849 research outputs found

    Pruning in ordered bagging ensembles

    Full text link
    This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ICML '06 Proceedings of the 23rd international conference on Machine learning, http://dx.doi.org/10.1145/1143844.1143921We present a novel ensemble pruning method based on reordering the classifiers obtained from bagging and then selecting a subset for aggregation. Ordering the classifiers generated in bagging makes it possible to build subensembles of increasing size by including first those classifiers that are expected to perform best when aggregated. Ensemble pruning is achieved by halting the aggregation process before all the classifiers generated are included into the ensemble. Pruned subensembles containing between 15% and 30% of the initial pool of classifiers, besides being smaller, improve the generalization performance of the full bagging ensemble in the classification problems investigated.The authors acknowledge financial support from the Spanish Dirección General de Investigación, project TIN2004-07676-C02-02

    An analysis of ensemble pruning techniques based on ordered aggregation

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. G. Martínez-Muñoz, D. Hernández-Lobato and A. Suárez, "An analysis of ensemble pruning techniques based on ordered aggregation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 245-249, February 2009Several pruning strategies that can be used to reduce the size and increase the accuracy of bagging ensembles are analyzed. These heuristics select subsets of complementary classifiers that, when combined, can perform better than the whole ensemble. The pruning methods investigated are based on modifying the order of aggregation of classifiers in the ensemble. In the original bagging algorithm, the order of aggregation is left unspecified. When this order is random, the generalization error typically decreases as the number of classifiers in the ensemble increases. If an appropriate ordering for the aggregation process is devised, the generalization error reaches a minimum at intermediate numbers of classifiers. This minimum lies below the asymptotic error of bagging. Pruned ensembles are obtained by retaining a fraction of the classifiers in the ordered ensemble. The performance of these pruned ensembles is evaluated in several benchmark classification tasks under different training conditions. The results of this empirical investigation show that ordered aggregation can be used for the efficient generation of pruned ensembles that are competitive, in terms of performance and robustness of classification, with computationally more costly methods that directly select optimal or near-optimal subensembles.The authors acknowledge support form the Spanish Ministerio de Educación y Ciencia under Project TIN2007-66862-C02-0

    A double pruning algorithm for classification ensembles

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-12127-2_11Proceedings of 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010.This article introduces a double pruning algorithm that can be used to reduce the storage requirements, speed-up the classification process and improve the performance of parallel ensembles. A key element in the design of the algorithm is the estimation of the class label that the ensemble assigns to a given test instance by polling only a fraction of its classifiers. Instead of applying this form of dynamical (instance-based) pruning to the original ensemble, we propose to apply it to a subset of classifiers selected using standard ensemble pruning techniques. The pruned subensemble is built by first modifying the order in which classifiers are aggregated in the ensemble and then selecting the first classifiers in the ordered sequence. Experiments in benchmark problems illustrate the improvements that can be obtained with this technique. Specifically, using a bagging ensemble of 101 CART trees as a starting point, only the 21 trees of the pruned ordered ensemble need to be stored in memory. Depending on the classification task, on average, only 5 to 12 of these 21 classifiers are queried to compute the predictions. The generalization performance achieved by this double pruning algorithm is similar to pruned ordered bagging and significantly better than standard bagging

    Two-Stage Bagging Pruning for Reducing the Ensemble Size and Improving the Classification Performance

    Get PDF
    Ensemble methods, such as the traditional bagging algorithm, can usually improve the performance of a single classifier. However, they usually require large storage space as well as relatively time-consuming predictions. Many approaches were developed to reduce the ensemble size and improve the classification performance by pruning the traditional bagging algorithms. In this article, we proposed a two-stage strategy to prune the traditional bagging algorithm by combining two simple approaches: accuracy-based pruning (AP) and distance-based pruning (DP). These two methods, as well as their two combinations, “AP+DP” and “DP+AP” as the two-stage pruning strategy, were all examined. Comparing with the single pruning methods, we found that the two-stage pruning methods can furthermore reduce the ensemble size and improve the classification. “AP+DP” method generally performs better than the “DP+AP” method when using four base classifiers: decision tree, Gaussian naive Bayes, K-nearest neighbor, and logistic regression. Moreover, as compared to the traditional bagging, the two-stage method “AP+DP” improved the classification accuracy by 0.88%, 4.06%, 1.26%, and 0.96%, respectively, averaged over 28 datasets under the four base classifiers. It was also observed that “AP+DP” outperformed other three existing algorithms Brag, Nice, and TB assessed on 8 common datasets. In summary, the proposed two-stage pruning methods are simple and promising approaches, which can both reduce the ensemble size and improve the classification accuracy

    Bagging ensemble selection for regression

    Get PDF
    Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classification, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles

    Using boosting to prune bagging ensembles

    Full text link
    This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters 28.1 (2007): 156 – 165, DOI: 10.1016/j.patrec.2006.06.018Boosting is used to determine the order in which classifiers are aggregated in a bagging ensemble. Early stopping in the aggregation of the classifiers in the ordered bagging ensemble allows the identification of subensembles that require less memory for storage, classify faster and can improve the generalization accuracy of the original bagging ensemble. In all the classification problems investigated pruned ensembles with 20 % of the original classifiers show statistically significant improvements over bagging. In problems where boosting is superior to bagging, these improvements are not sufficient to reach the accuracy of the corresponding boosting ensembles. However, ensemble pruning preserves the performance of bagging in noisy classification tasks, where boosting often has larger generalization errors. Therefore, pruned bagging should generally be preferred to complete bagging and, if no information about the level of noise is available, it is a robust alternative to AdaBoost.The authors acknowledge financial support from the Spanish Dirección General de Investigación, project TIN2004-07676-C02-02
    corecore