182,580 research outputs found

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    lim+, delta+, and Non-Permutability of beta-Steps

    Get PDF
    Using a human-oriented formal example proof of the (lim+) theorem, i.e. that the sum of limits is the limit of the sum, which is of value for reference on its own, we exhibit a non-permutability of beta-steps and delta+-steps (according to Smullyan's classification), which is not visible with non-liberalized delta-rules and not serious with further liberalized delta-rules, such as the delta++-rule. Besides a careful presentation of the search for a proof of (lim+) with several pedagogical intentions, the main subject is to explain why the order of beta-steps plays such a practically important role in some calculi.Comment: ii + 36 page

    Searching for a Solution to Program Verification=Equation Solving in CCS

    Get PDF
    International audienceUnder non-exponential discounting, we develop a dynamic theory for stopping problems in continuous time. Our framework covers discount functions that induce decreasing impatience. Due to the inherent time inconsistency, we look for equilibrium stopping policies, formulated as fixed points of an operator. Under appropriate conditions, fixed-point iterations converge to equilibrium stopping policies. This iterative approach corresponds to the hierarchy of strategic reasoning in game theory and provides “agent-specific” results: it assigns one specific equilibrium stopping policy to each agent according to her initial behavior. In particular, it leads to a precise mathematical connection between the naive behavior and the sophisticated one. Our theory is illustrated in a real options model

    Cooperation between Top-Down and Bottom-Up Theorem Provers

    Full text link
    Top-down and bottom-up theorem proving approaches each have specific advantages and disadvantages. Bottom-up provers profit from strong redundancy control but suffer from the lack of goal-orientation, whereas top-down provers are goal-oriented but often have weak calculi when their proof lengths are considered. In order to integrate both approaches, we try to achieve cooperation between a top-down and a bottom-up prover in two different ways: The first technique aims at supporting a bottom-up with a top-down prover. A top-down prover generates subgoal clauses, they are then processed by a bottom-up prover. The second technique deals with the use of bottom-up generated lemmas in a top-down prover. We apply our concept to the areas of model elimination and superposition. We discuss the ability of our techniques to shorten proofs as well as to reorder the search space in an appropriate manner. Furthermore, in order to identify subgoal clauses and lemmas which are actually relevant for the proof task, we develop methods for a relevancy-based filtering. Experiments with the provers SETHEO and SPASS performed in the problem library TPTP reveal the high potential of our cooperation approaches
    • 

    corecore