is a challenging task, because
RFID tags are resource constrained devices with only a little memory and limited
computational and communication capabilities. These constraints mandate the
use of light-weight cryptography, but this is not the only challenge. The Dolev-
Yao attack model does not apply to RFID protocols, as RFID tags are not
tamper-proof and therefore cannot be trusted. Moreover, privacy also needs
to be considered in the design of RFID protocols. The use of RFID based
identification in wearable items can lead to serious privacy concerns, e.g., some
people may not want to be tracked by advertising companies if they wear clothes
that have embedded RFID tags.

The SI methodology is useful for designing RFID authentication protocols,
where it is not feasible to use a notion of security that does not take application
constraints into account. The requirement of a trade-off between security and
resources is essential for RFID based protocols. We, however, do not consider
any of RFID domain specific problems, e.g., the efficiency of reader side of a
protocol, side channel attacks and relay attacks. Solving these problems may
also be crucial for the feasibility of an RFID based protocol.

7.1 Overview 129

7.1 Overview

The aim of a traditional security analysis is to show that a set of correctness
goals can be achieved by executing an instance of a role program and assum-
ing a certain class of adversaries. The examples of traditional analyses include
reductionist type proofs of matching conversation [28, 31] and showing the au-
thenticity of a message using a static program analysis [34].

An adaptable security analysis can be considered as solving an inverse problem,
namely one tries to determine the conditions that can ensure that a protocol
meets its correctness goals. In particular, given a set of FLAGs, a protocol,
a loosely defined environment, and a generic attacker, a security analyst tries
to determine the constraints on the environment and limits on the attacker’s
capabilities, such that the protocol achieves the set of FLAGs. For the SI
methodology, an adaptable analysis corresponds to the following steps.

1. Hypothesise (or assume) a binding sequence of a role program.

2. Carry out the correctness analysis to validate a reasonable set of FLAGs
from the binding sequence. If a FLAG cannot be achieved then repeat
this step after introducing new assumptions regarding the instantiation of
protocol messages and functions, trust assumptions, secret values, and the
operating environment.

3. Carry out the dependency analysis and change functional relations so that
the binding sequence is plausible.

4. Validate the binding sequence by carrying out a security analysis for the
canonicity requirements of the binding sequence. If the security analysis
fails then repeat this step by introducing appropriate assumptions about
the adversary.

The first step is the process of hypothesising a binding sequence, without first
carrying out the dependency and security analysis of the role program. The
reason we hypothesise the binding sequence, instead of determining it after the
security and dependency analysis, is that the security and dependency analysis
will depend on the binding sequence in an adaptable analysis. We introduce
assumptions and change dependencies between messages, in order to justify the
binding sequence. Hypothesising a binding sequence is a trivial task, namely
one can try all of the plausible binding sequences in the role program, because
a typical role program receives a small number of messages.

130 Adaptable Security

The second step is the correctness analysis to derive FLAGs using the opera-
tional definitions of the FLAGs.
In the third step, we try to construct a dependency graph that spans all the
messages of the binding sequence. In this step we may need to change functional
relations between the messages in order to construct the dependency graph. If
the dependency graph does not spans all the messages then the binding sequence
cannot be justified, and we will need to change our hypothesis of the first step.

In the last step, we carry out the security analysis, in which certain messages
of the binding sequence are shown to be canonical messages. The requirements
of canonicity depend on the shape of the dependency graph. We may need to
introduce additional assumptions, in order to weaken the adversarial model, so
that the canonicity requirements can be met.

7.2 RFID System

We present a system model that represents the use of RFID tags in a typical
retail shop. We consider low cost RFID tags, namely passive transponders that
have a limited amount of memory and computational capability. There is one
reader R in the system. The assumption of a single reader is ubiquitous in most
of the RFID literature [154, 55].

The tags are attached to shelf items in a retail shop. The identity of a tag is
Id, which is mapped to the name of the item to which the tag is attached. This
identity is not necessarily unique for each RFID tag. There are n different tag
identities: 1 ≤ Id ≤ n. The tag identities are known values in the system.

There is a single entry point Entry into the shop and a single exit point Exit
from the shop. Whenever an item passes through Entry, it gets attached with
a tag Id and a database entry (Id,K, information) is stored in the reader’s
database db:

db = {(Id,K, .) : 1 ≤ Id ≤ n}

This database entry includes a fieldK, which is a cryptographic key and is stored
on the tag. The identity Id of the tag is not stored on the tag. The database
entry may also include additional information, e.g., retail price and discount
policy. We assume that keys are generated from the uniform distribution. We
assume that the size of a key, |K|, is sufficiently long so that the probability

7.2 RFID System 131

that a randomly generated key corresponds to a database entry is negligible in
|K|.

A customer comes to the shop and places items in his basket. For check-out,
he arrives at Exit. The reader that is installed at Exit interrogate the tags of
purchased items by executing an authentication protocol, in order to retrieve
the database entries of the tags. The retrieved information is used to find the
pricing information and generate an invoice for the customer.

The reader R may have multiple front-ends at Exit (corresponding to multiple
checkout terminals), but the reader has one common back-end for the database.
In reality, the back-end database can be a distributed storage if it is synchro-
nized in real-time. Whenever a tag is in Exit, it is in the reader range and an
authentication protocol is automatically executed.

RFID Protocol

We consider a generic RFID protocol Π. The generic protocol consists of two role
programs: ρ1(.), which is executed by the reader, and ρ2(.), which is executed
by an RFID tag.

(Interrogation) ρ1(.) −→ ρ2(.) : M1 = VR
(Response) ρ2(.) −→ ρ1(.) : M2 = FK(VR, VId)

Many existing protocols follow this generic form, e.g., weak-private RFID schemes
[154]. In this generic protocol, M1 is a reader challenge while M2 is a tag re-
sponse. The function FK(...) represents either a keyed hash functions, or a
lightweight block cipher. If unstated, FK(...) stands for a keyed hash function.
The term VR contains a value generated by the reader and the term VId contains
a value generated by a tag. The reader R can find the entry (Id,K, .) in the
database by searching the value of K in the database, such that the predicate
M2 = FK(VR, .) is true. Since K is not a part of the response, the reader R
must be able to search the whole database to find the correct entry, which takes
a linear amount of time in the size of the database.

We construct eight different concrete protocols based on the following three
parameters of the generic protocol:

1. Whether the challenge VR is random or fixed: If the challenge is random
then VR is a variable, and if the challenge is fixed then VR = a, where a
is a constant.

132 Adaptable Security

Interrogation Response
Π1 a Fk(a, b)
Π2 VR Fk(VR, b)
Π3 a Fk(a, VId)
Π4 VR Fk(VR, VId)
Π5 a FK(a, b)
Π6 VR FK(VR, b)
Π7 a FK(a, VId)
Π8 VR FK(VR, VId)

Table 7.1: Eight RFID protocols

2. Whether the value VId is random or fixed: If VId is considered a random
value then VId stands for a variable, and if VId is considered fixed then
VR = b, where b is a constant.

3. Whether the key K is different for each tag or not: If the key is random
then K stands for a variable, and if the key is fixed then K = k, where k
is a constant.

With different values of these three parameters, we get eight protocols, which
are denoted by Π1,Π1, ...,Π8, which are listed in Table 7.1.

Correctness Requirements

As usual, correctness requirements are system dependent. In our case, correct-
ness means a set of privacy and entity authentication requirements.

We define privacy as protection of the relation between a purchased item (which
has an embedded RFID tag) and the customer. This notion of privacy is aimed
at avoiding profiling and tracking of customers at a large scale. We assume that
the adversary is not capable of “physically observing” an item all the way to
a customer. In such cases, it seems difficult to ensure privacy, e.g., if a spy is
following his target. For privacy, we are only interested in those adversaries
that aim to automate this process at a large scale, e.g., using a large number of
RFID readers in a shopping mall.

If an adversary can create a link between responses of a tag then he can track
an RFID tag in a certain area. This means he can effectively track a person
who carries the tag.

7.3 Correctness Analysis 133

Definition 7.1 (Privacy requirement) A protocol consisting of an initiator
program ρ1(.) executed by the reader R, and a responder program ρ2(.) executed
by an RFID tag Id, protects privacy of the tag if an adversary that executes
ρ1(.) cannot achieve the recognition of the tag, i.e., Recog((R� Id, .) cannot be
achieved.

If a tag can be recognized then the adversary can track the tag by repeated
interrogations, which will violate the privacy of the person who carries that tag.
The requirements for entity authentication are as follows.

Definition 7.2 (Authentication requirements) The reader role program ρ1(.)
while communicating with a tag’s role program ρ2(.) achieves authentication of
the tag if the identification goal, Idnt(R � Id, β1), and the operativeness goal
Oper(R� Id, β1), are achieved by ρ1(.).

Entity authentication can be interpreted in different ways depending on the
application. So, Def. 7.2 is just one definition of entity authentication, which
is used in this chapter. The two FLAGs in the definition are sufficient for the
system that is considered here, and for example there is no need for mutual
authentication between an RFID reader and an RFID tag.

The eight protocols, specified in Table 7.1, are analysed for the correctness re-
quirements using the SI methodology. Recall that there are four steps involved
in an adaptable authentication model. The first step consists of forming a hy-
pothesis for a binding sequence. This step is trivial for the generic protocol,
namely β1 = FK(VR, VId) is the generic binding sequence for the reader pro-
gram. The second step is the correctness analysis, which is described in the next
section.

7.3 Correctness Analysis

For the authentication of a tag, we corroborate the operational definitions of the
two FLAGs: Idnt(R�Id, β1) and Oper(R�Id, β1). For the privacy requirement,
we corroborate that Recog((I�Id, β1) cannot be achieved by an adversary I. It
is not possible to achieve the correctness requirements for each protocol without
any additional assumptions, therefore, we also introduce assumptions during the
correctness analysis.

A few notational conventions are as follows. The values of terms in an r-th run
are denoted by NId(r) and NR(r). Let s = |FK(...)| and |NR| = |NId|. Let n be

134 Adaptable Security

total number of tags in the system, such that n < nth, for a suitable choice of
the threshold nth. Let q be the total number of queries to FK(...) and q < qth,
for a suitable value of the threshold qth.

1 We rely on an asymptotic analysis
for calculating different probabilities. This means that the probabilities, q.2−s,
q.2−|NR|, q.2−|NId| and n.2−|K| are assumed to be negligible. The correctness
analysis of the eight protocols is as follows.

Π1: Fixed key, Fixed challenge, Deterministic response

The narration of Π1 is as follows, in which a, b, and k are fixed values.

ρ1(.) −→ ρ2(.) : M1 = a
ρ2(.) −→ ρ1(.) : M2 = Fk(a, b)

As per the operational definition of Idnt(R�Id, β1), the reader program ρ1(k̄, ā)
should be able to distinguish between β1(r) = Fk(a, b) (for a tag Id) and β1(r′) =
Fk(a, b) (for another tag Id′ 6= Id). As β1(r) = β1(r′), the distinguishing is not
possible. This means that the identification goal cannot be achieved by the
reader’s role program. Therefore, we need additional assumptions that ensure
that the reader does not depend on the protocol Π1 for the identification goal.
We introduce two assumptions for Π1, which are as follows:

Assumption (1): The shop contains the same type of items, or there is an
auxiliary (e.g., physical) mechanism to distinguish between different types
of items.
Assumption (2): A single item is presented to the reader R at a time.

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). Clearly, this is not possible because there
is no nonce in ρ1(.) of Π1. So, we include an assumption that ensures that the
reader does not rely on the operativeness goal.

Assumption (3): Visual inspection should be carried out at Exit to make
sure the item with the tag Id is present there.

For the privacy, an adversary should not be able to achieve the recognition goal.
As per the operational definition of recognition on Pg. 98, it is required that an
adversary should not be able to pick a pair of binding sequences with a prob-
ability different from the rest of two pairs. Since all binding sequences of ρ1(.)

1For instance, qth may represent an upper bound of the birthday paradox.

7.3 Correctness Analysis 135

are the same, we conclude that the adversary cannot achieve the recognition of
a tag and the protocol meets the requirement of privacy.

Π2: Fixed key, Random challenge, Deterministic response

The narration of Π2 is as follows.

ρ1(.) −→ ρ2(.) : M1 = VR
ρ2(.) −→ ρ1(.) : M2 = Fk(VR, b)

For Idnt(R�Id, β1), the reader program ρ1(k̄, N̄R) should be able to distinguish
between β1(r) = Fk(NR(r), b) (for a tag Id) and β1(r′) = Fk(NR(r′), b) (for
another tag Id′). Such a distinguishing is not possible as response is of the
same type for every tag. So, we include assumption (1) and assumption (2).

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). In Π2, there is a dependency arc from
NR to Fk(NR, b). There are two error events associated with this arc. First, if
two random numbers are equal: NR(r) = NR(r′). Second, if there is a collision
in the hash function resulting in Fk(NR(r), b) = Fk(NR(r′), b). Since NR is
the output of a pseudo-random generator, the first event can only happen with
negligible probability, q.2−|NR|. Since Fk(.) is a collision resistance function, the
second event also occurs with a negligible probability, q.2−s. So, we conclude
that Oper(R� Id, β1) is achieved.

For the recognition, the three binding sequences are as follow: β1(r) = Fk(NR(r), b)
(between R and Id), β1(r′) = Fk(NR(r′), b) (between R and Id) and β1(r′′) =
Fk(NR(r′′), b) (between R and Id′). For the privacy, it is required that an adver-
sary should not be able to pick a pair of binding sequences with a probability
different from the rest of two pairs. Since all the tags have the same key k,
there is no difference between the binding sequences of different tags. Thus, the
protocol Π2 meets the privacy requirement.

Π3: Fixed key, Fixed challenge, Randomised response

The narration of Π3 is as follows.

ρ1(.) −→ ρ2(.) : M1 = a
ρ2(.) −→ ρ1(.) : M2 = Fk(a, VId)

136 Adaptable Security

For the identification, the reader program ρ1(k̄, ā) should be able to distinguish
between β1(r) = Fk(a,NId(r)) and β1(r′) = Fk(a,NId(r

′)). This is not possible,
because NId(r) and NId(r

′) are randomly generated by the tags. So, we include
assumption (1) and assumption (2).

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). Clearly, this is not possible because there
is no nonce in ρ1(.) of Π3. So, we include assumption (3). Since ρ1(k̄, ā) does
not know the value of NId and by default Fk(...) is a keyed hash function, we
also include assumption (4).

Assumption (4): The function Fk(...) is a PRP (pseudo-random permuta-
tion) with an efficiently computable inverse function F−1

K (...), e.g., a block
cipher [35].

For the recognition, the three binding sequences are as follow: β1(r) = Fk(a,NId(r))
(between R and Id), β1(r′) = Fk(a,NId(r

′)) (between R and Id) and β1(r′′) =
Fk(a,NId(r

′′)) (between R and Id′). Since NId is assigned a random value, the
adversary cannot achieve the recognition of tags. Thus, the protocol Π3 achieves
the privacy goal.

Π4: Fixed key, Random challenge, Randomised response

The narration of Π4 is as follows.

ρ1(.) −→ ρ2(.) : M1 = VR
ρ2(.) −→ ρ1(.) : M2 = Fk(VR, VId)

As per operational definition of identification, the reader program ρ1(k̄, N̄R)
should be able to distinguish between β1(r) = Fk(NR(r), NId(r)) and β1(r′) =
Fk(NR(r′), NId(r

′)). Similar to Π1,Π2 and Π3, this is not possible as the key
is fixed. We include assumption (1) and assumption (2). Since, ρ1(k̄, N̄R) does
not know the value of NId, so we further include assumption (4): Fk(...) is a
PRP with an efficiently computable inverse function F−1

k (...).

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). In Π4, there is a dependency arc from NR
to Fk(NR, NId), which is defined by a non-deterministic dependency function,
because NId is not known to R. Due to assumption (4), the dependency function
is verifiable by the corresponding decryption function. There is an error event

7.3 Correctness Analysis 137

associated with the dependency arc, namely if in two different runs the values
of NR are the same. Since NR is the output of a pseudo-random generator, the
event can only happen with negligible probability, q.2−|NR|. So, we conclude
that Oper(R� Id, β1) is achieved.

The three binding sequences are as follows: β1(r) = Fk(NR(r), NId(r)) (between
R and Id), β1(r′) = Fk(NR(r′), NId(r

′)) (between R and Id) and β1(r′′) =
Fk(NR(r′′), NId(r

′′)) (between R and Id′). Since adversary does not know NId,
the distinguishing is not possible. Thus, the protocol Π4 achieves the privacy
goal.

Π5: Random key, Fixed challenge, Deterministic response

The narration of Π5 is as follows.

ρ1(.) −→ ρ2(.) : M1 = a
ρ2(.) −→ ρ1(.) : M2 = FK(a, b)

For Idnt(R� Id, β1), the reader program ρ1(d̄b, a) should be able to distinguish
between two identification challenges: C1 = β1(r) = FKId(a, b) (between R and
Id); C0 = β1(r′) = FKId′ (a, b) (between R and Id′). Here, KId and KId′ are the
keys shared with Id and Id′ respectively by the reader R. The distinguishing is
possible as the stored keys are different for every tag. For a tag Id, the entry
(Id,K, .) can be retrieved from the database to compute the identity of tag.

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). Clearly, this is not possible because there
is no nonce in ρ1(.) of Π5. So, we include assumption (3).

For the privacy goal, the three binding sequences are as follows: β1(r) = FKId(a,
b) (between R and Id); β1(r′) = FKId(a, b) (between R and Id); β1(r′′) =
FKId′ (a, b) (between R and Id′). The first two binding sequences are exactly
same and different from the third one. An adversary can easily recognize the
pair (β1(r), β1(r)) as different from the other two pairs. Clearly, the privacy of
tags is not preserved, and, e.g., an adversary can link the replies from a tag to
track the tag outside the shop. Therefore, we include the following assumption
(5).

Assumption 5: When a tag passes through the Exit, it is killed by the reader,
so that no further communication is possible with the tag; alternatively, the
tag is physically removed from the item.

138 Adaptable Security

Π6: Random key, Random challenge, Deterministic response

The narration of Π6 is as follows.

ρ1(.) −→ ρ2(.) : M1 = VR
ρ2(.) −→ ρ1(.) : M2 = FK(VR, b)

For Idnt(R�Id, β1), the reader program ρ1(d̄b, N̄R) should be able to distinguish
between β1(r) = FKId(NR(r), b) and β1(r′) = FKId′ (NR(r′), b). Clearly, such a
distinguishing is possible as a different key is used for each tag.

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). In Π6, there is a dependency arc from
NR to FK(NR, b). There are two error events associated with this arc. First, if
two random numbers are equal: NR(r) = NR(r′). Second, if there is a collision
in the hash function resulting in Fk(NR(r), b) = Fk(NR(r′), b). Since NR is
the output of a pseudo-random generator, the first event can only happen with
negligible probability, q.2−|NR|. Since Fk(.) is a collision resistance function, the
second event also occurs with a negligible probability of q.2−s. So, we conclude
that Oper(R� Id, β1) is achieved.

For the privacy goal, the three binding sequences are as follow: β1(r) = FKId(NR(r),
b) (between R and Id); β1(r′) = FKId(NR(r′), b) (between R and Id); β1(r′′) =
FKId′ (NR(r′′), b) (between R and Id′). The privacy of tags is not preserved,
because the third binding sequence uses a different key. An adversary can re-
peatedly interrogate a tag with a fixed value of NR to track it outside the shop.
Therefore, we include assumption (5).

Π7: Random key, Fixed challenge, Randomised response

The narration of Π7 is as follows.

ρ1(.) −→ ρ2(.) : M1 = a
ρ2(.) −→ ρ1(.) : M2 = FK(a, VId)

For Idnt(R� Id, β1), the reader program ρ1(d̄b, a) should be able to distinguish
between β1(r) = FKId(a,NId(r)) and β1(r′) = FKId′ (a,NId(r

′)). In principle,
such a distinguishing is possible as K is unique for each tag, but there is another
problem: ρ1(d̄b, a) does not know the value of NId. Therefore, we include

7.3 Correctness Analysis 139

assumption (4): FK(...) is a PRP with an efficiently computable inverse function
F−1
K (...).

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). Clearly, this is not possible because there
is no nonce in ρ1(.) of Π7. So, we include assumption (3).

For the privacy goal, the three binding sequences are as follow: β1(r) = FKId(a,
NId(r)) (between R and Id); β1(r′) = FKId(a, NId(r

′)) (between R and Id);
β1(r′′) = FKId′ (a, NId(r

′′)) (between R and Id′). The replies from a tag are
randomized by NId, therefore recognition of the tags is not possible and the
privacy goal is achieved.

Π8: Random key, Random challenge, Randomised response

The narration of Π8 is as follows.

ρ1(.) −→ ρ2(.) : M1 = VR
ρ2(.) −→ ρ1(.) : M2 = FK(VR, VId)

For Idnt(R�Id, β1), the reader program ρ1(d̄b, N̄R) should be able to distinguish
between β1(r) = FKId(NR(r), NId(r)) and β1(r′) = FKId′ (NR(r′), NId(r

′)).
Such a distinguishing is possible as K is unique for each tag. Again, ρ1(d̄b, N̄R)
does not know the random value of NId, therefore, we include assumption (4).

To achieve Oper(R � Id, β1), there must be a dependency arc from a nonce of
ρ1(.) to the binding sequence of ρ1(.). In Π8, there is a dependency arc from NR
to FK(NR, NId), which is defined by a non-deterministic dependency function,
because NId is not known to R. Due to assumption (4), the dependency function
is verifiable by the corresponding decryption function. There is an error event
associated with the dependency arc, corresponding to the case when, in two
different runs, the values of NR are the same. Since NR is the output of a
pseudo-random generator, the event can only happen with negligible probability,
q.2−|NR|. So, we conclude that Oper(R� Id, β1) is achieved.

For the privacy goal, the three binding sequences are as follow: β1(r) = FKId(NR(r),
NId(r)) (between R and Id); β1(r′) = FKId(NR(r′), NId(r

′)) (between R and
Id); β1(r′′) = FKId′ (NR(r′′), NId(r

′′)) (between R and Id′). The replies from a
tag are randomized by NId, therefore the privacy goal is achieved.

140 Adaptable Security

This completes our correctness analysis. The next step of the adaptable analysis
is the dependency analysis, which is trivial for these eight protocols, because
there is only one dependency node corresponding to the second message of the
generic protocol. The last step of the adaptable analysis is the security analysis,
which is described in the next section.

7.4 Security Analysis

The binding sequence of each of the eight protocols consists of just one message
variable M2 (the reply from a tag). Therefore, in the security analysis we
investigate that whether M2 is always assigned with a canonical message. This
essentially means that the value of M2 should be from a run executed by a
legitimate tag. The adversary can replay a canonical message.

7.4.1 Adversary classes

We present an adversarial model that is relevant to RFID based systems and in
particular to the environment of a typical retail shop. We assume that an ad-
versary is computationally bounded, and asymptotic security arguments apply
to him, e.g., if the key size |K| is sufficiently large then the adversary cannot
break an encryption function that uses that key.

The adversary interacts with its environment using a set of oracles. Each oracle
represent a capability of the adversary. The adversary exists inside the shop as
well as outside of the shop, and he can invoke the oracle queries following the
rules of its class, which are defined later.
There are four basic oracles that are available to all adversaries.

• CreateTag(K): An adversary can re-program a tag with a new key K.
The adversary cannot read the tag memory with this oracle.

• Launch(Id,M1): An adversary acts as a reader and interacts with the tag
Id using the challenge M1 of his choice. The adversary is inside the shop,
and he selects the tag Id for interaction.

• Respond(M2): An adversary acts as a tag Id and responds to a reader’s
interrogation with M2 as the response.

• Ping(M1): The adversary can interrogate RFID tags outside the shop
with a challenge M1 to collect the responses of the tags that are present

7.4 Security Analysis 141

in the interrogation range. This oracle can be used to track a customer
outside the shop.

The following two oracles are available to the adversary depending on his class.

• Corrupt(Id): An adversary tampers with the tag Id to read the key stored
in it. We assume that a tampered tag is detectable and the corresponding
entry is removed from the database.

• Admin(Id): An adversary can read the memory of the tag Id without
destroying it. This oracle models an insider adversary who is one of the
system administrators and knows the values of keys stored in all tags.
An insider adversary, however, cannot compromise the integrity of the
database, e.g., he cannot insert fake entries in the database.

We define three classes of adversaries.

Insider Class IA: An adversary I ∈ IA can access all of the oracles. Note that
with the access to Admin(Id) there is no need to rely on Corrupt(Id),
which destroys the tag Id.

Destructive class ID: An adversary I ∈ ID (Destructive class) can access all
of the oracles except Admin(Id). If I uses the oracle Corrupt(Id) then
the tag Id is destroyed.

Weak class IW : An adversary I ∈ IW cannot access Corrupt(Id) andAdmin(Id)
oracles.

Clearly, the three adversary classes are related: IW ⊂ ID ⊂ IA. Note that
for the insider class there is no secret value in the system, because an insider
adversary knows all of the keys stored in RFID tags.

7.4.2 Canonicity Analysis

We note that CreateTag(K) oracle is not relevant to the canonicity analysis,
because the database cannot be updated to include the fake entry corresponding
to K. Similarly, Ping(M1) oracle is also not relevant to the canonicity analysis,
because this oracle is used outside of the shop; the canonicity requirement is

142 Adaptable Security

applied at the Exit, where the honest reader R interrogate an RFID tag. Inside
of the shop, an adversary uses Launch(M1, Id) oracle to interrogate RFID tags.

In an execution of the protocol Π1, a message for M2 is always canonical in
presence of an insider adversary. The canonical message in this case is a known
constant Fk(a, b). If the adversary plays any message other than Fk(a, b) it is
not accepted by the reader. The fixed key k, which is used in the protocol, does
not need to be secret. Therefore, Admin() and Corrupt(Id) are not useful to
the adversary.

In an execution of Π2, the message for M2 is canonical in presence of a weak
adversary. An insider or destructive adversary can learn the fixed key k easily,
and then he can reply to a reader interrogation using Respond(M2) oracle. If
the key k remains secret then the adversary cannot generate a valid response
to an interrogation consisting of a random challenge NR. The same arguments
apply to Π3 and Π4.

For the last four protocols Π5, Π6, Π7, and Π8 each tag gets a different key K
and is uniquely identifiable by K. This means that responses from different tags
are different. If the key of a tag is not secret then an adversary can emulate
the tag. This means that the canonicity of M2 cannot guaranteed against an
insider adversary.

The canonicity of M2 holds for a destructive adversary in the last four protocols.
This is because the oracle Corrupt(Id) destroys the tag Id and the correspond-
ing key cannot be re-used. Since every tag has a different key, the key of a
corrupted tag cannot be used to learn the keys of other tags. This means the
oracle Corrupt(Id) is not useful.

7.5 Summary

The results of the analysis are summarized in Table 7.2. Each row in the table
corresponds to one of the concrete protocols; the specific choices made for VR,
VId and K are mentioned in the corresponding columns. The last column lists
the assumptions that are required to justify the security and privacy of these
protocols.

Let us consider, for instance, the case Π2 in the table. The protocol Π2 corre-
sponds to a system where all RFID tags share a common key and there is no
pseudo-random generator implemented on the tags. The r-th interrogation of
the reader consists of a random challenge NR(r). As shown in the last column

7.5 Summary 143

Protocol K is random VID is random VR is random Results
Π1 No No No 1,2,3,Insider
Π2 No No Yes 1,2,Weak
Π3 No Yes No 1,2,3,4,Weak
Π4 No Yes Yes 1,2,4,Weak
Π5 Yes No No 3,5,Destructive
Π6 Yes No Yes 5,Destructive
Π7 Yes Yes No 3,4,Destructive
Π8 Yes Yes Yes 4,Destructive

Table 7.2: Concrete Forms of the Generic Protocol

that the protocol is correct against Weak class of adversaries, as long as the
assumption, (1) and (2), are satisfied. This illustrates the types of results that
we obtain in adaptable security analysis, namely appropriate parameters of an
authentication model that are required to justify a set of correctness require-
ments.

In our adaptable model, we consider authentication and privacy goals as as-
sumptions, even for the weakest protocol Π1. We infer an adversary model and
a set of assumptions about the environment such that the correctness require-
ments are justified at a system level. It is not always possible to justify every
correctness requirement in an adaptable security model. Since our correctness
goals are formulated at primitive level (compared to a single high level formu-
lation, e.g., matching conversation [28]), not able to achieve a FLAG does not
mean that other FLAGs cannot be achieved. A subset of original goals may be
achievable.

In a traditional security analysis, most of the protocols in Table 7.2 are inse-
cure, with the exceptions of Π6 and Π8. This is due to a strict deductive style
interpretation of a security argument and the use of a fixed adversarial model.
For example, if VR is not random in a concrete protocol (i.e., one of Π1, Π3, Π5,
and Π7) then the protocol is insecure under a Dolev-Yao adversary [62], because
the protocol is prone to replay attacks.

144 Adaptable Security

Chapter 8

Related Work

There is a large body of work related to authentication protocols. We describe
the most relevant work from two perspectives. First, we describe existing defi-
nitions of entity authentication and compare them to our FLAGs. Second, we
briefly describe the contemporary techniques of protocol analyses.

8.1 Definitions

Characterization of security properties is a difficult task, and this is especially
true for entity authentication. In most cases, a formal definition depends on
the method used for the protocol analysis. Gollmann [78] provides a detailed
analysis of the subject. He argues that formal definitions, although they add
precision, do not often clarify the concept of entity authentication. Focardi
et al. [70] also highlights the same issue that formalizing authentication goals
is an error prone task. Even when a formal definition is given, it is hard to
compare to others formalisms due to different mathematical assumptions. In
our view, the main reason for the characterization problem is due to the lack of
demarcation between service oriented goals and intermediate protocol dependent
requirements.

146 Related Work

Standard Definition

The international standard ISO/IEC 9798 specifies a number of authentication
protocols. The standard consists of six parts. The first part [143] specifies gen-
eral requirements and constraints of authentication mechanisms. The definition
of entity authentication that appears in the first part was discussed in Chapter 1,
which essentially states two requirements for entity authentication: identifica-
tion and operativeness. Menezes et al. [106] provide a clearer definition than the
standard definition, but their definition is also not satisfactory, as demonstrated
in an attack on a protocol that meets the Menezes’s definition [40].

Gollmann [79] also raises some concerns about the standard definition, in par-
ticular, regarding the level of abstraction, and meaning of an identity and claim.
Based on his observations, he defines three goals related to entity authentication,
which are referred to as G2, G3, and G4. (G1 is related to key establishment.)
The first authentication goal G2 states that if a party receives a message that
shows that the cryptographic key of a peer entity is used then authentication
of the peer entity is achieved. Clearly, this goal captures the requirement of
entity identification. The second goal G3 requires that a protocol run should be
defined by the nonce of a party who is authenticating a far-end party. This is
comparable to our notion of operativeness. The third goal G4 requires that the
origin of all messages of a protocol must be authenticated. It is not clear which
aspect of entity authentication is covered by this goal, as also indicated by the
author himself. These definitions are protocol dependent, because they make
use of private keys and sessions keys. Our definitions of FLAGs are abstract
and are independent of protocol details.

Matching Conversations

The first formal definition of entity authentication in a cryptographic model
appears in 1994 [28], which is proposed by Bellare and Rogaway and is called
matching conversations. This definition is a refinement of its informal version
proposed by Diffie et al. [59], which is called matching histories and which
requires protocol parties to have the same history of messages in their respective
runs.

A matching conversation is achieved by a protocol if an adversary can only
faithfully relays messages between the protocol parties. For a two-role protocol,
this requirement means that protocol messages are correctly interleaved and
there is a one-to-one correspondence between the two transcripts. An entity
authentication protocol is considered secure if protocol parties only accept those

8.1 Definitions 147

runs that have matching conversations.

This definition is used in other work aiming at provable security of authenti-
cation protocols [31]. In our view, this model is too strong for entity authen-
tication, because not all messages in a protocol necessarily contribute towards
entity authentication. Further, it is unclear how one can interpret service ori-
ented goals (such as FLAGs) from matching conversations, and whether correct
interleaving is indeed necessary for entity authentication.

Correspondence

Woo and Lam [157] introduce the idea of correspondence assertions to specify
authentication. A correspondence assertion stands for the requirement that if
an event occurs in a run then a certain (corresponding) event must have already
occurred. In their method, each message is annotated with labels indicating
the progress of the protocol for each entity. A label could be of type begin-
event or end-event, and it also includes the name of the party. A protocol is
considered correct if in all protocol runs and in the presence of an adversary,
every end-event label corresponds to a unique and earlier begin-event labelled
with the same name. This requirement also does not capture service oriented
authentication goals, and no method was provided to derive these goals from
correspondence assertions. This definition has been used in many other works,
most notably by Gordon and Jeffrey in Spi-calculus [82], and by Blanchet [33].

Intensional vs. Extensional Requirements

Roscoe [133] proposes intensional style of specifications, in which the goals of
authentication are specified as patterns of messages as anticipated by the proto-
col designer. Roscoe proposes a canonical intensional requirement, which states
that a run is successful only if a correct series of messages occur up to and
including the last message. A matching conversation [28] is another example of
an intensional style specification.

It might not be clear how an intensional property is related to the intuitively
understandable goals of authentication, which are defined at a more abstract
level and are called extensional goals by Roscoe. As Boyd and Mathuria [40]
indicate, intensional specifications can be restrictive in a sense that an attacker
may easily violate intensional specifications without affecting any of the corre-
sponding extensional goals. The intensional style is not intuitive for protocol
users. Gollmann [78] goes one step further and even discourages the use of such

148 Related Work

formal specifications in general, by arguing that they create more confusion
about the actual meaning of authentication, in particular, an intensional styled
specification does not tell us what a protocol does.

Agreement

Lowe introduced an hierarchy of authentication goals [97] in 1997. He defines
four basic goals, which can be interpreted with and without the notion of time.
Arguably, this hierarchy is the most popular definition of entity authentication
in formal security models. Unfortunately, FLAGs and Lowe’s authentication
definitions are not formally comparable. In the following, we present Lowe’s
definitions using our notations.

The weakest form of authentication is called aliveness. A party A with a protocol
Π achieves the aliveness goal for a party B if B once executed a run of a role
program of Π. Note that for aliveness it is not important that B has executed a
correct role program, e.g., aliveness can still be achieved if both A and B have
executed the same role program.

From correctness point of view, aliveness is comparable to our notion of iden-
tification. From security point of view, however, aliveness and canonicity are
not comparable. Aliveness does not require that B is running the role program
as expected by A, while for canonicity it is essential that B is running the ex-
pected program. On the other hand, canonicity does not require that it must
be B who is running the expected role program; any network party can execute
the expected role program. For aliveness, the identity of B is important.

At the correctness level, identification is a stronger requirement than aliveness,
because the identification goal is derived from a list of canonical messages, which
means that achieving identification involves two tasks: finding the identity (in
the correctness analysis) and the execution of an expected role program (in
the security analysis). This comparison is somewhat unfair, since aliveness
is a security requirement that needs to be validated in presence of a network
adversary. Security analysis is usually harder than (non-security) correctness
analysis.

Lowe’s second authentication goal is called weak agreement, which implies the
following two requirements:

1. A party A achieves aliveness goal for a party B.
2. The run on B, in which the aliveness is achieved, must be with A.

8.1 Definitions 149

At a conceptual level, this is comparable to the case when A achieves both identi-
fication and willingness of B. Lowe’s third definition is non-injective agreement,
which implies three requirements.

1. A party A achieves weak agreement for B.
2. The run on B, in which the weak agreement is achieved, is of the role

program that is expected by A. This property is in fact implied by the
next requirement.

3. The value of a variable set ds in the role program of A is the same as the
value of ds in the run on B.

The third requirement is not directly related to entity authentication. The first
two requirements are roughly comparable to the case when A achieves both
identification and willingness FLAGs for B. The canonicity requirement in the
SI methodology is implied by the third requirement. A non-injective agreement
on ds implies that the values assigned to ds are canonical messages.

Lowe’s fourth definition is injective agreement, which additionally requires one-
to-one relationship between the runs of A and B. Ignoring the message agree-
ment part, this goal roughly corresponds to one-sided authentication (identifi-
cation, willingness, and operativeness).

The notion of time is captured in Lowe’s recentness goal. He describes two
methods to achieve recentness: by an agreement on a fresh data (nonce) or by
using timed authentication. The first method is comparable to our operativeness
goal, since operativeness requires a mapping between a nonce (fresh data) and
a binding sequence. The second method relies on an additional (global) process
that counts time ticks. This method seems to be implementation dependent
and it is not clear to us how to capture timed authentication from the local
perspective of a party.

In comparison to Lowe’s definitions, our definitions of FLAGs have two advan-
tages. First, FLAGs are services oriented properties of entity authentication,
and do not include message agreement requirements, which may not be rele-
vant to entity authentication. Second, FLAGs are non-security requirements,
which are validated using a single security property, viz canonicity. The four
definitions by Lowe are all security requirements.

Synchronization

Cremers [53] introduces two more authentication goals: non-injective synchro-
nization and injective synchronization. The notion of synchronization is closely

150 Related Work

related to Lowe’s agreement. Synchronization between two parties on a set of
message variables require that the two parties agree on the values of message
variables and that the two parties have sent and received those values in the
same order as specified in the protocol. Cremers shows that synchronization is a
stronger requirement than Lowe’s agreement. He also provides several examples
where violation of synchronization leads to some unexpected effects. Depending
on the construction of a protocol, this goal may be crucial for achieving a certain
FLAG, but correct ordering of messages is not a general authentication goal.

Other Definitional Work

Syverson et al. propose six goals of authentication protocols [151, 149]. Two
of them are related to entity authentication while the rest are related to key
establishment. The first authentication goal is ping authentication: a party A
achieves ping authentication of B if A believes that B has sent a message. This
goal is comparable to our notion of identification and Lowe’s notion of alive-
ness. The second authentication goal is called “entity authentication”, which is
achieved if a message received from B is fresh. This goal is comparable to the
case when identification and operativeness goals are achieved together. Syverson
et al. specify these goals in a belief logic. Boyd and Mathuria [40] point out
that these definitions are not precise.

The concept of entity recognition has been used in many existing works [139,
7, 87]. Lucks et al. [99] show, using a complexity theoretic proof, that the
Jane-Doe protocol achieves entity recognition. Their operational definition of
“A recognizing B” is in the form of recoverability properties: if A receives a
message from a B then A accepts the message; if A receives a message that is
not from B then A rejects the message.

Boyd and Mathuria [40] propose a hierarchy of authentication goals. The hierar-
chy includes only two goals related to entity authentication: once authenticated,
which means a party A once has had knowledge of a party B as her peer entity;
and far-end operative, which means B is currently there. Clearly, these goals
correspond to the notions of identification and operativeness.
Focardi et al. [70] compare three definitions of authentication: their own non-
interference based GNDC authentication, Lowe’s agreement [97], and spi-calculus
based authentication [2]. They show that agreement is a stronger notion than
the other two.

Guttman and Thayer [84] introduce the notion of authentication tests using a
strand space based security model. They formalize three types of authentica-
tion tests. First one is called an outgoing test, in which a message is sent in an

8.2 Analysis of Authentication 151

encrypted form such that only a certain party can decrypt it, e.g., A sends a
message encrypted using the public key of B and later A receives the same mes-
sage. The second one is called an incoming test, in which a message is received
in an encrypted form and only a certain party can perform that encryption.
The third one is unsolicited test, which combines the ideas of the first two tests.
These tests provide non-injective agreement on a message. If the message is a
nonce then an injective agreement is achieved.

8.2 Analysis of Authentication

In general, deriving security properties of protocols is an undecidable prob-
lem [110]. This means that one cannot hope to find an algorithm (which can
be implemented in a computer) that produces proofs of authentication goals
for an arbitrary authentication protocol. This undecidability result, however,
does not prevent constructing manual proofs of security for a given protocol,
as we do in the SI methodology. In formal security models, there are various
ways to get around this problem. Some algorithms produce false positives [34],
others miss some attacks or do not terminate [16]. Typically, there are many
boundary conditions, such as maximum number of sessions. Some algorithms
ask for human intervention when producing a proof [126].

In this section, we briefly look into to the existing methods and tools available
for the analysis of authentication protocols. Most of these techniques can be
used as part of the SI methodology to validate canonicity.

8.2.1 Authentication Logic

An important line of work for the verification of authentication properties is
authentication logic. Burrows, Abadi, and Needham invented the so-called BAN
logic [44]. This type of logic is also called belief logic, because the predicates
are on the beliefs of protocol parties, such as a party A believes in a statement
X. The predicates are derived using a set of logic rules, e.g., if A sees a message
signed by a party B then A believes that the message was once sent by B.

A proof in the BAN logic is usually intuitive and simple. There are four main
steps in an analysis that is based on BAN logic. First, an authentication protocol
is transformed to logic formulas, which is called the idealisation step. Second,
the assumptions about the initial beliefs of the protocol parties are specified.
Third, each flow of the idealised protocol is annotated with the assertions about

152 Related Work

the states of the protocol parties. In the last step, the rules of BAN logic are
used to derive the beliefs held by the protocol parties. If the derived beliefs are
consistent with the intended goals of the protocol then the protocol is considered
secure.

This approach does not prescribe a definition of entity authentication, but one
can formulate authentication goals in form of beliefs, in a protocol dependent
manner. Syverson and Cervesato [149] provide comprehensive survey of express-
ing authentication goals in various belief logics. A few examples of FLAGs in
BAN logic are as follows:

• A party A achieves the identification of a party B if A believes that B
once said a message M .

• A party A achieves the identification and operativeness of a party B if A
believes that B once said a message M , and A believes that M is fresh.

• A party A achieves the identification and willingness of a party B if A
believes that B once said a message M , and A believes that B believes
that A receives M .

Note that the above definitions of FLAGs are in terms of protocol messages.
These can be compared to our definitions of FLAGs, which are abstract and
are independent of the details of an authentication protocol. To the best of
our understanding, BAN logic cannot be used to prove canonicity of messages.
On the other hand, BAN logic supports many other security goals that are
not covered by the structured intuition. For example, it is straight forward to
specify key distribution goals in BAN logic, as a belief in a session key and the
fact that the peer entity also believes in the session key.

Besides the definitional aspect, this line of work has a few methodological limi-
tations [118], which are also evident from the “correctness proof” of Needham-
Schroeder public key (NSPK) protocol [44]. The NSPK was described in Chap-
ter 6 and it is prone to a man-in-middle attack [96]. The BAN logic assumes
that a party can detect and ignore his own messages, and the adversary is not
a legitimate network party; that is why the man-in-middle attack on the NSPK
protocol remained undetected.

The idealisation process of BAN logic, which converts a protocol specification to
the statements of BAN logic, is an error-prone process, as exemplified by Boyd
and Mao [39]. To address such limitations, many extensions of the BAN logic
have been proposed [4, 153, 151, 147].

8.2 Analysis of Authentication 153

8.2.2 Reduction

Bellare and Rogaway pioneered this line of work [28]. They prove the security
of a two-role authentication protocol in a complexity theoretic model. They
use matching conversations as the definition of authentication. The overall ap-
proach is the same as the one used for proving the security of cryptographic
algorithms, namely a reduction style proof in which the security of an authen-
tication protocol is reduced to a well understood assumption. In this case, the
assumption is the existence of pseudo random functions.

Bellare and Rogaway are also the first to formalize an insider adversary in their
model of communication. An insider adversary is a legitimate network user.
This adversarial capability was lacking in some of the earlier works, such as in
the Dolev-Yao model [61] and the BAN model [44].

This approach is used in many subsequent analyses of authentication protocols,
e.g., for a server based three-role protocol [26], public key based protocol [31],
and password based protocol [41]. For the SI methodology, this approach means
constructing a reduction type proof for the canonicity of messages. The main
advantage is that canonicity is much weaker security requirement than matching
conversations, which could make concrete security proofs considerably simpler.

8.2.3 Interactive Theorem Proving

This approach is semi-automated and is introduced by Paulson [126] using Is-
abelle/HOL theorem prover, and by Dutertre and Schneider [63] using PVS
theorem prover. Paulson uses inductive style arguments to prove security prop-
erties. The main component in his approach is an inductive definition and the
corresponding induction rule. An inductive definition captures an infinite se-
quence of communication events, such as a trace of sent and received messages.
One can prove that a certain property holds for all possible traces generated by
an inductive definition.

This method has been used for the verification of many large protocols, e.g.,
Kerberos [21], TLS [127], SET [20], and certified e-mail [19]. The main ad-
vantage of this approach is that the proofs are machine checkable. The proofs,
however, are carried out under strong assumptions, e.g., perfect encryption and
strictly typed variables. Therefore, these proofs are very different from com-
plexity theoretic proofs. In this regard, an interesting case is discovered by
Ryan and Schneider [134], who present an attack on a protocol that has an
inductive security proof. For authentication, Paulson uses inductive arguments

154 Related Work

to prove message authentication [126]. This means that this approach can be
used to prove canonicity of a message, since canonicity is implied by message
authentication.

8.2.4 Simulation

The notion of simulation is extensively used in cryptography, especially in the
context of zero-knowledge proofs. In a simulation based analysis, two types of
models are constructed for a protocol. One model is called an ideal model and
the other is called a real model. The aim of a security analyst is to show that
whatever an adversary could gain in a real model, could also be gained in the
ideal model. This approach is independent of the protocol goals. In fact, the
goals of a protocol are embedded in the construction of the ideal model. The
notion of simulation can be formalized in different flavours, e.g., observational
equivalence [94] and reactive simulatability [128, 46].

For authentication protocols, simulation is first time used by Bellare et al. [23].
Shoup [141] and Canetti et al. [48, 46] also use simulation based approach in
the analysis of authentication protocols.
The main idea in the work of Bellare et al. [23] is to use so called authenticators.
An authenticator is a universal compiler that emulates a protocol that executes
in an ideal model into a protocol that executes in the corresponding real model.
The ideal model assumes authenticated channels while the real model does not
employ this assumption. Their work aims at solving the secure key exchange
problem in a modular fashion: given a secure protocol of key exchange that
executes on authenticated channels, one uses an authenticator to transform
this secure protocol into another secure protocol that executes on unauthentic
channels. They use this approach to get a secure key exchange protocol using the
Diffie-Hellman (DH) protocol; the DH protocol is secure on authentic channels.

Although Bellare et al. only capture message authentication requirement, their
approach is quite promising for designing new protocols using the SI method-
ology. In its original form, one can completely analyse a proposed protocol
assuming that canonical messages are communicated over authentic channels,
without any regard to the network adversary. Then, the protocol can be trans-
formed into a secure protocol using an authenticator. It may also be possible to
formulate a weaker version of an authenticator that only provides a canonical
channel.

8.2 Analysis of Authentication 155

8.2.5 Strand Space

Fábrega et al. [68] develop the strand space approach. A strand is similar to a
process in a message sequence chart. A strand is a linear structure representing
a sequence of sent and received messages. The sequence of messages in a role
program constitutes a legitimate strand. There can be a number of adversarial
strands. A collection of strands is called a bundle, which is a similar concept to
our notion of a session, except a session only consists of runs of role programs
while a bundle may have adversarial strands. A bundle is a graphical structure
in which there are two types of arcs, one for strand succession and the other for
message transmission.

Although there are many notational similarities, a bundle is very different from
an instance of a dependency graph:

• A bundle represents dynamic behaviour of a protocol execution. An in-
stance of a dependency graph represents functional relations between mes-
sages.

• A node of a bundle and the value of a dependency node are the same thing,
but a bundle does not have an equivalent notion of interim nodes. More
importantly, an arc (arrow) in a bundle represents a causal precedence
between two messages, while an arc of a dependency graph represent a
functional relation between two messages. We do not capture such causal
precedence in our model, and strand space does not take functional de-
pendencies into account.

• A bundle is used to prove security properties, while a dependency graph
is only used in non-security analysis. Dependency analysis only helps in
specifying the security (canonicity) requirements and is essential for our
correctness analysis.

Lowe’s agreement can be used as a definition of authentication in the strand
space model. Cremers [54] points out that strand space is tightly coupled with
Dolev-Yao attacker model and synchronization property cannot be immediately
specified. There are many automated tools that are based on the strand space
model, e.g. Athena [142], Constraint Solver [108], ASPECT-a [115].

Within the strand space model, Guttman, Doghmi, and Thayer develop a theory
of skeletons and shapes [60], with an aim to capture the complete behaviour of
a protocol. A skeleton is a graphical structure that captures three aspects
of protocol specifications: sequence of message in a role program (strands),
secret keys, and nonces. A shape of a skeleton is a realizable structure that
is compatible to the skeleton. A shape represents a possible execution of the
protocol in absence of any adversary. The idea is that a skeleton (the protocol

156 Related Work

model) usually corresponds to a finite number of shapes. Therefore, by analysing
the set of all shapes, one can guarantee secrecy and authentication properties.
The authors provide a procedure that determines the shapes of a protocol and
they develop a software called cryptographic protocol shape analyser.

8.2.6 Fully Automated Analysis

The first attempt for an automated analysis of authentication protocol was by
Millen using Prolog [109]. Meadows [105] presents an extensive survey in this
area. In 1996, Lowe developed a method to specify authentication protocols in
CSP (communicating sequential processes) and then he uses a general purpose
model checker FDR to verify its security properties. He discovered the attack
against NSPK protocol (described in Chapter 6), which attracted a lot of at-
tention towards the use of automated tools in security analysis. An automated
tool for security analysis is based on various algorithms. Different algorithms
have different features:

Verification/Falsification: Some algorithms attempt the verification of a se-
curity property, e.g., in NRL [104], ProVerif [32], and LySa [34]. Some
algorithms attempt falsification of a security property, namely they try to
find attacks, e.g., FDR [75] and OFMC [16].

Technique: Most of the tools use model checking. FDR [75] is a model checker
for CSP process algebra. NRL [104] uses a backward search algorithm
to find out whether insecure state can be reached from the initial state;
NRL [104] is written in Prolog and is a hybrid tool containing a model
checker and a theorem prover. ProVerif [32] represents protocol steps
as Horn clauses and applies resolution-based theorem proving on them.
LySa uses static program analysis to verify confidentiality and authenticity
properties of protocol messages. The Constraint Solver [108], which is
developed by Millen and Shmatikov, translates a security goal from strand
space to a constraint solving problem. OFMC [16] uses the concept of a
lazy intruder [14] and constraint differentiation [15] for an efficient forward
model checking.

General/Special: FDR [75] and Murϕ[111] are general purpose algorithms
while OFMC [16], Scyther [53], and ProVerif [32] use special purpose al-
gorithms.

Approximation: Many verification algorithms use over-approximation, namely
they can generate false attacks [32] or may fail to prove secure proto-
cols [34].

8.2 Analysis of Authentication 157

Availability: NRL [104] and Athena [142] are not freely available.

8.2.7 Adaptable Security Analysis

The term Quality of Protection (QoP) is also used to describe adaptable secu-
rity models. Security and performance trade-offs in client-server environments
are considered in Authenticast [137], which is a dynamic authentication proto-
col. The adaptation is due to flexible selection of key length, algorithm and
the percentage of total packets that are authenticated. Ong, et al.[121], address
the problems introduced by the traditional view of security—a system is either
secure or insecure—by defining different security levels based on key size, block
size, type of data and interval of security. Hager [85], in his thesis, considers the
trade-offs of security protocols in wireless network; the security adaptation is
on the basis of performance, energy, and resource consumption. Covington, et
al.[52], propose parametrised authentication, in which quality of authentication
is described in terms of sensor trustworthiness and the accuracy of the measure-
ments. Lindskog [95] developed some solutions in his thesis for tuning security
for networked applications. The proposed methods, however, are limited to
confidentiality. Instead of using just one instance of authentication protocol, in
some approaches, e.g., by Ganger [72], over a period of time a system can fuse
observations about the entities into a kind of probabilistic authentication.

Many of the proposed RFID protocols [9, 114] are too heavy for low cost tags,
and not supported by EPCGen2 [66]. Burmester, et al. [43] report that five
different proposals that are compliant to EPCGen2 but have some security vul-
nerabilities. Damg̊ard et al. [55] study the trade-offs between complexity and
security using secret key cryptography. They propose a weaker but more prac-
tical notion of privacy; strong privacy requires a separate and independent key
for each of the RFID tags. Vaudenay [154] uses eight different attacker models
to reason about the privacy of RFID identification protocols. The strongest
notion of privacy in Vaudenay’s model is shown to be impossible to achieve;
even the two other strong models mandate the use of public key cryptography.
This model also serve as an inspiration for much of the following work where
the authors use a class of attacker models, e.g., Paise et al.[122], Yu Ng et al.
[120] and Canard et al.,[45].

Bella identifies the limitations in Dolev-Yao attacker model and propose the
BUG threat model [18]. In BUG there are three type of entities: a good one
who does not break the rules; a Dolev-Yao attacker; and an ugly one with
no specific commitment. Classically, when an attack is found, the protocol
is considered broken, but if we use a BUG style threat model then according
to Bella one can still retaliate, which can save some re-engineering cost [17].

158 Related Work

Ksieżopolski, et al. [92] describe the problem of an unnecessarily high level of
security that can affect system dependability; they present an informal model
of adaptable security, which, however, is difficult to justify for the soundness
of results. Sun, et al. [148], propose an evaluation method for QoP, based on
normalized weighted tree.

8.3 Other Related Work

The first effort to solve the problem of authentication in a network environment
is in the seminal paper of Needham and Schroeder [117] in 1978. The design
rationales used by Needham and Schroeder motivated the development of many
other similar protocols, including Kerberos [119]. Needham and Schroeder as-
sume an intruder that essentially controls the network and use abstract cryp-
tographic functions. These notions were later formalized in 1983, in the well
known Dolev-Yao model [61], which employs symbolic encryption and an ad-
versarial control network. Needham and Schroeder, at that time, perceived
the complex nature of seemingly simple protocols, and encouraged systematic
analysis techniques to avoid subtle errors.

Needham and Schroeder (NS) protocols have some flaws, which were discovered
after many years. Two of the attacks are most notable. The NS protocol that is
based on symmetric key is vulnerable to a replay attack if any of the old session
keys are compromised [57]. The second attack [96] is more interesting, mainly
because it was published after 17 years and it first time uses an automated tool
to discover a major attack. We have described this attack in Chapter 6.

These two attacks on the NS protocols are quite instructive for a protocol de-
signer because these attacks use assumptions that were not stated in the original
NS paper. The first attack [57] only works if an old session key is compromised.
The second attack only works if an adversary is a legitimate network party.
Further, the second attack also depends on the definition of authentication, as
we described in Chapter 6. There are many other attacks on these protocols
that exploit the unstated assumptions of the NS protocols [36, 5].

As pointed out by many authors [78], only a violation of the service require-
ments of entity authentication should be called a valid attack. For instance,
the multiplicity error of DSSK protocol [98] is not a valid attack because it
does not violate the claimed goals [57], namely neither confidentiality of the
session key nor the entity authentication of participants is violated. Simi-
larly, not all reported attacks have the same significance for security. For in-
stance, a reported type flaw [50] is based on a somewhat dubious assumption:

8.3 Other Related Work 159

if {T} ≡ {T, {B,KAB , T}SA}. Even if this assumption holds, the session key
remains confidential and there is no violation of authentication.

Gong [80] proposes the use of one-way functions in construction of authentica-
tion protocols. She observes that authentication does not require that crypto-
graphic functions ensure confidentiality of messages. Mao and Boyd [101] also
advocate such use of one-way functions. These ideas may be considered as a
pre-cursor to our notion of a dependency function.

Pancho [123] points out that, unlike protocol messages, protocol goals and as-
sumptions are not often completely explicit. Park et al. [124] propose a classi-
fication scheme for authentication protocols, which could be helpful in defining
different types of authentication protocols. Gollman [78] proposes the differ-
entiation between packet switching and circuit switching networks when spec-
ifying an authentication protocol and emphasizes the difference between two
unilateral-authentications and mutual-authentication.

The security analysis in the SI methodology can be carried out in a traditional
cryptographic style, but a cryptographic analysis is done by hand, and the
support of automation [13] is quite limited. Unlike cryptographic schemes, a
cryptographic model of any reasonably sized protocol is often complex. Due to
the painstaking work involved in concrete security analysis, only a handful of
network protocols have been analysed, e.g., only a small fraction of roughly 200
protocols listed in 2003 [40] are accompanied by such security analysis.

The use of a formal security model helps in quickly validating the canonicity
requirements of a protocol, but this comes at a price: any security assurance
in a symbolic model does not automatically translate to the underlying compu-
tational cryptography and, therefore, to its hardware/software implementation.
This is due to a huge gap between cryptographic assumptions and the assump-
tions behind the symbolic abstractions. An impressive amount of research has
been done for establishing a theoretically sound link between symbolic cryptog-
raphy and complexity-theoretic cryptography [3, 107]. In the line of universal
composability, Ran Canetti and Herzog [47] show that the Dolev-Yao model
can be layered on top of the traditional universal composability framework.
Currently, this approach is limited to so-called simple protocols: the protocols
that use only those cryptographic schemes that have some standard symbolic
counterparts.

An adversary model is an essential part of a security analysis. There are two
aspects of an adversarial model. The first one is related to the abstraction
of the model. The most popular abstraction is the Dolev-Yao model [61]. In
this symbolic model, two types of simplifications are introduced. First, binary
strings and functions are replaced by symbolic terms and derivation rules. In

160 Related Work

particular, this results in idealized encryption functions—either an adversary
can decrypt a symbolic ciphertext (e.g., if he can derive the key) or the adversary
gets absolutely no information about the plaintext. The second simplification is
related to the computational capabilities of an adversary, namely the adversary
is modelled as a non-deterministic strategy that is limited to selecting its actions
from a small set of (pre-defined) logic rules. The security models that use
these two abstractions are commonly referred to as symbolic/formal security
models. Alternatively, one can use a cryptographic model in which an adversary
is assumed to be able to compute any polynomial time function.

The second aspect is the network related capabilities of an adversary. In the
Dolev-Yao attacker model [61], an adversary controls the communication net-
work and is only constrained by cryptographic schemes, which are assumed to be
ideal black boxes. Later on, a more powerful attacker model, where the adver-
sary could be an insider, is used in the definitions by Bellare and Rogaway [28].

An important practical concern arises during the instantiation of encryption.
The dependency relations of a protocol can change, e.g., if a security analyst
assumes the use of a cipher (pseudo random permutation) for an encrypted
message while a system developer uses the CBC mode of encryption [64]. Since
the use of a cipher is assumed in a typical protocol narration, a safe option is
to use authenticated encryption [24].

The requirements of a cipher are more stringent than an encryption scheme,
because a cipher does not rely on a random initializing vector (IV) and the
output of a cipher is non-malleable. In this regard, a variable length cipher [27]
and an online cipher [22] are promising options. In an online cipher, encryption
of a plaintext block only depends on the current block and the previous blocks of
the plaintext. Without a random IV, CBC and CFB modes are the candidates
of online cipher, for which Fouque et al. [71] show that the CFB mode is secure
and the CBC mode is not secure. The CBC mode is only secure with a randomly
chosen IV [76].

The problems that arise from the instantiation of encryption can affect any
security analysis that relies on an abstract notion of encryption. One advan-
tage of the SI methodology is that the dependency analysis, security analysis,
and correctness analysis can be done using different levels of abstraction, in-
cluding computational models. Moore [116] was probably the first to highlight
the security problems that may occur in implementing symbolic encryption.
Mao and Boyd [102] discuss some general vulnerabilities. Bellovin [29] reported
vulnerabilities in the earlier versions of IPsec by exploiting CBC-mode encryp-
tion. An interesting case is that of encryption-only-mode of IPsec, for which
Paterson and Yau [125] exploited CBC mode of encryption. Their attacks work
if an implementation does not follow the standard strictly. Later, Degabriele

8.4 Summary 161

and Paterson [56] published another attack that works only if an implementa-
tion strictly follows the standard. These examples show that implementation
choices are security critical for authentication protocols.

8.4 Summary

In this chapter, we examined the state of the art that is related to entity au-
thentication protocols. The existing definitions of entity authentication are not
satisfactory. Some definitions are informal without their formal interpretations.
Many formal definitions are without their service-oriented interpretations. Some
formal definitions only capture a generic feature of a protocol, which may or may
not be relevant to entity authentication depending on the actual protocol. Some
formal definitions are specific to a security model and a certain level of abstrac-
tion. Sometimes authentication goals are entangled with the goals that are not
related to entity authentication. We described some of the existing techniques
used for a protocol analysis. Most of these techniques can be used with the SI
methodology to verify the canonicity of messages. An advantage of using the
SI methodology is that the canonicity is a less stringent security requirement,
which makes the existing techniques of protocol analysis more effective.

162 Related Work

Chapter 9

Conclusions and Future Work

In this chapter, we draw conclusions, summarize our contributions reported in
the previous chapters, and indicate a few directions for future work.

9.1 Conclusions

In this thesis, we presented the structured intuition (SI), which is a high level
methodology that can be used to analyse a protocol for fine level authentication
goals (FLAGs). To a system developer, entity authentication is a service, on
which a larger system relies on to authenticate network parties. An SI based
analysis is for the service oriented requirements of entity authentication, which
are captured in the conceptual definitions of FLAGs. In the past, ambiguity in
the meaning of authentication has led to many disagreements about the notion of
security. For instance, an authentication protocol of ISO/IEC 9798-3 standard
is insecure under one definition [28], due to the Canadian attack [40], but the
protocol is secure under a different definition of authentication [97]. Therefore,
the definitional effort behind the formulation of FLAGs is well justified.

The SI methodology is not tied to a particular level of abstraction, such as Dolev-
Yao model [61] or Bellare-Rogaway model [28]. Also, different steps of the SI can
be carried out with different level of abstractions. A methodological step of the

164 Conclusions and Future Work

SI can be individually refined, which allows incremental refinements of analysis
results. For instance, a D-graph can be constructed with an assumption of
idealized symmetric encryption in an initial design phase, which can be refined to
symbolic modes of encryption [5], which can be further refined to an encryption
model that is based on pseudo random permutations. Similarly, canonicity of
messages can be asserted using different methods, such as model checking or a
reduction type cryptographic proof.

This flexibility in the level of abstraction allows one to analyse a protocol specifi-
cation that is closer to actual implementation. For instance, in one of our works,
we specify modes of encryption and then try to verify authentication goals of
Denning-Sacco protocol [58]. Our analysis indicates some serious vulnerabilities,
which we were able to exploit and are reported elsewhere [5].

In the SI methodology, a security analysis is demarcated from non-security anal-
ysis. In general, for a cryptographic protocol, correctness defines the purpose of
the protocol, e.g., the output should follow a certain distribution (multi-party
computation), some assurance on who participated in the protocol (authenti-
cation), and an assurance on who else may know the input or output of the
protocol (secrecy). Security, on the other hand, is the assurance that the pro-
tocol remains correct in the presence of an adversary. Therefore, correctness
and security are distinct concepts, but it is not always possible to keep this
distinction in a security model. Only a few other security models [46] demar-
cate security as we do in the SI methodology. The job of a security analyst
(human/automated tool) should be less strenuous if security requirements are
fewer and pure, considering the security analysis is an undecidable problem in
general [67, 110]. In the SI, the only property that need to verified against a
network adversary is canonicity. In a sense, the SI methodology reduces the
entity authentication problem to the verification of canonicity.

An authentication protocol is designed with certain trust and environment as-
sumptions. In many cases, a protocol is used for many years to come [8]. As
the system around an authentication protocol evolves with the introduction of
new services over time, so does the security requirements and trust assumptions
of the protocol. A traditional security model has some sort of binary output
(for a system developer), namely whether a protocol is secure or insecure. If
a protocol is marked as insecure then the protocol should not be used. An
adaptable security analysis can provide information such as to what extent an
“insecure” protocol is insecure, and which additional assumptions can make the
protocol secure. This type of information can help in a cost-benefit analysis
that determines whether a new protocol should be deployed or the “insecure”
protocol is tolerable.

The SI methodology makes it easier to do an adaptable security analysis, where

9.2 Contributions 165

adaptability is in terms of FLAGs, attacker model, and other environment as-
sumptions. Adaptability is also useful in those applications where one needs
a trade-off between security and resource requirements. Economics of security
plays an important role in a competitive business environment, and not all real
world applications require security against an all powerful attacker. A high level
of security, even if it is necessary, could be unaffordable. It must be noted that
an adaptable analysis does not change the actual security of a protocol; the
analysis just captures the weak form of security which is otherwise labelled as
insecurity in a tradition model. System designers, therefore, must be cautious
while interpreting the results obtained in an adaptable analysis; security guar-
antees are accompanied by extra assumptions and a weaker adversary model,
which may not be justifiable in a different application environment.

In summary, the advantages of using the SI methodology are as follows. The SI
employs better definitions of entity authentication. The result of a correctness
analysis, in terms of FLAGs, is fine grained. A complete analysis highlights
protocol structure and design rationales. An SI based analysis is intuitive and
therefore errors in the arguments are easier to locate. The analysis can be carried
out with different level of abstractions. The methodology can be used with an
application specific attacker model. It is easier to do an adaptable security
analysis. The results for a typical authentication protocol can be obtained
relatively fast.

9.2 Contributions

Our main contribution is a new methodology for the analysis of entity authen-
tication protocols. The methodology is a workable solution, and it is based on
various novel concepts, such as a dependency function, dependency graph, prop-
agation of authenticity, canonical message, binding sequence, service-oriented
FLAGs, and operational FLAGs. A summary of our contributions is listed in
Table 9.1 at the end of this section.

We introduced the notion of a dependency function in Chapter 3, where we
demonstrated that it is an important tool for the analysis of entity authentica-
tion protocols. To the best of our knowledge, no other verification methodology
makes use of this abstraction in the manner we do. We also introduced the con-
cept of a global D-graph, which provides a static model of a protocol. A global
D-graph is useful in its own right, because it represents a legitimate session of
the protocol. Further, authenticity propagates on a D-graph. The structure of a
global D-graph may help a protocol designer to specify implementation details,
locate critical functions, and remove redundant messages.

166 Conclusions and Future Work

We introduced an execution environment of a protocol in terms of its role pro-
grams (Ch. 4). We modelled a role program as a set of local D-graphs. We
introduced a new security property, viz. canonicity (Ch. 4), which is the only
requirement that needs to be validated in the presence of a network adversary.
This means that canonicity is a security property and depends on the dynamic
behaviour of a protocol. We introduced the notion of a binding sequence (Ch. 4)
that is constituted by canonical messages that are interconnected by a local D-
graph. This is a new notion, which can directly be used to derive authentication
properties. For a binding sequence, a local D-graph plays three important roles.
First it is used to find out which of the protocol messages need to be canonical.
Second, it justifies the propagation of canonicity to other protocol messages.
Third, it links together different canonical messages so that it is guaranteed
that they are all assigned in a single partial session.

We provided a comprehensive definition of entity authentication in terms of
FLAGs (Ch. 5). Two types of definitions were provided for each FLAG. The
first type is a conceptual definition that captures the service-oriented require-
ment of a FLAG. Conceptual FLAGs constitute a hierarchy of authentication
properties. The second type is an operational definition, for which we introduced
a certain type of distinguishers. These distinguishers and D-functions provide a
new way of formally interpreting service-oriented authentication goals. An op-
erational FLAG specifies a procedures that is used to validate a service-oriented
authentication goal from a binding sequence. As part of a case study, we derived
the FLAGs that are achieved by a mutual authentication protocol.

We demonstrated that the definition of entity authentication plays an important
role in determining protocol security, and that the SI methodology provides a
detailed picture of actual security provided by a protocol (Ch. 6). For this
purpose, we analysed two protocols that are insecure in a traditional sense.
We used the SI methodology to analyse these protocols and showed that these
protocols are not completely insecure.

We demonstrated how the SI methodology can be used in an adaptable manner
(Ch. 7). We modelled an RFID based system and analysed a family of eight
RFID based authentication protocols. Using our SI methodology, we found the
necessary assumptions under which these protocols are secure. This demon-
strates how a weak level of security, which is otherwise labelled as insecurity,
can be captured in the SI methodology.

9.2 Contributions 167

This table summarises the individual contributions to the structured intuition.

Dependency
function

A new abstraction that models the functional relation be-
tween two messages of a protocol

Dependency
graph

A novel graphical model that captures functional relations
of a protocol and a role program; Highlights the design
rationales of a protocol; Provides a unique insight into the
structure of a protocol; An operational interpretation of a
protocol session

Canonicity A new security property, which is important for message-
passing authentication protocols; A weaker requirement
than the message authenticity; The only security property
required for entity authentication goals

Binding
Sequence

A new concept for the messages of a role program, which
combines the properties of a D-graph and a canonical mes-
sage; Provides a bridge between security and entity authen-
tication; Can be used both as a goal (for the security anal-
ysis) and as an assumption (for the correctness analysis)

Conceptual
FLAGs

A new service-oriented hierarchy of entity authentication
goals
(Although individual FLAGs appear in the literature,
sometimes informally, sometimes implicitly, and sometimes
entangled in a larger goal. Our contribution relates to iden-
tifying them and collecting them in a single hierarchy.)

Operational
FLAGs

Novel operational interpretations of service-oriented au-
thentication goals; Only depend on the security property
of a binding sequence; Require a non-security analysis for
their validation, which is usually an easier task than a se-
curity analysis

Methodology Synthesizes all of the above ideas into a single workable
solution; Enables the validation of FLAGs; Does not de-
pend on a particular attacker model or a particular level of
abstraction; Demarcate security and correctness require-
ments; Formulated as a step by step procedure, which
makes it easier to do an adaptable analysis of a protocol

Table 9.1: Summary of Contributions

168 Conclusions and Future Work

9.3 Future Work

There are many different directions in which the future work can be carried out.
A detailed study of different steps of the SI methodology is required to place the
methodology on a sound mathematical foundation. For this purpose, one could
formulate a dependency graph in more concrete terms that explicitly mentions
the probability of errors. It would be interesting to explore how the probability
of errors is propagated on a D-graph and how much it affects the advantage of
a computationally bounded adversary. One could also develop techniques that
help in obtaining a complexity theoretic proof of canonicity.

The list of FLAGs that is presented in this thesis corresponds to commonly
expected authentication goals. Another possible direction is to formulate other
related goals, especially goals related to (session) key establishment and privacy.
The confidentiality of a session key is a primary goal, but usually there are
additional requirement, such as freshness of a session key and the assurance
that protocol parties know that a session key has been established. It seems
that a session key must be a part of a binding sequence. It may be possible to
recast various FLAGs to a key, such as operativeness as fresh key, willingness
as the consent of a far-end party to use a particular key. Similarly, one could
formulate additional correctness goals related to privacy of protocol parties, such
as untraceability and unlinkability.

In this thesis, we have only shown examples of two-role and three-role protocols.
Another research direction is to validate the methodology with group authenti-
cation protocols, where the number of parties are large and may be not known in
the start of a session. We have formulated our methodology with an arbitrary m
but validation with m-role protocols, for m > 3, may expose some constraints.
Perhaps, a more efficient formulation of the methodology could be developed.

Another research direction is towards a tool support. The process of construct-
ing a dependency graph is manual but it could be made automatic, at least at
a symbolic level. One could design a graph-theoretic tool that generates a de-
pendency graph from a protocol narration and finds the security requirements
of the protocol. Such a tool could be be integrated with a model checker to
carry out security analysis. In this way, the process up to the computation of a
binding sequence could be automated. It seems that automating the subsequent
process, namely the correctness analysis, is a bit harder; perhaps templates of
distinguisher can be used with a level of human guidance.

For a system design, we envisage a catalogue that lists protocol assumptions and
resource requirements (memory footprint, computational requirement, commu-
nication bandwidth, etc.), against the set of FLAGs that the protocol achieves.

9.3 Future Work 169

A system designer can select a protocol that meets his requirements, without
worrying about why a particular FLAG holds for the selected protocol. The
validity of a FLAG can be guaranteed by a security analyst, who using the
operational definition shows that the FLAG is achieved.

To conclude, we list some issues that are much harder to address. As typical
with any hand written proof, the application of structured intuition is prone to
human errors. The success of verification depends on the expertise of a security
analyst, especially for complex protocols. Therefore, a subsequent review of the
analysis is recommended to avoid errors and incompleteness.

We also point out that no verification methodology can solve pleasantness prob-
lem associated with authentication protocols, namely whether a system devel-
oper correctly identifies the authentication requirements of a larger system. The
SI methodology provides necessary support for specifying fine level requirements
assuming that the requirements are correct. One must not underestimate human
errors nevertheless. For security-critical systems, sound operating procedures,
a level of resilience, and multi layer security, are equally important.

The scope of entity authentication spans beyond cryptography. As Jøsang says,
unless an identity itself is meaningful there can be no authentication [89]. The
meaning of an identity, trust on the relation between an identity and an actual
entity, trust to communicate with an authenticated entity, and similar issues are
beyond the scope of our work. System security requires a holistic view of many
different areas, such as cryptography, economics of security, implementation
details, human behaviour, and trust management.

170 Conclusions and Future Work

Appendix A

Verification of Canonicity

We use a model checker OFMC (ver. 2011c) to verify the canonicity of the
four messages M4, M6, and M7, and M8 of our five-pass protocol, described in
§ 4.5. OFMC was originally written by Mödersheim, Drielsma, and Köpf, at
ETH Zurich. The tool OFMC, along with the tutorial and examples, is available
online:
http://www2.imm.dtu.dk/~samo

The specification of our five-pass protocol for OFMC is as follows:

Types: Agent A,B,s;

Number RA,RB,RB0;

Symmetric_key KAB;

Function sk

Knowledge: A: A,B,s,sk(A,s);

B: B,A,s,sk(B,s),pre;

s: A,B,s,sk(A,s),sk(B,s),KAB

Actions:

A->B: A,B,RA

B->s: B,s,RB0,RA,A

http://www2.imm.dtu.dk/~samo

172 Verification of Canonicity

s->B: s,B,{|RB0,KAB,A|}sk(B,s),{|RA,KAB,B|}sk(A,s)

B->A: B,A,{|RA,KAB,B|}sk(A,s),{|RB,RA|}KAB

A->B: A,B,{|RA,RB|}KAB

Goals:

A weakly authenticates B on {|RB,RA|}KAB

A weakly authenticates s on {|RA,KAB,B|}sk(A,s)

B weakly authenticates s on {|RB0,KAB,A|}sk(B,s)

B weakly authenticates A on {|RA,RB|}KAB

This specification consists of four sections. The section Types is used to declare
different types of protocol terms. The field Agent contains the name of parties
who execute the protocol. In OFMC, there is no special notation to mark a role
program, i.e., at some places A means identity of A and at other places A means
the role program Aρ executed by A. It is not difficult to distinguish these two
cases however. The function sk(., .) is used in the next section to define long
term keys.

The next section Knowledge describes the constants (as per the SI notations)
that are supplied to each role program. The role program Aρ (which is denoted
by A in the above specification) is supplied with the values of identities of pro-
tocol parties and the long term key sk(A, s) shared between A and s. Similarly,
the role program Bρ is supplied with a list of constants. The server program
Sρ, which is denoted by s in the above specification, is supplied with the long
term keys of A and B. The lower case letter, s, indicates that s is a trusted
program and therefore an adversary cannot execute this program. The other
two programs denoted by A and B can be executed by an adversary.

Next section Actions specifies the protocol narration. The last section speci-
fies the goals that OFMC verifies. We specify four goals corresponding to the
canonicity requirements of M4, M6, M7, and M8. The goal specification weakly
authenticates stands for Lowe’s non-injective agreement. A non-injective agree-
ment on a message implies that the message is a canonical message.

OFMC (ver. 2011) consists of two back-end verification engines, which are called
classic module and fixed-point module. The classic module performs a bounded
verification, namely it does model checking on a fixed number of parallel sessions.
The fixed-point module performs the verification for an unbounded number of
sessions, using abstract interpretation and over-approximation. On the flip side,
the fixed-point module works in a strictly typed model, and the classic module

173

may find typing attacks. We execute OFMC (ver. 2011c) on a file that contains
the above specification. The classic module reports that the four protocol goals
are achieved, within a bound of eight sessions. The fixed-point module reports
that the four protocol goals are achieved for unbounded number of sessions.
Thus, we conclude that M4, M6, M7, and M8 are canonical messages.

174 Verification of Canonicity

Appendix B

Abstracts of Published Papers

1. A Mechanism for Identity Delegation
at Authentication Level

Authentication and access control are normally considered as separate security
concepts that have separate goals and are supported by separate security mech-
anisms. In most operating systems, however, access control is exclusively based
on the identity of the requesting principal, e.g., an access control mechanism
based on access control lists simply verifies that the authenticated identity of
the requesting principal is on the list of authorized users.

In this paper we propose a human-to-human delegation mechanism for nomadic
users, which exploits the amalgamation of authentication and access control
in most operating systems, by delegating privileges at the identity level. The
complexity of classic delegation models, especially if they strictly follow the
principle of least privileges, often leads to a poor usability, which motivates
a user to circumvent the default delegation mechanism. On the other hand,
the identity delegation makes good use of trust relationships among users of a
particular environment and offers the possibility of improved usability. Although
identity delegation might violate the principle of least privileges, in practice it
could increase the over all security of a nomadic environment where users need

176 Abstracts of Published Papers

to delegate their duties frequently. The proposed mechanism is independent of
the access control and the delegation event is only logged at the authentication
level. Due to its improved usability, the motivation to share authentication
tokens is reduced.

Naveed Ahmed, Christian D. Jensen
NordSec 2009

2. Definition of entity authentication

Authentication is considered a pre-requisite for communication security, but the
definition of authentication is generally not agreed upon. Many attacks on au-
thentication protocols are the result of misunderstanding of the goals of authen-
tication. This state of affairs indicate limitations in theoretical understanding
of the meanings of authentication. We provide a new insight in this direction
and formalize it in CFPS (Common Framework for authentication Protocols’
Specifications). CFPS provides a precise scope of definition for authentication
protocols, which could make the design and analysis process more systematic.

Naveed Ahmed, Christian D. Jensen
IWSCN 2010

3. Adaptable Authentication Model

Most methods for protocol analysis classify protocols as “broken” if they are
vulnerable to attacks from a strong attacker, e.g., assuming the Dolev-Yao at-
tacker model. In many cases, however, exploitation of existing vulnerabilities
may not be practical and, moreover, not all applications may suffer because of
the identified vulnerabilities. Therefore, we may need to analyze a protocol for
weaker notions of security. In this paper, we present a security model that sup-
ports such weaker notions. In this model, the overall goals of an authentication
protocol are broken into a finer granularity; for each fine level authentication
goal, we determine the “least strongest-attacker” for which the authentication
goal can be satisfied. We demonstrate that this model can be used to reason
about the security of supposedly insecure protocols. Such adaptability is par-
ticularly useful in those applications where one may need to trade-off security
relaxations against resource requirements.

177

Naveed Ahmed, Christian D. Jensen
ESSoS 2011

4. Security of Dependable Systems

Security and dependability are crucial for designing trustworthy systems. The
approach “security as an add-on” is not satisfactory, yet the integration of secu-
rity in the development process is still an open problem. Especially, a common
framework for specifying dependability and security is very much needed. There
are many pressing challenges however; here, we address some of them. Firstly,
security for dependable systems is a broad concept and traditional view of secu-
rity, e.g., in terms of confidentiality, integrity and availability, does not suffice.
Secondly, a clear definition of security in the dependability context is not agreed
upon. Thirdly, security attacks cannot be modeled as a stochastic process, be-
cause the adversary’s strategy is often carefully planned. In this chapter, we
explore these challenges and provide some directions toward their solutions.

Naveed Ahmed, Christian D. Jensen
Book: Dependability and Computer Engineering

2011

5. Demarcation of Security in Authentication Protocols

Security analysis of communication protocols is a slippery business, many “se-
cure” protocols later turn out to be insecure. Among many, two complains are
more frequent: inadequate definition of security and unstated assumptions in
the security model. In our experience, one principal cause for such state of
affairs is an apparent overlap of security and correctness, which may lead to
many sloppy security definitions and security models. Although there is no in-
herent need to separate security and correctness requirements, practically, such
separation is significant. It makes security analysis easier and enables us to
define security goals with a fine granularity. We present one such separation, by
introducing the notion of binding sequence as a security primitive. A binding
sequence, roughly speaking, is the only required security property of an authen-
tication protocol. All other authentication goals, the correctness requirements,
can be derived from the binding sequence.

Naveed Ahmed, Christian D. Jensen
SysSec 2011

178 Abstracts of Published Papers

6. Post-Session Authentication

Entity authentication provides confidence in the claimed identity of a peer en-
tity, but the manner in which this goal is achieved results in different types of
authentication. An important factor in this regard is the order between authen-
tication and the execution of the associated session. In this paper, we consider
the case of post-session authentication, where parties authenticate each other at
the end of their interactive session. This use of authentication is different from
session-less authentication (e.g., in RFID) and pre-session authentication (e.g.,
for access control.)

Post-session authentication, although a new term, is not a new concept; it is the
basis of at least a few practical schemes. We, for the first time, systematically
study it and present the underlying authentication model. Further, we show that
an important class of problems is solvable using post-session authentication as
the only setup assumption. We hope post-session authentication can be used to
devise new strategies for building trust among strangers.

Naveed Ahmed, Christian D. Jensen
IFIPTM 2012

7. Towards Private-Key Symbolic Encryption

Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal
security models. In its common use, encryption on a whole message is speci-
fied as a single monolithic block. From a cryptographic perspective, however,
this may require a resource-intensive cryptographic algorithm, namely an au-
thenticated encryption scheme that is secure under chosen ciphertext attack.
Therefore, many reasonable encryption schemes, such as AES in the CBC or
CFB mode, are not among the implementation options.

In this paper, we report new attacks on CBC and CFB based implementa-
tions of the well-known Needham-Schroeder and Denning-Sacco protocols. To
avoid such problems, we advocate the use of refined notions of symbolic encryp-
tion that have natural correspondence to standard cryptographic encryption
schemes.

Naveed Ahmed, Christian D. Jensen, Erik Zenner
ESORICS 2012

Bibliography

[1] H. Abadi and R. Needham. Prudent engineering practice for cryptographic
protocols. In IEEE Computer Society Symposium on Research in Security
and Privacy, pages 122–136. IEEE, 1994.

[2] M. Abadi and A. Gordon. Reasoning about cryptographic protocols in
the spi calculus. 8th International Conference on Concurrency Theory
(CONCUR’97), Warsaw, Poland, pages 59–73, 1997.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryptography. The-
oretical Computer Science: Exploring New Frontiers of Theoretical Infor-
matics, Lecture Notes in Computer Science: Volume 1872/2000,, pages
3–22, 2000.

[4] M. Abadi and M.R. Tuttle. A semantics for a logic of authentication.
In Proceedings of the tenth annual ACM symposium on Principles of dis-
tributed computing, pages 201–216. ACM, 1991.

[5] N. Ahmed, C. Jensen, and E. Zenner. Towards symbolic encryp-
tion schemes. European Symposium on Research in Computer Secu-
rity, (ESORICS–2012), Lecture Notes in Computer Science, Volume
7459/2012, pages 557–572, 2012.

[6] R. Anderson and R. Needham. Programming Satan’s computer. Computer
Science Today, Lecture Notes in Computer Science: Volume 1000/1995,
pages 426–440, 1995.

[7] J. Arkko and P. Nikander. Weak authentication: How to authenticate
unknown principals without trusted parties. In Security Protocols, Lecture

180 BIBLIOGRAPHY

Notes in Computer Science: Volume 2845/2004, pages 57–66. Springer,
2004.

[8] N. Asokan, V. Niemi, and K. Nyberg. Man-in-the-middle in tunnelled au-
thentication protocols. In Security Protocols, Lecture Notes in Computer
Science: Volume 3364/2005, pages 28–41. Springer, 2005.

[9] G. Avoine and P. Oechslin. A scalable and provably secure hash-based
RFID protocol. In Third IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom–2005), pages 110–
114. IEEE, 2005.

[10] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic
library with nested operations. In Proceedings of the 10th ACM conference
on Computer and communications security, pages 220–230. ACM, 2003.

[11] L.C. Baird, W.L. Bahn, M.D. Collins, M.C. Carlisle, and S.C. Butler.
Keyless jam resistance. In IEEE Information Assurance and Security
Workshop (IAW’07), pages 143–150. IEEE, 2007.

[12] B. Barak, R. Canetti, Y. Lindell, R. Pass, and T. Rabin. Secure computa-
tion without authentication. In Advances in Cryptology–CRYPTO 2005,
Lecture Notes in Computer Science: Volume 3621/2005, pages 361–377.
Springer, 2005.

[13] G. Barthe, B. Grégoire, S. Heraud, and S. Béguelin. Computer-aided
security proofs for the working cryptographer. Advances in Cryptology–
CRYPTO 2011, Lecture Notes in Computer Science: Volume 6841/2011,
pages 71–90, 2011.

[14] D. Basin. Lazy infinite-state analysis of security protocols. Secure
Networking—CQRE [Secure]’99, Lecture Notes in Computer Science: Vol-
ume 1740/1999, pages 781–781, 1999.

[15] D. Basin, S. Mödersheim, and L. Vigano. Cdiff: a new reduction technique
for constraint-based analysis of security protocols. In Proceedings of the
10th ACM conference on Computer and communications security, pages
335–344. ACM, 2003.

[16] D. Basin, S. Mödersheim, and L. Vigano. OFMC: A symbolic model
checker for security protocols. International Journal of Information Secu-
rity, 4(3):181–208, 2005.

[17] G. Bella. What is correctness of security protocols? Journal of Universal
Computer Science, 14(12):2083–2106, 2008.

[18] G. Bella, S. Bistarelli, and F. Massacci. Retaliation: Can we live with
flaws? NATO Security Through Science Series D-Information and Com-
munication Security, 6, 2006.

BIBLIOGRAPHY 181

[19] G. Bella, C. Longo, and L. Paulson. Verifying second-level security proto-
cols. Theorem Proving in Higher Order Logics, Lecture Notes in Computer
Science: Volume 2758/2003, pages 352–366, 2003.

[20] G. Bella, F. Massacci, and L.C. Paulson. An overview of the verification
of set. International Journal of Information Security, 4(1):17–28, 2005.

[21] G. Bella and L. Paulson. Kerberos version iv: Inductive analysis of the
secrecy goals. Computer Security—ESORICS 98, Lecture Notes in Com-
puter Science, Volume 1485/1998, pages 361–375, 1998.

[22] M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. Online
ciphers and the hash-CBC construction. In Advances in Cryptology—
CRYPTO 2001, pages 292–309. Springer, 2001.

[23] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In Pro-
ceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 419–428. ACM, 1998.

[24] M. Bellare and C. Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Ad-
vances in Cryptology—ASIACRYPT 2000, pages 531–545, 2000.

[25] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM conference
on Computer and communications security, pages 62–73. ACM, 1993.

[26] M. Bellare and P. Rogaway. Provably secure session key distribution:
the three party case. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 57–66. ACM, 1995.

[27] M. Bellare and P. Rogaway. On the construction of variable-input-length
ciphers. In Fast Software Encryption, pages 231–244. Springer, 1999.

[28] Mihir Bellare and Phillip Rogaway. Entity authentication and key distri-
bution. In CRYPTO’93: Proceedings of the 13th annual international
cryptology conference on Advances in cryptology, pages 232–249, New
York, NY, USA, 1994. Springer-Verlag New York, Inc.

[29] S.M. Bellovin. Problem areas for the ip security protocols. In Proceedings
of the Sixth Usenix Unix Security Symposium, pages 1–16, 1996.

[30] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and
M. Yung. Systematic design of two-party authentication protocols. In
Advances in Cryptology—CRYPTO’91, pages 44–61. Springer, 1992.

182 BIBLIOGRAPHY

[31] S. Blake-Wilson and A. Menezes. Entity authentication and authenticated
key transport protocols employing asymmetric techniques. In Security
Protocols, pages 137–158. Springer, 1998.

[32] B. Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In Computer Security Foundations Workshop, 2001. Proceedings.
14th IEEE, pages 82–96. IEEE, 2001.

[33] B. Blanchet. Automatic verification of correspondences for security pro-
tocols. Journal of Computer Security, 17(4):363–434, 2009.

[34] Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson,
and Hanne Riis Nielson. Static validation of security protocols. Journal
of Computer Security, pages 347–390, 2005.

[35] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block ci-
pher. Cryptographic Hardware and Embedded Systems-CHES 2007, pages
450–466, 2007.

[36] C. Boyd. Hidden assumptions in cryptographic protocols. In IEE Pro-
ceedings: Computers and Digital Techniques, volume 137, pages 433–436.
IET, 1990.

[37] C. Boyd. On key agreement and conference key agreement. In Information
Security and Privacy, pages 294–302. Springer, 1997.

[38] C. Boyd. Towards extensional goals in authentication protocols. In Pro-
ceedings of the 1997 DIMACS Workshop on Design and Formal Verifica-
tion of Security Protocols, 1997.

[39] C. Boyd and W. Mao. On a limitation of ban logic. In Advances in
Cryptology—EUROCRYPT’93, pages 240–247. Springer, 1994.

[40] C. Boyd and A. Mathuria. Protocols for Authentication and Key Estab-
lishmen (1st ed.). Springer, 2003.

[41] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-
authenticated key exchange using diffie-hellman. In Advances in
Cryptology—Eurocrypt 2000, pages 156–171. Springer, 2000.

[42] B. Briscoe, A. Odlyzko, and B. Tilly. Metcalfe’s law is wrong-
communications networks increase in value as they add members-but by
how much? Spectrum, IEEE, 43(7):34–39, 2006.

[43] M. Burmester and J. Munilla. A Flyweight RFID authentication protocol.
In Workshop on RFID Security, RFIDSec, 2009.

BIBLIOGRAPHY 183

[44] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authen-
tication. ACM Transaction Computer Systems, 8(1):18–36, 1990.

[45] S. Canard, I. Coisel, J. Etrog, and M. Girault. Privacy-preserving RFID
systems: Model and constructions. Eprint: IACR, 21:22, 2010.

[46] R. Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Foundations of Computer Science, 2001. Proceed-
ings. 42nd IEEE Symposium on, pages 136–145. IEEE, 2002.

[47] R. Canetti and J. Herzog. Universally composable symbolic security anal-
ysis. Journal of cryptology, 24(1):83–147, 2011.

[48] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their
use for building secure channels. Advances in Cryptology—EUROCRYPT
2001, pages 453–474, 2001.

[49] Y. Chevalier and M. Rusinowitch. Compiling and securing cryptographic
protocols. Information Processing Letters, 110(3):116–122, 2010.

[50] Y. Chevalier and L. Vigneron. Automated unbounded verification of secu-
rity protocols. In Computer Aided Verification, pages 125–171. Springer,
2002.

[51] J. Clark and J. Jacob. A survey of authentication protocol literature:
Version 1.0, 1997.

[52] M. Covington, M. Ahamad, I. Essa, and H. Venkateswaran. Parameterized
authentication. Computer Security–ESORICS 2004, pages 276–292, 2004.

[53] C. Cremers. The scyther tool: Verification, falsification, and analysis
of security protocols. In Computer Aided Verification, pages 414–418.
Springer, 2008.

[54] CJF Cremers. Scyther. Semantics and Verification of Security Protocols,
Thesis, University Press Eindhoven, 2006.

[55] I. Damg̊ard and M. Pedersen. RFID security: Tradeoffs between security
and efficiency. Topics in Cryptology–CT-RSA 2008, pages 318–332, 2008.

[56] J.P. Degabriele and K.G. Paterson. Attacking the ipsec standards in
encryption-only configurations. In Security and Privacy, 2007. SP’07.
IEEE Symposium on, pages 335–349. Ieee, 2007.

[57] D.E. Denning and G.M. Sacco. Timestamps in key distribution protocols.
Communications of the ACM, 24(8):533–536, 1981.

[58] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key dis-
tribution protocols. Commun. ACM, 24:533–536, August 1981.

184 BIBLIOGRAPHY

[59] Whitfield Diffie, Paul C. Oorschot, and Michael J. Wiener. Authentica-
tion and authenticated key exchanges. Designs, Codes and Cryptography,
2:107–125, 1992.

[60] S.F. Doghmi, J.D. Guttman, and F.J. Thayer. Skeletons, homomorphisms,
and shapes: Characterizing protocol executions. Electronic Notes in The-
oretical Computer Science, 173:85–102, 2007.

[61] D. Dolev and A. Yao. On the security of public key protocols. Information
Theory, IEEE Transactions on, 29(2):198–208, 1983.

[62] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
In SFCS’81: Proceedings of the 22nd Annual Symposium on Foundations
of Computer Science, pages 350–357, Washington, DC, USA, 1981. IEEE
Computer Society.

[63] B. Dutertre and S. Schneider. Using a pvs embedding of csp to verify
authentication protocols. Theorem Proving in Higher Order Logics, pages
121–136, 1997.

[64] M. Dworkin. Recommendation for block cipher modes of operation. meth-
ods and techniques. Technical report, DTIC Document, 2001.

[65] E. Emerson. The beginning of model checking: A personal perspective.
25 Years of Model Checking, pages 27–45, 2008.

[66] EPC EPCglobal. Tag data standards version 1.3. EPCglobal Standard
Specification, 2005.

[67] S. Even and O. Goldreich. On the security of multi-party ping-pong pro-
tocols. In 24th Annual Symposium on Foundations of Computer Science,
pages 34–39. IEEE, 1983.

[68] F.J.T. Fábrega, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is
a security protocol correct? In Security and Privacy, 1998. Proceedings.
1998 IEEE Symposium on, pages 160–171. IEEE, 1998.

[69] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis
of cryptographic protocols. Automata, Languages and Programming, pages
354–372, 2000.

[70] R. Focardi, R. Gorrieri, and F. Martinelli. A comparison of three au-
thentication properties. Theoretical Computer Science, 291(3):285–327,
2003.

[71] P.A. Fouque, G. Martinet, and G. Poupard. Practical symmetric on-line
encryption. In Fast Software Encryption, pages 362–375. Springer, 2003.

BIBLIOGRAPHY 185

[72] G.R. Ganger. Authentication confidences. In Proceedings of 8th Workshop
on Hot Topics in Operating Systems (HotOS-VIII), page 169, 2001.

[73] G. Gilder. Metcalf’s law and legacy. Forbes ASAP, 27, 1993.

[74] O. Goldreich. Foundations of cryptography: Basic Applications, volume 2.
Cambridge Univ Pr, 2004.

[75] M. Goldsmith et al. Fdr: User manual and tutorial, version 2.77. Formal
Systems (Europe) Ltd, 2001.

[76] S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer
course “Cryptography and computer security” at MIT, 1999:1999, 1996.

[77] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

[78] D. Gollmann. Authentication–myths and misconceptions. Progress in
Computer Science and Applied Logic, 20:203–225, 2001.

[79] D. Gollmann. What do we mean by entity authentication? In Security
and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages 46–54.
IEEE, 2002.

[80] L. Gong. Using one-way functions for authentication. ACM SIGCOMM
Computer Communication Review, 19(5):8–11, 1989.

[81] L. Gong. Variations on the themes of message freshness and replay-or the
difficulty in devising formal methods to analyze cryptographic protocols.
In Computer Security Foundations Workshop VI, 1993. Proceedings, pages
131–136. IEEE, 1993.

[82] A.D. Gordon and A. Jeffrey. Authenticity by typing for security protocols.
Journal of computer security, 11(4):451–520, 2003.

[83] J.D. Guttman and F.J. Thayer. Authentication tests. In Security and
Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on, pages
96–109. IEEE, 2000.

[84] J.D. Guttman and F.J. Thayer. Authentication tests and the structure of
bundles. Theoretical Computer Science, 283(2):333–380, 2002.

[85] C.T.R. Hager. Context aware and adaptive security for wireless networks.
PhD thesis, Virginia Polytechnic Institute and State University, 2004.

[86] N. Haller. The s/key one-time password system. 1995.

[87] J. Hammell, A. Weimerskirch, J. Girao, and D. Westhoff. Recognition in
a low-power environment. In Distributed Computing Systems Workshops,
2005. 25th IEEE International Conference on, pages 933–938. IEEE, 2005.

186 BIBLIOGRAPHY

[88] A. Hiltgen, T. Kramp, and T. Weigold. Secure internet banking authen-
tication. Security & Privacy, IEEE, 4(2):21–29, 2006.

[89] A. Jøsang, M.A. Patton, and A. Ho. Authentication for humans. In Pro-
ceedings of the 9th International Conference on Telecommunication Sys-
tems (ICTS2001), Cox School of Business, Southern Methodist University,
2001.

[90] A. Juels. RFID security and privacy: A research survey. Selected Areas
in Communications, IEEE Journal on, 24(2):381–394, 2006.

[91] J. Katz and M. Yung. Complete characterization of security notions for
probabilistic private-key encryption. In Proceedings of the thirty-second
annual ACM symposium on Theory of computing, pages 245–254. ACM,
2000.

[92] B. Ksieżopolski and Z. Kotulski. Adaptable security mechanism for dy-
namic environments. Computers & Security, 26(3):246–255, 2007.

[93] L. Lamport. Password authentication with insecure communication. Com-
munications of the ACM, 24(11):770–772, 1981.

[94] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrovy. Probabilistic
polynomial-time equivalence and security analysis. FM’99–Formal Meth-
ods, pages 708–708, 1999.

[95] S. Lindskog. Modeling and tuning security from a quality of service per-
spective. Chalmers University of Technology, 2005.

[96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. Tools and Algorithms for the Construction and Analysis of
Systems, pages 147–166, 1996.

[97] G. Lowe. A hierarchy of authentication specifications. In csfw, page 31.
Published by the IEEE Computer Society, 1997.

[98] G. Lowe et al. A family of attacks upon authentication protocols. 1997.

[99] S. Lucks, E. Zenner, A. Weimerskirch, and D. Westhoff. Concrete security
for entity recognition: The Jane Doe protocol. Progress in Cryptology-
INDOCRYPT 2008, pages 158–171, 2008.

[100] W. Mao. An augmentation of ban-like logics. In Computer Security Foun-
dations Workshop, 1995. Proceedings., Eighth IEEE, pages 44–56. IEEE,
1995.

[101] W. Mao and C. Boyd. Development of authentication protocols: Some
misconceptions and a new approach. In Computer Security Foundations
Workshop VII, 1994. CSFW 7. Proceedings, pages 178–186. IEEE, 1994.

BIBLIOGRAPHY 187

[102] W. Mao and C. Boyd. On the use of encryption in cryptographic protocols.
Codes and Cyphers: Cryptography and Coding IV, pages 251–262, 1995.

[103] U.M. Maurer and P.E. Schmid. A calculus for security boots trapping in
distributed systems. Journal of Computer Security, 4(1):55–80, 1996.

[104] C. Meadows. The nrl protocol analyzer: An overview. The Journal of
Logic Programming, 26(2):113–131, 1996.

[105] C. Meadows. Formal methods for cryptographic protocol analysis: Emerg-
ing issues and trends. Selected Areas in Communications, IEEE Journal
on, 21(1):44–54, 2003.

[106] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of applied
cryptography. CRC, 1997.

[107] D. Micciancio and B. Warinschi. Soundness of formal encryption in the
presence of active adversaries. Theory of Cryptography, pages 133–151,
2004.

[108] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. In Proceedings of the 8th ACM conference on
Computer and Communications Security, pages 166–175. ACM, 2001.

[109] J.K. Millen, S.C. Clark, and S.B. Freedman. The interrogator: Protocol
secuity analysis. Software Engineering, IEEE Transactions on, (2):274–
288, 1987.

[110] J. Mitchell, A. Scedrov, N. Durgin, and P. Lincoln. Undecidability of
bounded security protocols. In Workshop on Formal Methods and Security
Protocols, 1999.

[111] J.C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of crypto-
graphic protocols using murϕ. In Security and Privacy, 1997. Proceedings.,
1997 IEEE Symposium on, pages 141–151. IEEE, 1997.

[112] S. Mödersheim and L. Vigano. The open-source fixed-point model checker
for symbolic analysis of security protocols. Foundations of Security Anal-
ysis and Design V, pages 166–194, 2009.

[113] S. Mödersheim and L. Viganò. Secure pseudonymous channels. Computer
Security–ESORICS 2009, pages 337–354, 2009.

[114] D. Molnar, A. Soppera, and D. Wagner. A scalable, delegatable
pseudonym protocol enabling ownership transfer of RFID tags. In Se-
lected Areas in Cryptography, pages 276–290. Springer, 2006.

[115] B. Monahan. Introducing aspect-a tool for checking protocol security.
Technical report, Technical Report HPL-2002-246, HP Labs, 2002.

188 BIBLIOGRAPHY

[116] J.H. Moore. Protocol failures in cryptosystems. Proceedings of the IEEE,
76(5):594–602, 1988.

[117] R.M. Needham and M.D. Schroeder. Using encryption for authentication
in large networks of computers. Communications of the ACM, 21(12):999,
1978.

[118] D.M. Nessett. A critique of the burrows, abadi and needham logic. ACM
SIGOPS Operating Systems Review, 24(2):35–38, 1990.

[119] B.C. Neuman and T. Ts’o. Kerberos: An authentication service for com-
puter networks. Communications Magazine, IEEE, 32(9):33–38, 1994.

[120] C. Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. RFID privacy models
revisited. Computer Security-ESORICS 2008, pages 251–266, 2008.

[121] C.S. Ong, K. Nahrstedt, and W. Yuan. Quality of protection for mo-
bile multimedia applications. In Multimedia and Expo, 2003. ICME’03.
Proceedings. 2003 International Conference on, volume 2, pages II–137.
IEEE, 2003.

[122] R.I. Paise and S. Vaudenay. Mutual authentication in RFID: security
and privacy. In Proceedings of the 2008 ACM symposium on Information,
computer and communications security, pages 292–299. ACM, 2008.

[123] S. Pancho. Paradigm shifts in protocol analysis. In Proceedings of the
1999 workshop on New security paradigms, pages 70–79. ACM, 1999.

[124] D.G. Park, C. Boyd, and E. TDawson. Classification of authentication
protocols: A practical approach. Information Security, pages 194–208,
2000.

[125] K. Paterson and A. Yau. Cryptography in theory and practice: The case of
encryption in ipsec. Advances in Cryptology—EUROCRYPT 2006, pages
12–29, 2006.

[126] L.C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of computer security, 6(1-2):85–128, 1998.

[127] L.C. Paulson. Inductive analysis of the internet protocol tls. ACM
Transactions on Information and System Security (TISSEC), 2(3):332–
351, 1999.

[128] B. Pfitzmann and M. Waidner. Composition and integrity preservation
of secure reactive systems. In Proceedings of the 7th ACM conference on
Computer and communications security, pages 245–254. ACM, 2000.

[129] G. Polya. How to solve it: A new aspect of mathematical method. Prince-
ton University Press, 2008.

BIBLIOGRAPHY 189

[130] C. Pöpper, N. Tippenhauer, B. Danev, and S. Capkun. Investigation
of signal and message manipulations on the wireless channel. Computer
Security–ESORICS 2011, pages 40–59, 2011.

[131] P. Rogaway. Formalizing human ignorance. Progress in Cryptology-
VIETCRYPT 2006, pages 211–228, 2006.

[132] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Def-
initions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In Fast Software Encryption,
pages 371–388. Springer, 2004.

[133] A. W. Roscoe. Intensional specifications of security protocols. In CSFW
’96: Proceedings of the 9th IEEE workshop on Computer Security Foun-
dations, page 28, Washington, DC, USA, 1996. IEEE Computer Society.

[134] P.Y.A. Ryan and S.A. Schneider. An attack on a recursive authentication
protocol a cautionary tale. Information Processing Letters, 65(1):7–10,
1998.

[135] S. Sarma, S. Weis, and D. Engels. RFID systems and security and pri-
vacy implications. Cryptographic Hardware and Embedded Systems-CHES
2002, pages 1–19, 2003.

[136] M. Satyanarayanan. Integrating security in a large distributed system.
ACM Transactions on Computer Systems (TOCS), 7(3):280, 1989.

[137] P.A. Schneck and K. Schwan. Dynamic authentication for high-
performance networked applications. In Quality of Service, 1998.(IWQoS
98) 1998 Sixth International Workshop on, pages 127–136. IEEE, 1998.

[138] S. Schneider. Security properties and csp. In Security and Privacy, 1996.
Proceedings., 1996 IEEE Symposium on, pages 174–187. IEEE, 1996.

[139] J.M. Seigneur, S. Farrell, C. Jensen, E. Gray, and Y. Chen. End-to-end
trust starts with recognition. Security in Pervasive Computing, pages
251–255, 2004.

[140] S.A. Shaikh, V.J. Bush, and S.A. Schneider. Specifying authentication
using signal events in CSP. Computers & Security, 28(5):310–324, 2009.

[141] V. Shoup. On formal models for secure key exchange. Citeseer, 1999.

[142] D.X. Song, S. Berezin, and A. Perrig. Athena: a novel approach to effi-
cient automatic security protocol analysis. Journal of Computer Security,
9(1/2):47–74, 2001.

[143] ISO standard. Entity authentication mechanisms; Part 1: General model,
ISO/IEC 9798-1, Second Edition,. 1991.

190 BIBLIOGRAPHY

[144] ISO standard. ISO/IEC 9798-3:1998, Information technology—Security
techniques—Entity Authentication—Part 3: Mechanisms using digital sig-
nature techniques. 1998.

[145] ISO standard. SO/IEC 9798-4:1999, Information technology—Security
techniques—Entity Authentication—Part 3: Mechanisms using a crypto-
graphic check function. 1999.

[146] ISO standard. ISO/IEC 9798-2:2008, Information technology—Security
techniques—Entity Authentication—Part 2: Mechanisms using symmetric
encipherment algorithms. 2008.

[147] S.G. Stubblebine and R.N. Wright. An authentication logic with formal
semantics supporting synchronization, revocation, and recency. Software
Engineering, IEEE Transactions on, 28(3):256–285, 2002.

[148] Y. Sun and A. Kumar. Quality-of-protection (qop): A quantitative
methodology to grade security services. In Distributed Computing Systems
Workshops, 2008. ICDCS’08. 28th International Conference on, pages
394–399. IEEE, 2008.

[149] P. Syverson and I. Cervesato. The logic of authentication protocols. Foun-
dations of Security Analysis and Design, pages 63–137, 2001.

[150] P.F. Syverson and P.C. Van Oorschot. On unifying some cryptographic
protocol logics. In Research in Security and Privacy, 1994. Proceedings.,
1994 IEEE Computer Society Symposium on, pages 14–28. IEEE, 1994.

[151] P.F. Syverson and P.C. Van Oorschot. A unified cryptographic protocol
logic. Technical report, DTIC Document, 1996.

[152] G. Tsudik. A family of dunces: Trivial RFID identification and authen-
tication protocols. In Proceedings of the 7th international conference on
privacy enhancing technologies, pages 45–61. Springer-Verlag, 2007.

[153] P. van Oorschot. Extending cryptographic logics of belief to key agreement
protocols. In Proceedings of the 1st ACM Conference on Computer and
Communications Security, pages 232–243. ACM, 1993.

[154] S. Vaudenay. On privacy models for RFID. Advances in Cryptology–
ASIACRYPT 2007, pages 68–87, 2007.

[155] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

[156] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. Com-
puter, 25(1):39–52, 1992.

BIBLIOGRAPHY 191

[157] T.Y.C. Woo and S.S. Lam. A semantic model for authentication proto-
cols. In Research in Security and Privacy, 1993. Proceedings., 1993 IEEE
Computer Society Symposium on, pages 178–194. IEEE, 1993.

[158] T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design.
ACM SIGOPS Operating Systems Review, 28(3):24–37, 1994.

	Summary
	Resumé
	Preface
	List of Published Papers
	Acknowledgements
	1 Introduction
	1.1 Problem of Characterization
	1.2 Historical Context
	1.3 Fine Level Authentication Goals (FLAGs)
	1.4 Contributions
	1.5 Overview of Thesis
	1.6 Notations and Conventions

	2 Authentication Protocols
	2.1 Preliminaries
	2.2 Cryptographic Functions
	2.3 Protocol Narration
	2.4 Role Programs

	3 Dependency Graph
	3.1 Dependency Function
	3.2 Dependency Graph
	3.3 Atomicity of a D-graph
	3.4 Protocol Narration as a D-Graph
	3.5 Case Study 1: Global D-graph
	3.6 Summary

	4 Binding Sequence
	4.1 D-Graph of a Role Program
	4.2 Canonical Messages
	4.3 Binding Sequence
	4.4 A Simple Protocol
	4.5 Case Study 1
	4.6 Summary

	5 Authentication Goals
	5.1 Conceptual Definitions
	5.2 Operational Definitions
	5.3 Case Study 1
	5.4 Summary

	6 Insecure Protocols
	6.1 NSPK Protocol
	6.2 Woo-Lam Authentication Protocol
	6.3 Summary

	7 Adaptable Security
	7.1 Overview
	7.2 RFID System
	7.3 Correctness Analysis
	7.4 Security Analysis
	7.5 Summary

	8 Related Work
	8.1 Definitions
	8.2 Analysis of Authentication
	8.3 Other Related Work
	8.4 Summary

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Contributions
	9.3 Future Work

	A Verification of Canonicity
	B Abstracts of Published Papers

