2,293 research outputs found

    Co-skeletons:Consistent curve skeletons for shape families

    Get PDF
    We present co-skeletons, a new method that computes consistent curve skeletons for 3D shapes from a given family. We compute co-skeletons in terms of sampling density and semantic relevance, while preserving the desired characteristics of traditional, per-shape curve skeletonization approaches. We take the curve skeletons extracted by traditional approaches for all shapes from a family as input, and compute semantic correlation information of individual skeleton branches to guide an edge-pruning process via skeleton-based descriptors, clustering, and a voting algorithm. Our approach achieves more concise and family-consistent skeletons when compared to traditional per-shape methods. We show the utility of our method by using co-skeletons for shape segmentation and shape blending on real-world data

    Fast and robust curve skeletonization for real-world elongated objects

    Full text link
    We consider the problem of extracting curve skeletons of three-dimensional, elongated objects given a noisy surface, which has applications in agricultural contexts such as extracting the branching structure of plants. We describe an efficient and robust method based on breadth-first search that can determine curve skeletons in these contexts. Our approach is capable of automatically detecting junction points as well as spurious segments and loops. All of that is accomplished with only one user-adjustable parameter. The run time of our method ranges from hundreds of milliseconds to less than four seconds on large, challenging datasets, which makes it appropriate for situations where real-time decision making is needed. Experiments on synthetic models as well as on data from real world objects, some of which were collected in challenging field conditions, show that our approach compares favorably to classical thinning algorithms as well as to recent contributions to the field.Comment: 47 pages; IEEE WACV 2018, main paper and supplementary materia

    Extracting 3D parametric curves from 2D images of Helical objects

    Get PDF
    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively

    Computing a Compact Spline Representation of the Medial Axis Transform of a 2D Shape

    Full text link
    We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation. These spline curves are computed by minimizing the approximation error between the input shape and the shape represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.Comment: GMP14 (Geometric Modeling and Processing

    Correcting curvature-density effects in the Hamilton-Jacobi skeleton

    Get PDF
    The Hainilton-Jacobi approach has proven to be a powerful and elegant method for extracting the skeleton of two-dimensional (2-D) shapes. The approach is based on the observation that the normalized flux associated with the inward evolution of the object boundary at nonskeletal points tends to zero as the size of the integration area tends to zero, while the flux is negative at the locations of skeletal points. Nonetheless, the error in calculating the flux on the image lattice is both limited by the pixel resolution and also proportional to the curvature of the boundary evolution front and, hence, unbounded near endpoints. This makes the exact location of endpoints difficult and renders the performance of the skeleton extraction algorithm dependent on a threshold parameter. This problem can be overcome by using interpolation techniques to calculate the flux with subpixel precision. However, here, we develop a method for 2-D skeleton extraction that circumvents the problem by eliminating the curvature contribution to the error. This is done by taking into account variations of density due to boundary curvature. This yields a skeletonization algorithm that gives both better localization and less susceptibility to boundary noise and parameter choice than the Hamilton-Jacobi method
    corecore