11,806 research outputs found

    Pseudo-hamiltonian graphs

    Get PDF
    A pseudo-h-hamiltonian cycle in a graph is a closed walk that visits every vertex exactly h times. We present a variety of combinatorial and algorithmic results on pseudo-h-hamiltonian cycles. First, we show that deciding whether a graph is pseudo-h-hamiltonian is NP-complete for any given h > 1. Surprisingly, deciding whether there exists an h > 1 such that the graph is pseudo-h-hamiltonian, can be done in polynomial time. We also present sufficient conditions for pseudo-h-hamiltonicity that axe based on stable sets and on toughness. Moreover, we investigate the computational complexity of finding pseudo-h-hamiltonian cycles on special graph classes like bipartite graphs, split graphs, planar graphs, cocomparability graphs; in doing this, we establish a precise separating line between easy and difficult cases of this problem

    Local resilience and Hamiltonicity Maker-Breaker games in random-regular graphs

    Full text link
    For an increasing monotone graph property \mP the \emph{local resilience} of a graph GG with respect to \mP is the minimal rr for which there exists of a subgraph HGH\subseteq G with all degrees at most rr such that the removal of the edges of HH from GG creates a graph that does not possesses \mP. This notion, which was implicitly studied for some ad-hoc properties, was recently treated in a more systematic way in a paper by Sudakov and Vu. Most research conducted with respect to this distance notion focused on the Binomial random graph model \GNP and some families of pseudo-random graphs with respect to several graph properties such as containing a perfect matching and being Hamiltonian, to name a few. In this paper we continue to explore the local resilience notion, but turn our attention to random and pseudo-random \emph{regular} graphs of constant degree. We investigate the local resilience of the typical random dd-regular graph with respect to edge and vertex connectivity, containing a perfect matching, and being Hamiltonian. In particular we prove that for every positive ϵ\epsilon and large enough values of dd with high probability the local resilience of the random dd-regular graph, \GND, with respect to being Hamiltonian is at least (1ϵ)d/6(1-\epsilon)d/6. We also prove that for the Binomial random graph model \GNP, for every positive ϵ>0\epsilon>0 and large enough values of KK, if p>Klnnnp>\frac{K\ln n}{n} then with high probability the local resilience of \GNP with respect to being Hamiltonian is at least (1ϵ)np/6(1-\epsilon)np/6. Finally, we apply similar techniques to Positional Games and prove that if dd is large enough then with high probability a typical random dd-regular graph GG is such that in the unbiased Maker-Breaker game played on the edges of GG, Maker has a winning strategy to create a Hamilton cycle.Comment: 34 pages. 1 figur

    Feynman rules for Coulomb gauge QCD

    Full text link
    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the subgraph structure of ordinary Feynamn graphs. The CL terms do not have subgraph structure. We show how to carry out enormalization in the presene of CL terms, by re-expressing these as `pseudo-Feynman' inegrals. We also explain how energy divergences cancel.Comment: 8 pages, 10 figue

    Irreducible pseudo 2-factor isomorphic cubic bipartite graphs

    Full text link
    A bipartite graph is {\em pseudo 2--factor isomorphic} if all its 2--factors have the same parity of number of circuits. In \cite{ADJLS} we proved that the only essentially 4--edge-connected pseudo 2--factor isomorphic cubic bipartite graph of girth 4 is K3,3K_{3,3}, and conjectured \cite[Conjecture 3.6]{ADJLS} that the only essentially 4--edge-connected cubic bipartite graphs are K3,3K_{3,3}, the Heawood graph and the Pappus graph. There exists a characterization of symmetric configurations n3n_3 %{\bf decide notation and how to use it in the rest of the paper} due to Martinetti (1886) in which all symmetric configurations n3n_3 can be obtained from an infinite set of so called {\em irreducible} configurations \cite{VM}. The list of irreducible configurations has been completed by Boben \cite{B} in terms of their {\em irreducible Levi graphs}. In this paper we characterize irreducible pseudo 2--factor isomorphic cubic bipartite graphs proving that the only pseudo 2--factor isomorphic irreducible Levi graphs are the Heawood and Pappus graphs. Moreover, the obtained characterization allows us to partially prove the above Conjecture

    Pseudo-Hermitian continuous-time quantum walks

    Full text link
    In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.Comment: 13 page, 7 figure

    Hamiltonian tomography of dissipative systems under limited access: A biomimetic case study

    Get PDF
    The identification of parameters in the Hamiltonian that describes complex many-body quantum systems is generally a very hard task. Recent attention has focused on such problems of Hamiltonian tomography for networks constructed with two-level systems. For open quantum systems, the fact that injected signals are likely to decay before they accumulate sufficient information for parameter estimation poses additional challenges. In this paper, we consider use of the gateway approach to Hamiltonian tomography \cite{Burgarth2009,Burgarth2009a} to complex quantum systems with a limited set of state preparation and measurement probes. We classify graph properties of networks for which the Hamiltonian may be estimated under equivalent conditions on state preparation and measurement. We then examine the extent to which the gateway approach may be applied to estimation of Hamiltonian parameters for network graphs with non-trivial topologies mimicking biomolecular systems.Comment: 6 page

    On realization graphs of degree sequences

    Get PDF
    Given the degree sequence dd of a graph, the realization graph of dd is the graph having as its vertices the labeled realizations of dd, with two vertices adjacent if one realization may be obtained from the other via an edge-switching operation. We describe a connection between Cartesian products in realization graphs and the canonical decomposition of degree sequences described by R.I. Tyshkevich and others. As applications, we characterize the degree sequences whose realization graphs are triangle-free graphs or hypercubes.Comment: 10 pages, 5 figure
    corecore