349 research outputs found

    The 2D Dependency Pair Framework for conditional rewrite systems. Part I: Definition and basic processors

    Full text link
    [EN] Different termination properties of conditional term rewriting systems have been recently described emphasizing the bidimensional nature of the termination behavior of conditional rewriting. The absence of infinite sequences of rewriting steps (termination in the usual sense), provides the horizontal dimension. The absence of infinitely many attempts to launch the subsidiary processes that are required to check the rule's condition and perform a single rewriting step has been called V-termination and provides the vertical dimension. We have characterized these properties by means of appropriate notions of dependency pairs and dependency chains. In this paper we introduce a 2D Dependency Pair Framework for automatically proving and disproving all these termination properties. Our implementation of the framework as part of the termination tool MU-TERM and the benchmarks obtained so far suggest that the 2D Dependency Pair Framework is currently the most powerful technique for proving operational termination of conditional term rewriting systems. (C) 2018 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), Spanish MINECO project TIN2015-69175-C4-1-R, GV project PROMETEOII/2015/013, and NSF grant CNS 13-19109. Raul Gutierrez is also supported by Juan de la Cierva Fellowship JCI-2012-13528.Lucas Alba, S.; Meseguer, J.; Gutiérrez Gil, R. (2018). The 2D Dependency Pair Framework for conditional rewrite systems. Part I: Definition and basic processors. Journal of Computer and System Sciences. 96:74-106. https://doi.org/10.1016/j.jcss.2018.04.002S741069

    MU-TERM: Verify Termination Properties Automatically (System Description)

    Full text link
    [EN] We report on the new version of mu-term, a tool for proving termination properties of variants of rewrite systems, including conditional, context-sensitive, equational, and order-sorted rewrite systems. We follow a unified logic-based approach to describe rewriting computations. The automatic generation of logical models for suitable first-order theories and formulas provide a common basis to implement the proofs.Supported by EU (FEDER), and projects RTI2018-094403-B-C32,PROMETEO/ 2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). MU-TERM: Verify Termination Properties Automatically (System Description). Springer Nature. 436-447. https://doi.org/10.1007/978-3-030-51054-1_28S436447Alarcón, B., et al.: Improving context-sensitive dependency pairs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 636–651. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_44Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. Inf. Comput. 208(8), 922–968 (2010). https://doi.org/10.1016/j.ic.2010.03.003Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_12Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A∨C{A} \vee {C}-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_4Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-8Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://doi.org/10.1007/s10817-007-9087-9Giesl, J., Arts, T.: Verification of erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001). https://doi.org/10.1007/s002000100063Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_12Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-VGutiérrez, R., Lucas, S.: Function calls at frozen positions in termination of context-sensitive rewriting. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 311–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_15Gutiérrez, R., Lucas, S.: Proving termination in the context-sensitive dependency pair framework. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 18–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_3Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility conditions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNAI, vol. 12167, pp. 416–435. Springer, Heidelberg (2020)Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Log. Program. 1998(1), 1–61 (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002). https://doi.org/10.1006/inco.2002.3176Lucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reasoning 60(4), 465–501 (2017). https://doi.org/10.1007/s10817-017-9419-3Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 15–17 July 2008, Valencia, Spain, pp. 108–119. ACM (2008). https://doi.org/10.1145/1389449.1389463Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebraic Methods Program. 86(1), 236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020). https://doi.org/10.1007/s10817-020-09542-3McCune, W.: Prover9 & Mace4. Technical report (2005–2010). http://www.cs.unm.edu/~mccune/prover9/Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002). https://doi.org/10.1007/978-1-4757-3661-8 . http://www.springer.com/computer/swe/book/978-0-387-95250-5Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 92–106. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61735-3_6Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17(1), 23–50 (1994). https://doi.org/10.1006/jsco.1994.1003Zantema, H.: Termination of context-sensitive rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_6

    Termination of Rewriting with and Automated Synthesis of Forbidden Patterns

    Full text link
    We introduce a modified version of the well-known dependency pair framework that is suitable for the termination analysis of rewriting under forbidden pattern restrictions. By attaching contexts to dependency pairs that represent the calling contexts of the corresponding recursive function calls, it is possible to incorporate the forbidden pattern restrictions in the (adapted) notion of dependency pair chains, thus yielding a sound and complete approach to termination analysis. Building upon this contextual dependency pair framework we introduce a dependency pair processor that simplifies problems by analyzing the contextual information of the dependency pairs. Moreover, we show how this processor can be used to synthesize forbidden patterns suitable for a given term rewriting system on-the-fly during the termination analysis.Comment: In Proceedings IWS 2010, arXiv:1012.533

    SAT Solving for Argument Filterings

    Full text link
    This paper introduces a propositional encoding for lexicographic path orders in connection with dependency pairs. This facilitates the application of SAT solvers for termination analysis of term rewrite systems based on the dependency pair method. We address two main inter-related issues and encode them as satisfiability problems of propositional formulas that can be efficiently handled by SAT solving: (1) the combined search for a lexicographic path order together with an \emph{argument filtering} to orient a set of inequalities; and (2) how the choice of the argument filtering influences the set of inequalities that have to be oriented. We have implemented our contributions in the termination prover AProVE. Extensive experiments show that by our encoding and the application of SAT solvers one obtains speedups in orders of magnitude as well as increased termination proving power

    Automatically Proving and Disproving Feasibility Conditions

    Full text link
    [EN] In the realm of term rewriting, given terms s and t, a reachability condition s>>t is called feasible if there is a substitution O such that O(s) rewrites into O(t) in zero or more steps; otherwise, it is called infeasible. Checking infeasibility of (sequences of) reachability conditions is important in the analysis of computational properties of rewrite systems like confluence or (operational) termination. In this paper, we generalize this notion of feasibility to arbitrary n-ary relations on terms defined by first-order theories. In this way, properties of computational systems whose operational semantics can be given as a first-order theory can be investigated. We introduce a framework for proving feasibility/infeasibility, and a new tool, infChecker, which implements it.Supported by EU (FEDER), and projects RTI2018-094403-B-C32, PROMETEO/2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). Automatically Proving and Disproving Feasibility Conditions. Springer Nature. 416-435. https://doi.org/10.1007/978-3-030-51054-1_27S416435Andrianarivelo, N., Réty, P.: Over-approximating terms reachable by context-sensitive rewriting. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 128–139. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24537-9_12Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1/2), 69–116 (1987). https://doi.org/10.1016/S0747-7171(87)80022-6Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0014969Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Kojima, Y., Sakai, M.: Innermost reachability and context sensitive reachability properties are decidable for linear right-shallow term rewriting systems. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 187–201. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70590-1_13Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Context-sensitive innermost reachability is decidable for linear right-shallow term rewriting systems. Inf. Media Technol. 4(4), 802–814 (2009)Kojima, Y., Sakai, M., Nishida, N., Kusakari, K., Sakabe, T.: Decidability of reachability for right-shallow context-sensitive term rewriting systems. IPSJ Online Trans. 4, 192–216 (2011)Lucas, S.: Analysis of rewriting-based systems as first-order theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 180–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94460-9_11Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Logic Program. 1998(1) (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S.: Using well-founded relations for proving operational termination. J. Autom. Reasoning 64(2), 167–195 (2019). https://doi.org/10.1007/s10817-019-09514-2Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Chitil, O., King, A., Danvy, O. (eds.) Proceedings of the 16th International Symposium on Principles and Practice of Declarative Programming, Kent, Canterbury, United Kingdom, 8–10 September 2014, pp. 111–122. ACM (2014). https://doi.org/10.1145/2643135.2643152Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—Part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020, in press)McCune, W.: Prover9 and Mace4. https://www.cs.unm.edu/~mccune/mace4/Meßner, F., Sternagel, C.: nonreach – a tool for nonreachability analysis. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 337–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_19Middeldorp, A., Nagele, J., Shintani, K.: Confluence competition 2019. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 25–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_2Nishida, N., Maeda, Y.: Narrowing trees for syntactically deterministic conditional term rewriting systems. In: Kirchner, H. (ed.) Proceedings of the 3rd International Conference on Formal Structures for Computation and Deduction. FSCD 2018. Leibniz International Proceedings in Informatics (LIPIcs), vol. 108, pp. 26:1–26:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.26Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002). http://www.springer.com/computer/swe/book/978-0-387-95250-5Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover, New York (2006)Sternagel, C., Sternagel, T., Middeldorp, A.: CoCo 2018 Participant: ConCon 1.5. In: Felgenhauer, B., Simonsen, J. (eds.) Proceedings of the 7th International Workshop on Confluence. IWC 2018, p. 66 (2018). http://cl-informatik.uibk.ac.at/events/iwc-2018/Sternagel, C., Yamada, A.: Reachability analysis for termination and confluence of rewriting. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 262–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_15Winkler, S., Moser, G.: MædMax: a maximal ordered completion tool. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_3

    Decision Procedures for Loop Detection

    Get PDF
    The dependency pair technique is a powerful modular method for automated termination proofs of term rewrite systems. We first show that dependency pairs are also suitable for disproving termination: loops can be detected more easily. In a second step we analyze how to disprove innermost termination. Here, we present a novel procedure to decide whether a given loop is an innermost loop. All results have been implemented in the termination prover AProVE

    Proving Looping and Non-Looping Non-Termination by Finite Automata

    Get PDF
    A new technique is presented to prove non-termination of term rewriting. The basic idea is to find a non-empty regular language of terms that is closed under rewriting and does not contain normal forms. It is automated by representing the language by a tree automaton with a fixed number of states, and expressing the mentioned requirements in a SAT formula. Satisfiability of this formula implies non-termination. Our approach succeeds for many examples where all earlier techniques fail, for instance for the S-rule from combinatory logic

    Proving Confluence in the Confluence Framework with CONFident

    Full text link
    This article describes the *Confluence Framework*, a novel framework for proving and disproving confluence using a divide-and-conquer modular strategy, and its implementation in CONFident. Using this approach, we are able to automatically prove and disprove confluence of *Generalized Term Rewriting Systems*, where (i) only selected arguments of function symbols can be rewritten and (ii) a rather general class of conditional rules can be used. This includes, as particular cases, several variants of rewrite systems such as (context-sensitive) *term rewriting systems*, *string rewriting systems*, and (context-sensitive) *conditional term rewriting systems*. The divide-and-conquer modular strategy allows us to combine in a proof tree different techniques for proving confluence, including modular decompositions, checking joinability of (conditional) critical and variable pairs, transformations, etc., and auxiliary tasks required by them, e.g., joinability of terms, joinability of conditional pairs, etc
    • …
    corecore