10,180 research outputs found

    Adversarial Attacks on Deep Neural Networks for Time Series Classification

    Full text link
    Time Series Classification (TSC) problems are encountered in many real life data mining tasks ranging from medicine and security to human activity recognition and food safety. With the recent success of deep neural networks in various domains such as computer vision and natural language processing, researchers started adopting these techniques for solving time series data mining problems. However, to the best of our knowledge, no previous work has considered the vulnerability of deep learning models to adversarial time series examples, which could potentially make them unreliable in situations where the decision taken by the classifier is crucial such as in medicine and security. For computer vision problems, such attacks have been shown to be very easy to perform by altering the image and adding an imperceptible amount of noise to trick the network into wrongly classifying the input image. Following this line of work, we propose to leverage existing adversarial attack mechanisms to add a special noise to the input time series in order to decrease the network's confidence when classifying instances at test time. Our results reveal that current state-of-the-art deep learning time series classifiers are vulnerable to adversarial attacks which can have major consequences in multiple domains such as food safety and quality assurance.Comment: Accepted at IJCNN 201

    Ceramic composition at Chalcolithic Shiqmim, northern Negev desert, Israel: investigating technology and provenance using thin section petrography, instrumental geochemistry and calcareous nannofossils

    Get PDF
    Technological innovations in ceramic production and other crafts are hallmarks of the Chalcolithic period (4500–3600 BCE) in the southern Levant, but details of manufacturing traditions have not been fully investigated using the range of analytical methods currently available. This paper presents results of a compositional study of 51 sherds of ceramic churns and other pottery types from the Chalcolithic site of Shiqmim in the northern Negev desert. By applying complementary thin section petrography, instrumental geochemistry and calcareous nannofossil analyses, connections between the raw materials, clay paste recipes and vessel forms of the selected ceramic samples are explored and documented. The study indicates that steps in ceramic manufacturing can be related to both technological choices and local geology. Detailed reporting of the resulting data facilitates future comparative ceramic compositional research that is needed as a basis for testable regional syntheses and to better resolve networks of trade/exchange and social group movement

    Metadata enrichment for digital heritage: users as co-creators

    Get PDF
    This paper espouses the concept of metadata enrichment through an expert and user-focused approach to metadata creation and management. To this end, it is argued the Web 2.0 paradigm enables users to be proactive metadata creators. As Shirky (2008, p.47) argues Web 2.0’s social tools enable “action by loosely structured groups, operating without managerial direction and outside the profit motive”. Lagoze (2010, p. 37) advises, “the participatory nature of Web 2.0 should not be dismissed as just a popular phenomenon [or fad]”. Carletti (2016) proposes a participatory digital cultural heritage approach where Web 2.0 approaches such as crowdsourcing can be sued to enrich digital cultural objects. It is argued that “heritage crowdsourcing, community-centred projects or other forms of public participation”. On the other hand, the new collaborative approaches of Web 2.0 neither negate nor replace contemporary standards-based metadata approaches. Hence, this paper proposes a mixed metadata approach where user created metadata augments expert-created metadata and vice versa. The metadata creation process no longer remains to be the sole prerogative of the metadata expert. The Web 2.0 collaborative environment would now allow users to participate in both adding and re-using metadata. The case of expert-created (standards-based, top-down) and user-generated metadata (socially-constructed, bottom-up) approach to metadata are complementary rather than mutually-exclusive. The two approaches are often mistakenly considered as dichotomies, albeit incorrectly (Gruber, 2007; Wright, 2007) . This paper espouses the importance of enriching digital information objects with descriptions pertaining the about-ness of information objects. Such richness and diversity of description, it is argued, could chiefly be achieved by involving users in the metadata creation process. This paper presents the importance of the paradigm of metadata enriching and metadata filtering for the cultural heritage domain. Metadata enriching states that a priori metadata that is instantiated and granularly structured by metadata experts is continually enriched through socially-constructed (post-hoc) metadata, whereby users are pro-actively engaged in co-creating metadata. The principle also states that metadata that is enriched is also contextually and semantically linked and openly accessible. In addition, metadata filtering states that metadata resulting from implementing the principle of enriching should be displayed for users in line with their needs and convenience. In both enriching and filtering, users should be considered as prosumers, resulting in what is called collective metadata intelligence

    Security and Privacy Issues of Big Data

    Get PDF
    This chapter revises the most important aspects in how computing infrastructures should be configured and intelligently managed to fulfill the most notably security aspects required by Big Data applications. One of them is privacy. It is a pertinent aspect to be addressed because users share more and more personal data and content through their devices and computers to social networks and public clouds. So, a secure framework to social networks is a very hot topic research. This last topic is addressed in one of the two sections of the current chapter with case studies. In addition, the traditional mechanisms to support security such as firewalls and demilitarized zones are not suitable to be applied in computing systems to support Big Data. SDN is an emergent management solution that could become a convenient mechanism to implement security in Big Data systems, as we show through a second case study at the end of the chapter. This also discusses current relevant work and identifies open issues.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201
    corecore