5 research outputs found

    On the Security Risk of Cancelable Biometrics

    Full text link
    Over the years, a number of biometric template protection schemes, primarily based on the notion of "cancelable biometrics" (CB) have been proposed. An ideal cancelable biometric algorithm possesses four criteria, i.e., irreversibility, revocability, unlinkability, and performance preservation. Cancelable biometrics employed an irreversible but distance preserving transform to convert the original biometric templates to the protected templates. Matching in the transformed domain can be accomplished due to the property of distance preservation. However, the distance preservation property invites security issues, which are often neglected. In this paper, we analyzed the property of distance preservation in cancelable biometrics, and subsequently, a pre-image attack is launched to break the security of cancelable biometrics under the Kerckhoffs's assumption, where the cancelable biometrics algorithm and parameters are known to the attackers. Furthermore, we proposed a framework based on mutual information to measure the information leakage incurred by the distance preserving transform, and demonstrated that information leakage is theoretically inevitable. The results examined on face, iris, and fingerprint revealed that the risks origin from the matching score computed from the distance/similarity of two cancelable templates jeopardize the security of cancelable biometrics schemes greatly. At the end, we discussed the security and accuracy trade-off and made recommendations against pre-image attacks in order to design a secure biometric system.Comment: Submit to P

    Privacy-aware Security Applications in the Era of Internet of Things

    Get PDF
    In this dissertation, we introduce several novel privacy-aware security applications. We split these contributions into three main categories: First, to strengthen the current authentication mechanisms, we designed two novel privacy-aware alternative complementary authentication mechanisms, Continuous Authentication (CA) and Multi-factor Authentication (MFA). Our first system is Wearable-assisted Continuous Authentication (WACA), where we used the sensor data collected from a wrist-worn device to authenticate users continuously. Then, we improved WACA by integrating a noise-tolerant template matching technique called NTT-Sec to make it privacy-aware as the collected data can be sensitive. We also designed a novel, lightweight, Privacy-aware Continuous Authentication (PACA) protocol. PACA is easily applicable to other biometric authentication mechanisms when feature vectors are represented as fixed-length real-valued vectors. In addition to CA, we also introduced a privacy-aware multi-factor authentication method, called PINTA. In PINTA, we used fuzzy hashing and homomorphic encryption mechanisms to protect the users\u27 sensitive profiles while providing privacy-preserving authentication. For the second privacy-aware contribution, we designed a multi-stage privacy attack to smart home users using the wireless network traffic generated during the communication of the devices. The attack works even on the encrypted data as it is only using the metadata of the network traffic. Moreover, we also designed a novel solution based on the generation of spoofed traffic. Finally, we introduced two privacy-aware secure data exchange mechanisms, which allow sharing the data between multiple parties (e.g., companies, hospitals) while preserving the privacy of the individual in the dataset. These mechanisms were realized with the combination of Secure Multiparty Computation (SMC) and Differential Privacy (DP) techniques. In addition, we designed a policy language, called Curie Policy Language (CPL), to handle the conflicting relationships among parties. The novel methods, attacks, and countermeasures in this dissertation were verified with theoretical analysis and extensive experiments with real devices and users. We believe that the research in this dissertation has far-reaching implications on privacy-aware alternative complementary authentication methods, smart home user privacy research, as well as the privacy-aware and secure data exchange methods

    Efficient Anonymous Biometric Matching in Privacy-Aware Environments

    Get PDF
    Video surveillance is an important tool used in security and environmental monitoring, however, the widespread deployment of surveillance cameras has raised serious privacy concerns. Many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. To identify these individuals for protection, the most reliable approach is to use biometric signals as they are immutable and highly discriminative. If misused, these characteristics of biometrics can seriously defeat the goal of privacy protection. In this dissertation, an Anonymous Biometric Access Control (ABAC) procedure is proposed based on biometric signals for privacy-aware video surveillance. The ABAC procedure uses Secure Multi-party Computational (SMC) based protocols to verify membership of an incoming individual without knowing his/her true identity. To make SMC-based protocols scalable to large biometric databases, I introduce the k-Anonymous Quantization (kAQ) framework to provide an effective and secure tradeoff of privacy and complexity. kAQ limits systems knowledge of the incoming individual to k maximally dissimilar candidates in the database, where k is a design parameter that controls the amount of complexity-privacy tradeoff. The relationship between biometric similarity and privacy is experimentally validated using a twin iris database. The effectiveness of the entire system is demonstrated based on a public iris biometric database. To provide the protected subjects with full access to their privacy information in video surveillance system, I develop a novel privacy information management system that allows subjects to access their information via the same biometric signals used for ABAC. The system is composed of two encrypted-domain protocols: the privacy information encryption protocol encrypts the original video records using the iris pattern acquired during ABAC procedure; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of my framework

    リプレイ攻撃や不正なサーバによる攻撃に耐性のある 秘匿生体認証方式

    Get PDF
    Biometrics authentication is attracting rising attention.Because biological information used in authentication contains a lot of information, it is more difficult to mount impersonation attack than ID/Password scheme. Since biological information contains more critical information, it is necessary to manage biological information securely.To resolve this issue, template protection schemes were proposed, where template protection schemes make it possibleto authenticate users without revealing biological information of template data. Bringer et al. proposed a biometricsauthentication scheme with template protection using error correcting code and homomorphic encryption.The scheme considers the difference between two biometric features as an error, where they are the biometricsinformation in enrollment and authentication process.Furthermore, the scheme uses a XOR homomorphic encryptionto encrypt template data and authenticates users without decrypting their biological information. However, the scheme has two problems. One is nothing that is countermeasure against replay attack, and the other is that selecting parameters is restricted because the scheme uses an error correcting code. In this paper, we propose two schemes that have countermeasures against these problem.One scheme prevents replay attack by adding different values for each session to a query, using DiffieHellman key exchange. The other scheme can set parametersmore flexibility, by using an additive homomorphic encryption without an error correcting code
    corecore