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ABSTRACT OF THE DISSERTATION

PRIVACY-AWARE SECURITY APPLICATIONS IN THE ERA OF

INTERNET OF THINGS

by

Abbas Acar

Florida International University, 2020

Miami, Florida

Professor A. Selcuk Uluagac, Major Professor

In this dissertation, we introduce several novel privacy-aware security applications.

We split these contributions into three main categories: First, to strengthen the

current authentication mechanisms, we designed two novel privacy-aware alterna-

tive complementary authentication mechanisms, Continuous Authentication (CA)

and Multi-factor Authentication (MFA). Our first system is Wearable-assisted Con-

tinuous Authentication (WACA), where we used the sensor data collected from a

wrist-worn device to authenticate users continuously. Then, we improved WACA by

integrating a noise-tolerant template matching technique called NTT-Sec to make

it privacy-aware as the collected data can be sensitive. We also designed a novel,

lightweight, Privacy-aware Continuous Authentication (PACA) protocol. PACA is

easily applicable to other biometric authentication mechanisms when feature vec-

tors are represented as fixed-length real-valued vectors. In addition to CA, we also

introduced a privacy-aware multi-factor authentication method, called PINTA. In

PINTA, we used fuzzy hashing and homomorphic encryption mechanisms to protect

the users’ sensitive profiles while providing privacy-preserving authentication. For

the second privacy-aware contribution, we designed a multi-stage privacy attack to

smart home users using the wireless network traffic generated during the communi-

cation of the devices. The attack works even on the encrypted data as it is only using

vi



the metadata of the network traffic. Moreover, we also designed a novel solution

based on the generation of spoofed traffic. Finally, we introduced two privacy-aware

secure data exchange mechanisms, which allow sharing the data between multiple

parties (e.g., companies, hospitals) while preserving the privacy of the individual in

the dataset. These mechanisms were realized with the combination of Secure Mul-

tiparty Computation (SMC) and Differential Privacy (DP) techniques. In addition,

we designed a policy language, called Curie Policy Language (CPL), to handle the

conflicting relationships among parties.

The novel methods, attacks, and countermeasures in this dissertation were veri-

fied with theoretical analysis and extensive experiments with real devices and users.

We believe that the research in this dissertation has far-reaching implications on

privacy-aware alternative complementary authentication methods, smart home user

privacy research, as well as the privacy-aware and secure data exchange methods.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Threat Models

With the advancements in the technology, our computers and mobile devices have

become our identities as they handle and store very sensitive personal information

such as identity numbers, bank account credentials, email passwords. Similarly,

nowadays, IoT devices (e.g., smart locks, smartwatches) have also become part of

our daily lives, and these devices record our daily activities. The amount of sensitive

user information recorded, handled, and stored by our computers, mobile devices,

and IoT devices is huge. The leakage of this information may result in both serious

security and privacy issues. Therefore, it is more important than ever to protect

these devices with robust security and privacy mechanisms. In this dissertation, we

address three different threats, where the sensitive user information is revealed by

the attacker.

In Part I of the dissertation, we investigate solutions against an attacker who

wants to access our devices by bypassing the existing authentication mechanisms.

Today’s authentication systems mostly rely on passwords. However, many practical

attacks have been demonstrated that the passwords can be either stolen or by-

passed [Dic16, TGC16]. For example, they can be easily stolen via shoulder-surfing

or bypassed via phishing attacks. Specifically, in password-based authentication

systems, the user is verified one time, which does not guarantee that the identi-

fied user is the actual user throughout the login session. In order to strengthen

the current authentication systems, there is a need for alternative complementary

authentication methods. Continuous Authentication (CA) and Multi-factor Au-

thentication (MFA) are two promising solutions. In CA, the user is periodically
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verified throughout the entire session, while in MFA, the user is verified via mul-

tiple independent authentication factors. There are several CA and MFA methods

proposed in the literature; however, there are two issues with the proposed meth-

ods. First, they are either not secure or not practical enough to be deployed in

a real-life applications [AAAU16, AAUA20]. Second, these methods are mostly

based on the biometrics to provide a more convenient and secure authentication.

However, biometric-based systems demand more user information in their opera-

tions, yielding privacy issues for users in biometric-based continuous authentication

systems [ALB+19].

In Part II of the dissertation, we investigate solutions against a nearby attacker

within the range of radio frequency (e.g., WiFi, ZigBee, Bluetooth Low Energy)

to our house, who can sniff and record all the network generated by the pairwise

communication of the smart home devices. Even though this communication is en-

crypted, an attacker can perform a fingerprinting attack, and infer the user activities

occurring at home [AFA+18]. The mechanisms like VPN or TOR do not protect

against such kind of adversary and the solutions like faraday cage is not realistic.

This type of attacker has an advantage of not being detected easily as it is a passive

attacker.

Finally, in Part III of the dissertation, we investigate solutions against an at-

tacker called honest-but-curios attacker, who wants learn the about the user data

shared for genuine purposes. Previous works have shown the benefit of data shar-

ing within distributed, collaborative, and federated learning [DCM+12, SCST17,

APP+18]. However, the hospitals as well as the patient may not want to reveal

their data to third parties. Here, the methods such as Secure Multi-party Com-

putation (SMC) [BDNP08] (e.g., homomorphic encryption [AAUC18], garbled cir-

cuits [H+11]) allow computation of a joint function (e.g., regression function) with-
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out revealing individual input of the parties. However, there are two issues SMC

does not address during the data sharing. First, SMC does not consider the con-

flicting relationships (e.g, politics, regulations) among members. Second, SMC does

not guarantee that the final result of distributed computation would not leak any

information about an individual in a sensitive dataset [EESA+12, NS08, GKS08].

Therefore, privacy of individuals and their data can be easily violated.

1.2 Research Problem

Considering the threats and the issues in the previous section, in this dissertation

we address seven unique but related research problems:

1. A Robust and Usable Continuous Authentication Method: Continuous Au-

thentication (CA) is a good mechanism to re-verify a user identity period-

ically throughout a login session. In the literature, a number of studies

have been proposed for the use of biometrics in continuous user authenti-

cation [PCCB16, FFS17]. However, one of the desired features in CA is non-

intrusiveness [AAUA20]. Physiological characteristics like iris pattern or fin-

gerprint are not applicable in this manner since they can not be extracted

seamlessly. More plausible approaches for CA would be behavioral charac-

teristics [Sea16, ERLM17, WWZJ18] like typing rhythm, gait as they can be

collected without interrupting the user. Therefore, they are ideal candidates

to increase the security of the current systems as an additional authentica-

tion factor rather than a standalone authentication system. Among all be-

havioral biometrics, the most promising results are proposed using keystroke

dynamics [ASL15, WDL+18, CZY+15]. However, in a recent work [TGG13],

the reliability of classical keystroke dynamics is analyzed, and an interface
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was designed to help an attacker so that the attacker can mimic the typing

rhythm of a legitimate user by using the feedback provided by the interface.

Therefore, there is a need for a system, which is both reliable and usable.

2. A Privacy-Aware Biometric-based Continuous Authentication Protocol: In tra-

ditional biometric authentication systems, it is generally assumed that an au-

thentication server and a decision module have access to feature vectors of users

in plaintext form. Even though the sensitive biometric data may be commu-

nicated through secure channels, and it may be stored in encrypted form, the

feature vectors would have to be decrypted during the verification phase. This,

in principle, violates the privacy of biometric data, and the adversaries may be

able to exploit this in their attacks [FDCA11, GR12, BGK+15, FLE14]. Such

vulnerabilities can be prevented in traditional password-based authentication

mechanisms by computing the hash of a password and storing this hash value

instead of the password itself. A matching decision is made by comparing the

two hash values. Here, the use of cryptographic hash functions provides some

level of protection because given the hash value of a string, it is computa-

tionally infeasible to determine the input string as a preimage of that hash

value. However, traditional cryptographic hash functions (e.g., MD5, SHA-2)

cannot be adapted in biometrics because even some slight changes in the in-

put would result in a significant change in the hash function’s output. The

previous studies are either using the cryptographic primitives, which suffer

from high computational overhead and also they have been overlooking and

missing the details of a full protocol. Therefore, there is a need for a complete

privacy-aware biometrics-based continuous authentication protocol.

3. Privacy-Aware Multi-factor Authentication: In a typical MFA system, each

user is verified via the first authentication factor (usually password) along
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with a second or even a third factor such as smartcards [Kum04], finger-

prints [BSSB06], or user’s mouse movements [ZPW11]. MFA solutions based

on physical devices or physiological characteristics depend on the introduction

of specialized hardware, such as a token or a fingerprint reader, which hin-

ders usability and deployability by causing additional cost for manufacturing

and implementation. Alternatively, the more usable (and therefore more likely

to be widely-adopted) MFA solutions are based on users’ behavior; however,

they do little to protect the privacy of the user data as the data needs to be

revealed to the authentication server in plain form. This approach has two

kind of risks. First, the owner of the database server may use it for malicious

purposes (e.g., selling user’s information for economic interest). Second, if an

attacker succeeds in obtaining the database storing the user data, he/she can

masquerade as a legitimate user by crafting required authentication factors.

Therefore, there is a need for a system providing MFA while preserving the

privacy of user data.

4. Smart Home User Privacy: A myriad of IoT devices such as bulbs, switches,

speakers in a smart home environment allows users to easily control the phys-

ical world around them and facilitate their living styles. However, an attacker

inside or near a smart home environment can potentially exploit the innate

wireless medium used by these devices to exfiltrate sensitive information about

the users and their activities, invading user privacy. This allows an adversary

to efficiently aggregate extensive behavior profiles of targeted users. The smart

home devices are usually encrypted using standard protocols like WPA2, in the

case of WiFi, the contents of the exchanged messages or commands are hid-

den. However, the encryption only hides the payload, related meta-data (e.g.,

packet lengths, traffic rate) of the network traffic still leaks some informa-
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tion about the messages exchanged [SSW+02, VČČD15, SFSM13, LXZ+16,

CMSV16, CBS+18]. Some earlier works [SSW08, ARS+17, ARF17] have

shown that it is relatively easy to make some simple inferences such as de-

vice type inference [MMH+17], identifying the user occupancy via detecting

the mode transition between the device activities [CLBR16], or simple device

mode inference [ARS+17]. However, combining such partial information from

different smart home devices to get a more meaningful picture about a user’s

actions or his/her activity profile is challenging. This is because a success-

ful attacker must aggregate information about actions over a longer period of

time from a multitude of smart home devices, which is only feasible if activity

detection and identification can be automated to a large degree to keep the

required effort manageable. Therefore, there is a need for the investigation of

this attack vector and promising countermeasures.

5. Policy-based Secure Data Exchange: Inter-organizational data sharing is cru-

cial to the advancement of many domains including security, health care, and

finance. Previous works have shown the benefit of data sharing within dis-

tributed, collaborative, and federated learning [DCM+12, SCST17, APP+18].

Privacy-preserving machine learning offers data sharing among multiple mem-

bers while avoiding the risks of disclosing the sensitive data (e.g., health-care

records, personally identifiable information) [EESA+12]. For example, Se-

cure Multiparty Computation (SMC) enables multiple members, each with its

training dataset, to collaboratively learn a shared predictive model without

revealing their datasets [MZ17]. These approaches solve the privacy concerns

of members during model computation, yet do not consider the complex re-

lationships such as regulations, competitive advantage, data sovereignty, and

jurisdiction among members on private data sharing. Members want to be
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able to articulate and enforce their conflicting requirements on data sharing.

Therefore, there is a need for a system, where the members can easily specify

their requirements on the data exchanged without compromising the security

and privacy of the data and users.

6. Secure and Differentially Private Computations in Multiparty Settings: Secure

and private computation of statistical models is increasingly used in different

operational settings from healthcare [KHK+16, CAA+19] to finance [BTW12]

and security sensitive applications [FDCB15]. Given the distributed nature

of these applications, security and privacy are mostly achieved by utilizing

Secure Multiparty Computation (SMC). SMC allows distributed parties to

compute a joint function (e.g., regression function) over their private inputs

without revealing those inputs to other parties. Each party learns the final

result, but no other information. However, SMC has a major privacy concern

for a targeted individual as it does not guarantee that the final result of dis-

tributed computation would not leak any information about an individual in

a sensitive dataset [EESA+12, NS08, GKS08]. As such, privacy of individuals

and their data can be easily violated. Therefore, there is a need for a mech-

anism, where individual parties do not see each others’ inputs and further

can not infer their data from the final constructed model. Indeed, combining

SMC with Differential Privacy (DP) could solve this privacy problem as DP

introduces sufficient noise into the final result to prevent any leakage about

a single individual. However, combining SMC with DP is not a trivial task.

Adding noise in a distributed manner may lead to a significant accuracy loss in

the final models, which may cause catastrophic consequences in, for example,

the healthcare domain. Therefore, enabling distributed differential privacy on

local data with differential privacy guarantees on final results is a challenging
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problem and needs a novel mechanism combining SMC and DP to provide

both data privacy and individual privacy.

7. Survey of Homomorphic Encryption Schemes: Legacy encryption systems de-

pend on sharing a key (public or private) among the peers involved in ex-

changing an encrypted message. However, this approach poses privacy con-

cerns. The users or service providers with the key have exclusive rights on the

data. Especially with popular cloud services, the control over the privacy of

the sensitive data is lost. Even when the keys are not shared, the encrypted

material is shared with a third party that does not necessarily need to access

the content. Moreover, untrusted servers, providers, and cloud operators can

keep identifying elements of users long after users end the relationship with the

services. Indeed, Homomorphic Encryption (HE), a special kind of encryption

scheme, can address these concerns as it allows any third party to operate

on the encrypted data without decrypting it in advance. Although this ex-

tremely useful feature of the HE scheme has been known for over 30 years, the

first plausible and achievable Fully Homomorphic Encryption (FHE) scheme,

which allows any computable function to perform on the encrypted data, was

introduced by Craig Gentry in 2009. Even though this was a major achieve-

ment, different implementations so far demonstrated that FHE still needs to

be improved significantly to be practical on every platform. Therefore, many

follow-up works are proposed in the literature to improve the FHE schemes

and it attracted the interest of people from very different research areas in

terms of theoretical, implementation, and application perspectives. There-

fore, there is a need for a study providing a structured way to understand

the state-of-the-art HE schemes and to understand how HE or FHE would

applicable in the provision of privacy in other works in this dissertation.
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1.3 Research Objectives

In this dissertation, we introduced several unique solutions to the research problems

given in Section 1.2. Our objectives for these solutions are sevenfold:

• Objective #1: The proposed novel authentication mechanisms should in-

crease the security of the existing technologies while keeping the usability and

deployment cost minimal.

• Objective #2: The proposed privacy-aware continuous authentication proto-

col should protect the biometrics of the users against both malicious attackers

and curious advertisers while allowing the continuous authentication.

• Objective #3: The proposed privacy-aware multi-factor authentication sys-

tem should protect the user profiles against both malicious attackers and

honest-but-curious advertisers while allowing the authentication of the user

from multiple independent sources.

• Objective #4: While the proposed novel attack on smart home users mech-

anisms shows the feasibility of the multi-stage privacy attacks, the proposed

countermeasure should protect the privacy of the smart home users against

both local and remote adversaries.

• Objective #5: The proposed policy-based secure data exchange method

should allow the members to express their privacy requirements on the data

exchange.

• Objective #6: The proposed differentially private and secure data exchange

method should protect both the data privacy and individual privacy in the

dataset.
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• Objective #7: Our overview of HE schemes should provide an understanding

of the state-of-the-art HE schemes and how HE or FHE would applicable in

the provision of privacy in other works in this dissertation.

1.4 Contributions

With the objectives above in mind, the contributions of this dissertation are as

follows:

WACA: Wearable-Assisted Continuous Authentication. In this work, we in-

troduced a usable and reliable Wearable-Assisted Continuous Authentication (WACA),

which relies on the sensor-based keystroke dynamics and the authentication data is

acquired through the built-in sensors of a wearable (e.g., smartwatch) while the

user is typing. The acquired data is periodically and transparently compared with

the registered profile of the initially logged-in user with one-way classifiers. With

this, WACA continuously ensures that the current user is the user who logged-in

initially. We also tested WACA against powerful attacks, including imitation, sta-

tistical attacks, and insider attackers. For this purpose, we designed a scenario for

the imitation attacks with real participants. On the other hand, we developed three

generic attacking scenarios for the statistical attacks that can also be utilized by

other future continuous authentication studies.

PACA: Privacy-aware Continuous Authentication. In this work, we con-

structed a lightweight, privacy-aware, and secure continuous authentication proto-

col, called PACA. Previous works have been overlooking this and missing the details

of a full protocol. PACA is initiated through a password-based key exchange proto-

col, and it continuously authenticates users based on their biometrics. Moreover, it is

generic in the sense that one can instantiate it using a large class of secure template
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generation and matching algorithms, and biometrics-based authentication systems.

Moreover, we also design an actual system (the system, its full implementation,

and its detailed evaluation) under the proposed protocol: a hybrid (password and

keystroke dynamics), continuous, and privacy-preserving biometric authentication

for utilized and optimized a wearable-assisted continuous authentication mechanism,

and NTT-Sec to handle the real-valued feature vectors while preserving the accu-

racy. The use of PAKE and NTT-Sec allows one to avoid TLS, any certification

authority, verification of certificates, and long term private keys [GGB13, ŠGGB15].

In addition, we performed a detailed security and privacy analysis of the proposed

protocol against eight different well-known attacks [RCB01] for the biometrics-based

authentication methods. We first identify several security requirements. Moreover,

we particularly described detailed attack strategies, and then analyzed the resistance

of our protocol against those attacks. Moreover, we deployed the proposed scheme

and provided extensive results with data collected from users wearing an Apple

smartwatch to assess the security, accuracy, and resource consumption. Particu-

larly, we provided some concrete estimates for the security of the proposed system,

and we report on the timing results, and the false acceptance/rejection rates. Fi-

nally, we also measured the resource consumption on a real computing device (e.g.,

smartwatch).

PINTA: Privacy-Aware Multi-factor Authentication. In this work, we de-

signed a privacy-preserving multi-factor authentication (MFA) system which collects

hybrid user behavior profiles to serve as a second authentication factor along with

the user password as the first. Instead of just focusing on one specific category of user

behavior, like system processes or user’s mouse movements, we integrated features

from several categories to generate a user’s profile. We also adopted fuzzy hashing

and fully homomorphic encryption (FHE) techniques to ensure that a user’s personal
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information is not leaked to servers or a third party. For the experiments, we used a

user profile database derived from several public datasets [BSPvdM12, She12, KM12]

and a dataset we generated. We evaluated the performance of the proposed system

in terms of recall, false positive rate, size of information required for authentica-

tion, system overhead, and resource utilization. Our results show that the proposed

scheme can well detect imposters from legitimate users while protecting user privacy.

Peek-a-Boo: Smart Home User Privacy. In this work, we discovered a novel

multi-stage privacy attack against user privacy in a smart environment. It is realized

utilizing state-of-the-art machine-learning approaches for detecting and identifying

particular types of IoT devices, their actions, states, and ongoing user activities in

a cascading style by only observing the wireless traffic passively from smart home

devices. The attack effectively work on both encrypted and unencrypted commu-

nications. In contrast to earlier approaches, our multi-stage privacy attack can

perform activity detection and identification automatically, without extensive back-

ground knowledge or specifications of analyzed protocols. This allows an adversary

to efficiently aggregate extensive behavior profiles of targeted users. We evaluated

the effectiveness of the novel multi-stage privacy attack with 22 different off-the-shelf

IoT devices utilizing the most popular wireless protocols for IoT. Our experimen-

tal results show that an attacker can achieve very high accuracy (above 90 %) in

identification of the types, actions, states, activities of the devices and sensors. To

protect against this privacy leakage, we also proposed a countermeasure based on

generating spoofed network traffic to hide the real activities of the devices.

CURIE: Policy-based Secure Data Exchange. In this work, we introduced

a policy-based data exchange approach, called Curie, that allows secure data ex-

change among members that have such complex relationships. Members specify

their requirements on data exchange using a policy language (CPL). The require-
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ments defined with the use of CPL form the local data exchange policies of mem-

bers. Local policies are defined separately for data sharing and data acquisition

policies. This property allows asymmetric relations on data exchange. For exam-

ple, a member does not necessarily have to acquire the data that the other mem-

bers dictate to share. By using these two policies, members specify statements of

who to share/acquire and what to share/acquire. The statements are defined us-

ing conditional and selection expressions. Selections allow members to filter data

and limit the data to be exchanged, whereas conditional expressions allow mem-

bers to define logical statements. Another advanced property of CPL is predefined

data-dependent conditionals for calculating the statistical metrics between member’s

data. For instance, members can define a conditional to compute the intersection

size of data columns without disclosing their data. This allows members to define

content-dependent conditional data exchange in their policies. We validated Curie

through an example of real healthcare application used to prescribe warfarin dosage.

A privacy-preserving joint dose model among medical institutions is compiled with

the use of various data exchange policies while protecting the privacy of members’

healthcare records. Finally, we showed Curie incurs low overhead and policies are

effective at improving the dose accuracy of medical institutions.

Achieving Secure and Differentially Private Computations in Multiparty

Settings. In this work, we designed a novel protocol for achieving Secure Multiparty

Distributed Differentially Private (SM-DDP) computations on sensitive data. The

protocol provides the guarantees of both SMC and DP. SMC is provided through

Homomorphic Encryption (HE) [Gen09] while DP is provided via Functional Mech-

anism (FM) [ZZX+12]. An important characteristic of FM is that it injects noise

into the feature matrices (i.e., coefficients of objective function), which can be com-

puted independently by each party in a multiparty computational environment. We
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explored this feature of FM and apply it to linear regression using our SM-DDP

protocol, but it can be applied to the computation of any statistical model function

that allows independent calculation from the local statistics. We show that the

accumulated noise in our protocol is still bounded and convergent by using the in-

finite divisibility property of Laplacian distribution [McN02]. Finally, we evaluated

SM-DDP protocol’s computational efficacy on linear regression using two real-world

datasets. We compared our results with the use of Centralized DP (CDP) in a mul-

tiparty setting. The intuition is that the distributed setting of DP (DDP), which is

proposed in this work, would cause a greater accuracy loss than the typical client-

server setting of SMC systems. However, we showed exactly same trade-off can be

achieved using the SM-DDP protocol. The extensive evaluation results indicate that

the proposed SM-DDP protocol yields minimal computational overhead—less than

a minute for 20 parties with 32 attributes and 10K samples. The individual par-

ties obtain better accuracy than that would be obtained from a single party model.

Finally, SM-DDP is scalable while providing security and privacy guarantees.

Investigation of Practical Usage of Privacy-Aware Technologies In an effort

to better understand the state-of-the-art privacy-aware technologies, as part of this

dissertation, we also investigated the homomorphic encryption technologies. Partic-

ularly, we provided a comprehensive survey of all the main FHE schemes. We also

covered a survey of important PHE and SWHE schemes as they are the first works in

accomplishing the FHE idea and are still popular as FHE schemes are computation-

ally very costly. Furthermore, we included the FHE implementations focusing on

the improvements with each scheme. In addition, we mentioned the challenges and

future perspectives of HE to motivate the researchers and practitioners to explore

and improve the performance of HE schemes and their applications.
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1.5 Ethical Considerations

As the collected data in these works may raise some ethical and privacy concerns, we

acknowledge that our research study with the human subjects was conducted with

the appropriate Institutional Review Board (IRB) approvals (FIU-IRB-16-0296 and

FIU-IRB-18-0443).

1.6 Outline

The rest of this dissertation is organized as follows:

• Chapter 2 describes the related work of the studies in this dissertation.

• Chapter 3 describes the architecture of our wearable-assisted continuous au-

thentication, called WACA.

• Chapter 4 describes the details of our privacy-aware continuous authentica-

tion protocol, called PACA.

• Chapter 5 describes the details of our privacy-preserving multi-factor au-

thentication system called PINTA.

• Chapter 6 describes our multi-stage privacy attack on smart home users as

well the details of our countermeasure against that attack.

• Chapter 7 describes an overview of state-of-the-art homomorphic encryption

schemes.

• Chapter 8 describes our policy-based secure exchange approach.

• Chapter 9 describes our approach to combine the multiparty computation

and distributed differential privacy.
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• Chapter 10 explains our conclusions and the recommended future works that

can be built upon the studies in this dissertation.
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CHAPTER 2

RELATED WORK

In this chapter, we examine the related work of the studies presented in this disser-

tation.

2.1 Wearable-assisted Continuous Authentication

Currently, the most common method used to verify the user periodically depends

on session time-outs. In session time-outs, if the time window is kept too short, the

user’s convenience will be reduced due to frequent interruptions of the session for

authentication. On the other hand, if the time window is set too long, in the case

of a breach, the attacker would have more time on the victim’s system.

In the literature, a number of works have been proposed for the use of biomet-

rics in continuous user authentication [Car03, KJ06, AMSS08, PCCB16, FFS17].

However, one of the desired features in the continuous authentication is trans-

parency. Hard biometrics like iris pattern or DNA are not applicable since they

can not be extracted transparently. In another work [KYSR09], a special mouse

with a fingerprint sensor is proposed. In addition to requiring a custom mouse,

its reliability is also an issue. The ease of counterfeiting fingerprints was shown,

and the fingerprint-based biometrics was easily bypassed [Clu07, Clu13]. Facial

recognition methods may seem a good candidate; however, the liveliness detec-

tion is still an issue to be addressed, and several attacks are possible under prac-

tical conditions [DM09, BCF+13]. In addition, several other biometrics like pulse-

response [MRRT17] or eye movements [ERLM15] are also proposed. However, since

these approaches require special equipment, deployment costs are increasing signif-

icantly.
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Recent suspicions on keystroke dynamics. Among all the biometrics, the

most promising results are proposed using keystroke dynamics and mouse move-

ments [ASL15, WDL+18, CZY+15]. However, in a recent work [TGG13], the relia-

bility of classical keystroke dynamics are analyzed and an interface, called Mimesis,

was designed so that a user can mimic the typing rhythm of another user by using

the feedback provided by Mimesis. In another study [SP13], the statistical attacks

with bots generating synthetic typing patterns are examined for the conventional

keystrokes biometrics. In our work, we test WACA against both these imitation

and statistical attacks using similar configurations presented in these studies. We

show that WACA is secure against the powerful imitation and statistical attacks.

The detailed analysis of these attacks are given in Section 3.5.2.

Inference attacks using smartwatch sensors. Another direction on sensor-

based keystroke research is using the motion sensors of wearables as a side channel

attack to infer some valuable assets like passwords. The main motivation behind

this attack is similar to WACA. Motion sensors will move in the same way with

keystrokes while typing and the wrist rotations and displacement will cause to leak

the keystrokes. This attack is deployed firstly on smartphones [MVBC12, OHD+12,

CC12, ASBS12, XBZ12], and recently on smartwatches [WLRC15, LDW+18]. Re-

stricting access to motion sensors is not a realistic suggestion to defend against this

attack. In our work, we propose a pairing and synchronization session before using

the smartwatch with its paired computer. In this way, an encryption-supported

secure channel can be used to communicate between smartwatch and computer.

Comparative evaluation of WACA. In the literature, there is not a widely ac-

cepted standard framework to compare device authenticators. However, Usability-

Deployability-Security (UDS) framework proposed in [BHVOS12] is a highly ac-

cepted framework for web authentication schemes. To compare our work with its
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Table 2.1: Comparative evaluation of WACA using the UDS framework [BHVOS12]
with continuous authentication alternatives.
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Usability Dep. Security
Password         
Time-out   G#      na   na na
Proximity [CN02]  G# G# G# G#   G# G# na  
Face [Beu14]   G# G# G# G#  G#   G#    
Fingerprint [KYSR09]   G# G#  G#   G#    
Eye-movement [ERLM15]   G# G#           
Keystroke [MR97]   G# G#    G#     
ZEBRA [MMC+14]  G# G# G# G#   G#    G#   G#  
WACA (this work)  G# G# G# G#   G#           
 = offers the benefit; G# = almost offers the benefit; no circle = does not offer the benefit.

alternatives, we remove some of the irrelevant and non-applicable benefits and use

only the relevant ones of the UDS framework. The complete list of benefits can

be found in [BHVOS12]. After also adding three new benefits, we end up with 18

benefits in total. Table 2.1 rates WACA using these 18 benefits. For space, we

cannot compare WACA to all continuous authentication methods proposed in the

literature. Therefore, we choose representatives for each continuous authentication

method.

WACA captures the sensor readings through a smartwatch without interrupting

the user, i.e., unobtrusively. However, unlike time-out or classical keystroke dynam-

ics, it requires an extra channel to collect data, but obviously a smartwatch is a

not a customized hardware, i.e., it is an off-the-shelf device, so we say it partially

supports the benefit of Nothing-to-Carry and since its error is deficient, it also of-
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fers the advantage of Infrequent-Errors. On the other hand, WACA outperforms all

other methods in terms of security benefits. In addition to WACA, eye-movement

based authentication method also seems as secure as WACA. However, WACA’s

performance for usability and deployability is better. For example, WACA offers

much lower error rates, and eye-movement based methods require a specialized eye

or gaze-trackers and the user should be in a certain distance and in front of the eye

tracker which obstructs the usability of the eye-movement based methods. They

are more convenient for challenge-response type authentication methods [SRRM16]

even though they have the capability to provide data continuously and transpar-

ently. In brief, our conclusion from this comparative evaluation shows that WACA

offers better security benefits while keeping the usability at the same level as other

notable methods.

2.2 Privacy-aware Continuous Authentication

In the literature of Continuous Authentication (CA), keystroke dynamics and mouse

movements [BW12, TTY13] are the ones having the most promising results in terms

of usability and deployability as they can work transparently and have almost zero

cost. However, with a recent attack [TGG13], the reliability of classical keystroke

dynamics have become suspicious. The idea of using motion sensors to extract user

behavior is first used in smartphones [FBM+13, ZBHW14, TO13] and later used

for computer users by using smartwatch [AAUA20]. The advantage of the sensory-

based approach is that sensors provide not only one-dimensional timing information

but also some features in other dimensions like the pressure of keystrokes and the

rotation of hand during key pressing. This obstructs the imitation attacks [TGG13]

and statistical attacks [SSCG16] since it requires to mimic the user’s acceleration

and rotation behavior simultaneously in three dimensions.
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Privacy Attacks on Keystroke Dynamics. Even though keystroke dynamics

is considered as a good candidate for continuous authentication and identification

systems, the information that can leak from the collected keystroke data raises

serious privacy concerns. It has been shown that the gender [FDCA11, GR12],

the demographics [BGK+15] or the emotional state [FLE14] of the user can be

predicted from keystroke dynamics. What the user is typing (e.g., password infer-

ence) [SWT01, ZW09] can also be effectively inferred from the keystroke dynamics.

Secure and Privacy-preserving Biometrics. There are three approaches pro-

posed to address security and privacy issues in biometric schemes: biometric cryp-

tosystems (BC), cancelable biometrics (CB), and keyed biometrics (KB). Some of

the key references include [JW99, JS06, DRS04] for BC, [JLG04, TGN06, RCCB07]

for CB, and [BCI+07, BBCdS08, Sto10, BBC+10, BG11] for KB. In addition to

these three main techniques, there are hybrid biometrics (HB), that blend BC, CB,

and multi-factor authentication [BCK08, FAD06]. Some of the above methods have

been used to secure multi-biometric traits simultaneously for improved performance

and security (see [NJ15, NMX+16], and the references therein). These constructions

can also be considered under HB.

Several theoretical and practical attacks (record-multiplicity, hill-climbing, mas-

querade attacks, and brute-force attacks) have been developed on BC and CB, many

of which result in a total break of the system with respect to irreversibility and in-

distinguishability. For attacks on BC and CB, see [SB07, STP09, RU12, WRDI12,

Tam14] and [NNJ10, FLY14], respectively. Several countermeasures have been pro-

posed to guard against these attacks, including hardening with secrets [FAD06,

NNJ07, BA11], hybrid approaches and multi-biometrics [BCK08, RTWB16], em-

ploying encryption or signature schemes [Boy04, BCI+07, BBCdS08, BBC+10, BG11],

and new quantization and alignment methods [TMM15]. Recommended safeguards
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come at the cost of degrading performance and usability, increasing communication

and computational bandwidth to impractical ranges, and introducing secret param-

eters or trusted third parties. These are also the major common problems shared

over HB and KB in general. See [NJ15, NMX+16] for other drawbacks of HB and

KB.

Several cryptographic primitives including Secure Multiparty Computation [BA09,

EHKM11], Verifiable Computation [BCK+15], and Bloom Filters [RBBB14] have

been proposed for the secure biometrics. However, the main drawback of the cryp-

tographic primitives is the computational overhead. Moreover, in addition to cryp-

tographic primitives, the biometric template protection methods such as cancellable

biometrics [ASNM05, KPDD09] and biohashing [RU10] have been proposed for the

secure biometrics. However, Biohashing has been shown as vulnerable to several

attacks [KV10, KCZ+06] and even though cancellable biometrics is more secure,

they do not apply to behavioral biometrics, which is more ideal for continuous au-

thentication.

Secure and Privacy-preserving Continuous Authentication. Although there

is extensive literature on the privacy-preserving biometrics, most of the work is on

physiological biometrics such as fingerprints, iris, etc. However, the physiological

biometrics are not feasible for a continuous authentication mechanism [SLM+16].

A potential solution is to use homomorphic systems [AAUC18] to address privacy

issues in template matching. A solution using a homomorphic system can be im-

plemented with two main approaches. In the first approach, the user generates a

public key-private key pair for HE; the user encrypts his biometric data using his

public key, registers it with the server. At the time of verification, the user queries

the server with his fresh biometric data encrypted under the same public key. The

server uses the public key of the user and computes the encrypted and randomized
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distance between the template and the queried biometric, and sends it to the user.

The user decrypts using his private key and sends the randomized distance back to

the server. The server de-randomizes to recover the actual distance and outputs the

result (accept or reject). This approach requires users to maintain long-term and in-

dividual secret keys, highly interactive with non-trivial computation and bandwidth

requirements. See [SSNS14, SSNS15] for some recent implementations of this ap-

proach. In the second approach, the server generates public-private key pair for HE,

and users encrypt their biometric data under the server’s public key during registra-

tion and authentication. Even though the key generation/storage/decryption and

computations on the encrypted data are performed on two separated independent

components of the server, the server has the ability to decrypt and recover users’

biometric data, whence has to be trusted by all users in the system; see [YSK+13]

for some recent implementations of this approach. Indeed, it has also been shown

that the proposed protocol is vulnerable to biometric template recovery attacks un-

der the presence of even a malicious computational server, which is only one of two

servers [AM14].

2.3 Privacy-aware Multi-factor Authentication

A number of researchers have proposed the design and implementation of MFA sys-

tems [PMZ+11, Ver12, SP12, JY11, ZPW11], with each presenting its own specific

advantages and trade-offs. Knowledge factor (i.e., passwords) is the most ubiquitous

authentication factor. It is widely known that the sole use of passwords has many

weaknesses. Nevertheless, passwords are still in use and are the de-facto standard

[BHOS12]. Thus, to reduce the security risk of the sole use of a knowledge factor,

researchers have added possession factor and identity factor to authentication sys-
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tems. MFA systems using passwords along with a possession factor are commonly

found in electronic commerce and online banking. Security tokens, also called One-

Time-Password (OTP) tokens, is one of the most commonly-used possession factor,

which generates a pseudo-random number at pre-determined intervals (e.g., RSA

SecurID[AUT12] and VeriSign Security Token[Ver12]). Additionally, these cards

serve as an additional authentication factor, especially in corporate network envi-

ronments. For instance, in [Kum04], Kumar proposed a secure remote user authen-

tication scheme with smart cards for corporate networks. Unfortunately, an MFA

system with a possession factor usually depends on the distribution of some spe-

cific device, which is cumbersome and not user-friendly. Besides, the introduction

of physical devices may pose further security risks if the devices are lost, stolen or

replicated without the knowledge of the legitimate user. Czeskis et al. [CDK+12]

first consider the usability of an MFA system with a possession factor by propos-

ing authentication through opportunistic cryptographic identity. Nevertheless, their

proposed scheme requires the presence of the user’s phone, which limits the usability

of the system.

Finally, authentication via an identity factor is also a well-studied area of re-

search. Identity factors are further categorized as either physiological biometrics or

behavioral characteristics [YG08, SP12]. Physiological biometrics, such as finger-

prints, iris, and face, have already drawn considerable attention in academia and

have been implemented widely in industry [BSSB06]. Behavioral biometrics, such

as mouse movements, keystroke dynamics [SO19, TCCL14, KDPP16], graphical

passwords, though not widely utilized, have also gained popularity in the research

community [JY11]. Similar to MFA systems with possession factors, MFA systems

with physiological biometrics suffer from relatively low usability and deployability

due to the implementation cost of biometrics recognition devices. Meanwhile, the
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Table 2.2: Comparative evaluation of PINTA .

Security Privacy Usability Low Deployment Cost
Password-only G# na  G#
2FA G# G#  
Czeskis et al. [CDK+12] G# G#  
Sujithra et al. [SP12]  
Bhargav-Spantzel et al. [BSSB06]   
PINTA (this work)1     
 = offers the benefit; G# = almost offers the benefit; no circle = does not offer the benefit.

downside of using behavioral characteristics is that the system may induce relatively

low authentication accuracy and large system overhead [ZPW11]. To the best of

our knowledge, no consideration has been given to the privacy issue when authenti-

cating based on user behavior. This is critical, given that the validity of the specific

user characteristics shared with a site will likely significantly outlast the period of

time for which the site’s services are needed. That is, the shared characteristic is

not a mere pseudonym, but a characteristic that can identify a user for years to

come. Therefore, our goal in this work is to develop a privacy-preserving multi-

factor authentication system based on passwords along with hybrid user profiles,

that considers usability, privacy, and deployment cost.

Comparative evaluation of PINTA. In Table 2.2, we perform a comparative

evaluation of our proposed scheme in this work, PINTA, where we compare PINTA

with its alternatives in terms of the benefits offered by the schemes. As can be seen

from the Table 2.2, PINTA offers more benefits than its alternatives.

2.4 Smart Home User Privacy

Identification using the encrypted network traffic . The meta-data (e.g.

MAC, traffic rate) of encrypted network traffic triggers possible threats including

unintentional disclosure of the content or user. There is an extensive literature in
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the identification of the content from the encrypted network traffic. For example,

web page identification [SSW+02], web user identification [LL06], protocol identifi-

cation [WMM06] are some of the research on the identification using the encrypted

traffic. Not only identification attacks, but also the countermeasures have been

studied in several studies [DCRS12, CZJJ12].

Smartphone Fingerprinting. Recently, this research has been extended to smart-

phone users. For example, Conti et al. [CMSV16] showed a way of identifying user

action on Android apps and Taylor et al. [TSCM16] presented their work on the

fingerprinting of apps from an encrypted network of the smartphone. In addition,

[SFSM13] fingerprints the smartphones using the network traffic captured generated

from the popular applications such as Facebook, WhatsApp. Finally, in [AHM+15],

Ateniese et al. showed a new adversary model that can infer the location of the user

from the encrypted network traffic.

Fingerprinting Methods. In all the aforementioned studies, either statistical

techniques [VČČD15] or machine learning methods [CMSV16] were used to infer

different sensitive information about the user and the context. Even ML has been

used for the task of identification such as user, device, or website identification, in

none of these studies, the attacks are timing-based as we have in our work.

IoT Fingerprinting. So far, in all the aforementioned studies the results showed

that the used methods are efficient and the threat is real, but the threat was limited

to the web and online privacy of the user. Now with the emergence of IoT, it has

been extended to every part of our daily lives and, with this, threats and countermea-

sures have also evolved. The number of studies on the IoT fingerprinting through the

network traffic has been increasing every day. Many studies have investigated the

device type identification problem, where it has been sometimes proposed for both

attacking [MMH+17, SBZD18, BTB17, DLT+19, SECK19] and improving the secu-
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rity of smart home platforms [OMM+19, OER19, BEM19]. Moreover, some other

works [CLBR16, ARF17, ARS+17, AHR+19, JFF19, TVMD20, RDC+19] worked

on the device activity (event) inference problem, where the phrases device activity

inference and user activity inference sometimes have been used interchangeably. In

our work, we refer to the device activity (event) as the activity inferred from only

one device. Even though sometimes the device activity and user activity would

be the same thing (e.g., ”coffee maker is ON” is the same as ”the user is making

coffee”), sometimes information from multiple devices is needed to infer one user

activity correctly (e.g., see Figure 6.4). We differentiate those two types of activities

and provide a more generalized activity types in the fourth stage of our attack when

we are modeling the user activities using HMM in Section 6.5.8.

Difference from existing work. Our work differs from the aforementioned studies

in several ways: First, we are proposing a comprehensive method of end-to-end

attack to infer the on-going user activities in a cascaded manner, where the previous

studies have focused on only one stage of the attack. Note that putting all the

different attack mechanisms and executing them successfully is a non-trivial task.

Second, we are proposing the use of HMM for user activity modeling, where the

device activities from multiple devices have been used to infer user activities. Last

but not least, for the analysis of our attack, we performed experiments using the

devices with WiFi, ZigBee, and BLE, where most of the previous studies have

focused only on one of those wireless protocols.

2.5 Survey of Homomorphic Encryption Schemes

Like our work in this dissertation, there are similar useful surveys in the literature.

In fact, unfortunately, some of the surveys only cover the theoretical information of
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the schemes as in [PPP+14, AS14] and some of them are directly for expert read-

ers and mathematicians as in [Vai11, Sil13, Gen14]. Compared to these surveys,

our survey has a broad reader perspective including researchers and practitioners

interested in the advances and implementations in the field of HE, especially FHE.

Furthermore, while the survey in [AMFF+13] only covers the signal processing ap-

plications, other in [HP14] covers a few FHEs on only cloud applications. Since

our survey is not limited to specific application areas, we do not articulate these

specific application areas in detail but we list the theory and implementation of

all existing HE schemes, which can be used in possible futuristic application areas

with recent advancements. After [FG07] and [Aki09], many HE schemes were in-

troduced. Compared to these useful surveys, our survey focuses on the most recent

HE schemes, since most of the significant improvements are introduced recently

(after 2009). Although [MOO+14] is one of the most recent surveys, it focuses on

the hardware implementation solutions of FHE schemes. This survey is not lim-

ited to hardware solutions, as, in addition to hardware solutions, it covers software

solutions of implementations as well in the implementation section. After [Wu15],

several new FHE schemes, which improves FHE in a sufficiently great way as to be

worthy of attention, were proposed in the literature. Finally, it is worth mentioning

that [ABC+15] provides a systematic explanation of the new terminology related to

FHE and [AKP13] provides security and a characterization of all existing group ho-

momorphic encryption schemes, where they do not present all the HE schemes and

their implementations in detail. Compared to these useful prior works, nonetheless,

our survey is intrinsically different from the aforementioned surveys.
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2.6 Policy-based Privacy-aware Secure Data Exchange

Policy has been used in several contexts as a vehicle for representing configuration of

secure groups [MP06], network management [RJR+16], threat mitigation [FDCB15],

and access control [DZC+16]. These approaches define a schema for their target

problem and do not consider the challenges in secure data exchange. In contrast,

Curie defines a formal policy language to dictate the data exchange requirements

of members and enforces the agreement in collaborative ML settings.

On the other hand, secure computation on sensitive proprietary data has re-

cently attracted attention. Federated learning [TBA+19, SCST17], anonymiza-

tion [EESA+12], multi-site statistical models [Dan15], secure multi-party computa-

tion [BCD+09], and secure and differentially-private multi-party computation [ACA+17]

have started to shed light on this issue. Such techniques have been used both for

training and classification phases in deep learning [SS15], clustering [GLN13], and

decision trees [BPTG15]. To allow programmers to develop such applications, secure

computation programming frameworks and languages are designed for general pur-

poses [HKoS+10, RHH14, O+16, BKLS18, EESA+12]. However, these approaches

do not consider complex relationships among members and assume members share

their all data or nothing. We view our efforts in this work to be complementary

to much of these works. CPL can be integrated into these frameworks to establish

partnerships and manage data exchange policies before a computation starts.
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2.7 Secure and Differentially Private Computations in Mul-

tiparty Settings

There have been many works on the secure computation of linear regression over

distributed databases [KLSR05, DHC04, KLSR09, SKLR04, HFN11]. In these, the

threat model is considered as a third party that does not have access to data,

but curious about it. However, one of the parties may want to release the model

function after computing function securely, which still poses threats to the indi-

viduals [NS08, GKS08, EESA+12]. DP copes with this problem as it injects a

certain amount of noise to the results of the queries to mask the individuals in

the database. Indeed, there have been different works about the DP [DKM+06,

DMNS06, Dwo08, MT07] and particularly about differentially private linear regres-

sion [CMS11, BST14, DJW13, F+14, JT13, ZZX+12, STU17]. However, these works

consider DP without SMC. Although they are useful, they only provide privacy guar-

antees that the output of queries does not carry information about the individuals.

Approaches combining SMC and DP to provide both individual-level privacy and

secure computation would be more secure. However, combining DP and SMC is not

trivial; indeed, it is a rather challenging task since the application of centralized

DP just after SMC in client-server settings would leak the model to an untrusted

data collector, which results in a privacy violation of individuals in the database.

Applying distributed DP directly on the local data held by the parties is more secure,

but if each user independently injects noise randomly, it may lead to an excessive

or uncontrollable amount of accumulated noise at the data collector end. Recent

works focused on combining SMC and DP [GXS13, CA13, SCR+11], but none of

them focused on linear regression. As pointed in [ZZX+12], the main reason behind

this is that the regression analysis involves an optimization problem, which makes

30



it harder to control the required amount of noise, and if the data is also distributed

among parties, that makes it much more difficult to control the privacy-accuracy

trade-off introduced by DP. In another relevant work [PRR10], a combination of

SMC and DP is proposed for aggregate classifiers. However, this approach injects

the noise to the optimum model parameter. This resulted in excessive noise in the

global model and significant loss in the accuracy. Particularly, the experimental

evaluation shows that when the classifier is locally trained, the error rate obtained

from locally trained classifiers is higher than the optimum error rates that could be

obtained from a centralized approach. However, in our work, we take a different

approach from this work. We deploy FM [ZZX+12], which adds noise to local

statistics, which provides the same model as the centralized approach. Lastly, even

though a similar idea is proposed in [AHPW15], it is not analyzed in detail.
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CHAPTER 3

WACA: WEARABLE-ASSISTED CONTINUOUS

AUTHENTICATION

3.1 Introduction

The majority of the current user authentication methods rely on password authen-

tication. However, password authentication methods are subject to many secu-

rity drawbacks [BHvOS15, GU13]. Many practical attacks have been demonstrated

that the passwords can be either stolen or bypassed [Dic16, TGC16]. To mitigate

these threats, Multi-Factor Authentication (MFA) methods were proposed [Dis17,

SKH+19, ALB+19]. In MFA, the user credentials are checked from two or more in-

dependent sources, and even if the attacker steals one factor, it would still have

to overcome the burden of other factors. Though, whether it is one-factor or

MFA [ALB+19], a one-time login process does not guarantee that the identified

user is the real user throughout the login session. Even if it is a legitimate insider

who has been authorized once, a forever access is provided in most cases not to

interrupt the current user.

An authentication mechanism, which re-verifies the user periodically without

breaking the continuity of the session, is vital [Goo16]. For example, users may

share their passwords with family members, friends, colleagues, or an already-

authenticated user may walk away without locking his/her computing platform (e.g.,

laptop) for a short time or may intentionally hand it to a non-authenticated co-

worker trusting that s/he will not perpetrate anything nonsensical or malicious or

a malicious former employee or disgruntled worker may want to use his/her former

privileges. In all these cases, as long as the original login session is actively used,
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there is no mechanism to verify that the initial authenticated user is still the user

in control of the computing environment.

In this chapter, we introduce a novel Wearable-Assisted Continuous Authentica-

tion framework called WACA, where a wearable device (e.g., smartwatch) is used

to authenticate a computer user continuously utilizing the motion sensors of the

smartwatch. Specifically, WACA uses sensor-based keystroke dynamics, where the

typing rhythm of the user is captured by the motion sensors of the smartwatch worn

by the user. In essence, keystroke dynamics is one of the behavioral biometrics that

characterizes the users according to their typing pattern. Note that most conven-

tional keystroke-based authentication schemes in the literature [TTY13] have used

dwell-time and flight-time as unique features of the users. These features are di-

rectly obtained by logging the timing between successive keystrokes. However, in

WACA, the feature set is richer and more flexible since 6-axis motion sensor data

can provide not only timing information, but also the key-pressing pressure, hand

rotation, and hand displacement, etc. Our feature set consists of 14 different sensory

features from both time and frequency domains. These features are applied to 6-

axis motion sensor data, obtaining 84 features in total, jointly considering the 6-axis

data. Finally, different distance measures are used to compare the registered and

the unknown profile of the user as it was shown that they performed well in similar

contexts [KM09a, SPW13]. Also, in another work [MMC+14], users are classified

according to the sequence of interactions (e.g., typing, scrolling), where the user

wears a bracelet with motion sensors and radio. However, that work [MMC+14] has

been shown as insecure in another work [HSU+16]. As explained, our work differs

from other works in several ways to tackle those flaws and strengthen our design.

We tested the performance, efficiency, and security of WACA with more than

thirty real users and data collected from them. We specifically evaluated WACA in
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(a) (b)

Figure 3.1: (a) The reference coordinate system for accelerometer and gyroscope
sensors. (b) A sample raw data collected from the accelerometer of the smartwatch
and keystrokes detected by using peak detection methods while typing the word
”smartwatch”.

terms of three metrics: (i) How accurately can it authenticate the genuine users and

lock out the and impostor users? (ii) How fast can it detect an impostor? (iii) How

accurately can it identify an impostor from its typing pattern? Moreover, we also

evaluated the robustness of our proposed method against powerful attacks, includ-

ing, imitation [TGG13, HSU+16], statistical [SP13, SSCG16], and insider attacks.

3.2 Design Rationale: Why Should it Work?

In this section, we study how motion sensors of a smartwatch are impacted when

typing on a keyboard and see if the data can be used to identify users. Particularly,

we analyze a case that a user wears a smartwatch and types on a qwerty-type built-

in keyboard of a computer. Our goal is to collect keystroke information from the

built-in motion sensors (i.e., accelerometer and gyroscope) of the smartwatch during

the typing activity. To collect smartwatch sensor data, we developed an Android

Wear app that records the raw sensor readings from the motion sensors.
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Figure 3.2: Comparison of two different users’ (a) accelerometer (b) gyroscope read-
ings while typing the same text.

In our experiments, we used linear acceleration composite sensor data, which

combines the data of accelerometer and gyroscope to exclude the effect of gravity1.

Note that the accelerometer and gyroscope sensors provide three-dimensional sensor

data, where the reference coordinate system associated with the sensors are illus-

trated in Figure 3.1a. As z-axis of the accelerometer sensor is directly affected by

the key up-down movements of a user while typing, the most significant changes are

observed in the z-axis. Therefore, the z-axis of the data provides the best informa-

tion for keystroke features such as holding time, pressing pressure, etc. Moreover,

another observation is that even if the device is placed flat on a desk, the sensors

generate a certain level of noise, which needs to be removed by filtering, as explained

later.

Sample data in Figure 3.1b was acquired from the z-axis of the accelerometer

while typing the word “smartwatch”. It can be seen how the value of the accelerom-

eter makes peak points. As the acceleration through the gravity corresponds to the

going down of the accelerometer, the peak points in the figure correspond to the

keystrokes in the typing activity. While the amplitude of the peak is related to how

strong the key press is, the width of the peaks is associated with how long the key

1For brevity, we use acceleration to refer to the linear acceleration.
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Figure 3.3: Comparison of the same user’s sensor data over two different time in-
tervals with (a) accelerometer, (b) gyroscope.

is pressed. These are simple statistics that can be used to identify users. These and

other features will be further analyzed in detail in Section 3.4.

Moreover, we conducted two more simple experiments using the accelerometer

and gyroscope data on the smartwatch, and we made the following two observations:

• Observation 1: Different users exhibit different patterns even if they type the

same text.

In this experiment, we compared the data collected from two different users

while typing the same text. Figure 3.2 presents the sensor data of the two users’

accelerometer and gyroscope data for a given time interval. The distribution of the

accelerometer data in Figure 3.2a shows clear differences such as the magnitude of

peaks, inter-arrival time of peak points, the width of peaks, etc. On the other hand,

the gyroscope sensor measures the rotation of the watch. As seen in Figure 3.2b,

the number of peaks or the magnitude of the peaks are different for different users;

so these features are viable candidates to recognize different users.

• Observation 2: Same user follows similar patterns over different time intervals

even while typing different texts.
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In the second experiment, the data was collected from the same user over two

different time intervals corresponding to the different texts, and the plots are given

in Figure 3.3. As seen in Figure 3.3a, the amplitudes and widths of the peaks are

similar in magnitude, but with a phase shift, meaning leading or lagging. On the

other hand, the same leading or lagging of similar shapes can also be seen in the

gyroscope data in Figure 3.3b.

These two observations justify the rationale that keystroke dynamics obtained

from smartwatch accelerometer and gyroscope sensors can differentiate different

users as classical keystroke dynamics and the same users can be detected over dif-

ferent times even while typing different texts. Although these are just preliminary

observations, our framework will be further tested and evaluated with extensive

experiments using real user data in Section 3.5.

3.3 System Model

In this section, we explain design goals, our assumptions, and the adversary model.

Design Goals: In WACA, our design goals is similar to the ones given in [PPJ03]:

Our system should be universal (i.e., the biometric features exist for everyone),

unique (the features are specific for everyone), permanent (the biometric features

always exist), transparent (the system works without interrupting the user), contin-

uous (the system should provide continuous user data), and accurate (the system

works with low error rate). WACA achieves the first five goals by its design and the

accuracy is tested in Section 3.5.

Assumptions: For WACA, the following assumptions are considered:

• We assume that the user wears a smartwatch, which is equipped with motion

sensors and either Bluetooth or WiFi. We also assume that an app to collect
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the motion data is already installed on the smartwatch, and it is paired with

the computer that will be authenticated. For our work, we built a custom

Android Wear app to collect and process the sensor data.

• We assume that by pairing devices, a secure communication channel is al-

ready established between the computer and smartwatch as well as between

the computer and the remote or local authentication server. This secure com-

munication channel should keep the sensor data secure in both transitions and

at rest.

• The WACA framework acts as a complementary second-factor, and it has the

flexibility to work any first-factor authentication system, and it is assumed

that the system has already a first authentication factor. The first factor

could be one of the password-, token-, or biometric-based systems. Note that

the first factor of authentication is beyond the scope of this work.

Adversary Model: The primarily considered adversary model is an attacker who

somehow bypassed the first factor (e.g., password, token) of the authentication sys-

tem and it has physical access to the computing terminal. The attacker is likely

to be an insider or co-worker, but it can also be an outsider, just passing by the

victim’s computer. Attacker’s goals can include, but not limited to, trying to get

some important information from the victim’s computer, taking action on behalf of

the victim, or trying to get access to the assets that s/he does not have permission

(i.e., privilege abuse). More specifically, we consider the following attack scenarios

by considering WACA is deployed in a real-world system:

• Attack Scenario 1: The victim is one of the employers and forgets to lock his

computer and an outsider (e.g., a mail courier) who is just passing through

the office tries to get access to the victim’s computer. In this scenario, if
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the attacker is not aware of WACA, s/he will attempt to use the victim’s

computer. If the attacker is aware of WACA, s/he will first look for the

victim’s smartwatch and then try to keep the system logged in.

• Attack Scenario 2: We consider the attacker can also be a malicious insider and

thereby the attacker also has a registered smartwatch, but its typing profile

is registered together with its username. This type of attacker tries to get

access to the system’s assets that s/he does not have permission (i.e., privilege

abuse). In this scenario, the attacker watches its victim (e.g., supervisor) for a

proper timing that its victim leaves the computer unlocked for some time to go

to lunch or to get coffee, etc. (aka lunchtime attack [ERLM15]). The attacker

can either try to bypass the system via providing data from his smartwatch

or can try to use the victim’s smartwatch somehow obtained (e.g., can steal it

or victim can leave it behind).

• More Powerful Adversaries: Furthermore, a powerful adversary can be aware

of WACA and try to defeat it using special tools and skills by imitating legiti-

mate users [TGG13, HSU+16] or launching statistical attacks [SP13, SSCG16].

This powerful adversary (insider or outsider) can be a human or a trained bot.

In imitation attacks, the attacker wears the victim’s smartwatch either via af-

ter stealing it, or the victim can leave it behind for a while and the attacker

can try to impersonate the victim. On the other hand, the statistical attack

is more complex and requires special tools and skills. Hence, WACA also

considers these powerful attack scenarios in its adversary model.

The security evaluation of these attack scenarios and how WACA is robust

against insiders, imitators, and statistical attackers are explained more in Sec-

tions 3.5.1 and 3.5.2.
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Figure 3.4: WACA framework architecture and key components.

3.4 WACA Architecture

In this section, we present the details of the WACA. WACA is a typing-based

continuous authentication system using the accelerometer and gyroscope sensors of

a smartwatch. WACA framework is complementary to the first-factor authentication

mechanisms, and it is flexible to work with any first factor.

3.4.1 Overview

WACA consists of four main stages: Preprocessing, Feature Extraction, User Pro-

filing, and Decision Module. These stages, which are shown in Figure 3.4, work as

follows:

• First, the raw sensor data is acquired from a smartwatch (1) through an app

installed on the watch. Then, the raw data is transmitted to the computer

through a secure wireless channel, and the rest of the stages are performed on

the computer except that Authentication Server (AS) is located in a trusted

place.
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• As the collected data includes a certain level of noise, in the preprocessing

stage, the raw data is cleaned up by filtering (2) and transformed into a proper

format for the next stages.

• Then, incoming data is used to extract a set of features (3). This set of

features, namely feature vector, represents the characteristics of the current

user profile.

• In the enrollment phase (9), the created feature vector is stored in the AS.

• In the verification phase (4), the queried user profile is dispatched from the

AS to the decision module (10, 11).

• The decision module computes a similarity score between the returned profile

and the provided profile for the current user to make a binary authentication

decision (match/no match). If the decision is a no match (5), then the user’s

access to computing terminal will be suspended, and the user will be required

to re-authenticate using the primary authentication method (e.g., password).

• However, when the decision is a match (6) then the user’s access will be main-

tained. The profile of the current user in the AS will be updated after the

correct match of the user profile (7). In WACA, this update frequency is a

system parameter and can be set by the admin in the security policy. An

optimum value of this parameter can be set after experimenting with different

values in a real-world implementation. In this way, the user profile will be

kept up-to-date over time.

• Whenever a typing activity is initiated on the keyboard of the computer,

the smartwatch will be notified (8) again by the terminal to start over the

authentication process continuously.

In the following subsections, we explain the details of WACA and its key stages.
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3.4.2 Data Collection

In WACA, data collection refers to capturing sensor readings from the user’s smart-

watch through a secure wireless communication channel (i.e., via WiFi or Blue-

tooth). An app is installed on the smartwatch to listen to the physical sensors.

Then, the raw sensor data is transmitted to the computer through a secure commu-

nication channel.

Each row of the collected raw data of accelerometer is represented in the format

of ~acc =< ta, xa, ya, za > and gyroscope is represented as ~gyro =< tg, xg, yg, zg >,

where t stands for timestamps and x, y, z represent the different axis values of the

accelerometer and gyroscope sensors. Each of t, x, y, and z is stored as a different

vector. The length of the vectors directly depends on the sampling rate of the sensors

and the time interval of the data collection. In WACA, the parameter sample size

refers to the length of these vectors, and it is set as a configurable parameter while

the parameter sample rate is a constant system parameter that is characterized by

the wearable device and app.

3.4.3 Preprocessing

In WACA, preprocessing stage refers to the preparation of raw sensor readings for

the next stages. It consists of cleaning and transformation of the raw data. In the

cleaning part, the noise is removed. To remove the effect of the noise from data,

we apply M-point Moving Average Filter (MAF), which is a simple low-pass filter

and it operates by taking the average of M neighbor points and generates a single

output. M-point filtering in equation form can be expressed as follows:

ẏ[i] =
1

M

M−1∑
j=0

ẋ[i+ j], (3.1)
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where ẋ is the raw sensor data, ẏ is the new filtered data, and i indicates the

current sample that is averaged. The filtered data becomes smoother than the raw

data without altering the value at that point.

After filtering the noise, the data is transformed into appropriate forms for the

next stage. Particularly, different types of sensor data are separated according to

an assigned ID number during the sensor registration and then x, y, and z axes of

the sensor values are recorded as different vectors e.g., ~xa =< xa
1, ..., xa

n > and

~xg =< xg
1, ..., xg

n > for a profile of n samples.

3.4.4 Feature Extraction & User Profiling

In WACA, Feature Extraction (FE) refers to the transformation of the time series

raw data into a number of features. In order to create the feature vector, each

feature is computed using the data vectors. As an example, the first feature is

calculated from a function f , i.e., f1 = f(xa, ya, za, xg, yg, zg) and the second feature

is calculated from another function g, i.e., f2 = g(xa, ya, za, xg, yg, zg) etc. Then,

the final feature vector ~f =< f1, f2, ..., fn > is generated using all the calculated

features.

As each element of the feature vector has different ranges, some of the features

can be dominant in the distance measurement. To prevent this and create a scale-

invariant feature vector, we apply normalization to the feature vector to map the

interval [xmin, xmax] into the unit scale [0,1]. We formulate this linear normalization

process in WACA as follows:

xnew =
x− xmin

xmax − xmin
, (3.2)

where xmin and xmax are the minimum, and maximum value of the features of the

user’s enrolled templates.
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Table 3.1: Feature set extracted from sensor data in WACA.

Domain Feature Length

Time

Mean,
Median,
Variance,

Average Absolute Difference of Peaks,
Range,
Mode,

Covariance,
Mewan Absolute Deviation (MAD),

Inter-quartile Range (IQR),
Correlation between axes (xy, yz, xz),

Skewness,
Kurtosis

12 ∗ 6 = 72

Frequency
Entropy,

Spectral energy
2*6=12

Total # - 84

After generating the final feature vector ~f , in the user profiling stage, a user

profile ~p is generated by adding the user ID and start and end timestamps of the

data sample, i.e., ~p =< userID, tstart, tend, ~f >. If the user is in the enrollment

phase, this profile is transmitted to the AS to be stored in a database. Finally, if

the user is unknown, and a typing activity notification comes from the computer,

the profile is passed to the Decision Module.

The feature set used in our framework is presented in Table 3.1. These features

were chosen as they performed well in similar contexts [KM09a, SPW13].

3.4.5 Decision Module

The last stage in WACA is the decision module. The task of this stage is classifying

the user as authorized or unauthorized for given credentials entered during the initial

login. For authentication, we use distance measures. The distance measure methods

simply calculate the distance between two vectors or data points in a coordinate
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plane. It is directly related to the similarity of compared time-series data sets. The

most widely used distance measure is Euclidean Distance. It is actually just the

distance between two points in vector space and is the particular case of Minkowski

Distance, which is expressed as follows:

distance(~x, ~y) = (
n∑
i=1

(xi − yi)p)
1
p , (3.3)

where ~x = (x1, x2, ..., xn) and ~y = (y1, y2, ..., yn) are the set of sensor observations to

be compared. If p = 2, it is Euclidean distance and has been extensively used in the

keystroke-based authentication methods. WACA calculates the distance and returns

the result by comparing it with a configurable predetermined threshold value (i.e.,

genuine if distance < threshold, impostor if distance ≥ threshold), the impact of

which is analyzed in Section 3.5.1. Indeed, this threshold measures the confidence

of the decision for a given user.

In addition to Euclidean and Minkowski Distances, there are several distance

measurement methods utilized in biometric authentication systems which may per-

form differently depending on the context. Therefore, we also tested different dis-

tance metrics in our experiments to see, which shows the best for WACA. Other

distance metrics that we tested in our experiments are Cosine Distance, Correlation

Distance, Manhattan (Cityblock) Distance, and Minkowski with p=5. The perfor-

mance of each one is given in Section 3.5.1.

3.5 Performance Evaluation

We tested the performance, efficiency, and security of WACA with more than thirty

real users and data collected from them. We specifically evaluated WACA in terms of

three metrics: (i) How accurately can it differentiate between genuine and impostor

users? (ii) How fast can it detect an impostor? (iii) How accurately can it identify
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an impostor? In for these purposes, we first conduct authentication experiments. In

these, we measure how WACA performs when users type a different or the same text.

We also analyze how the sample size and the detection technique impact WACA’s

performance. The effect of the sample size allowed to evaluate the quickness of

WACA. Finally, we also conducted an experiment to show how successful WACA

would be in identifying insider threats.

Data and Collection Methodology. In our experiments, we collected data from

342 human subjects. 3 During the collection of data, an Android Wear smartwatch

with an installed data collection app was distributed to the participants, and the

participants were asked to type a text. The participants were free to choose the

hand (left/right) on which they wore the smartwatch. The choice of the hand that

the participants wore the smartwatch was left to the participants. Moreover, they

were also given the freedom to adjust the sitting position and the keyboard and

screen position according to their comfort levels. It is also worth noting that sitting

and wrist position (i.e., if it is resting on the table or maintained in the air) may

affect the performance. Therefore, a real-world implementation may require further

calibration before enrolling the users to the system.

Throughout these experiments, we utilized a standalone qwerty keyboard to have

generic results. Before typing each text, the participants were also given enough time

to read the texts to make them familiar with the text as typing a familiar text is a

more common activity.

2Not all of them participated in all experiments.

3Our research study with the human subjects was conducted with the appropriate
Institutional Review Board (IRB) approvals.
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The participants were involved in two typing tasks conducted in two different

sessions. They were asked to type with their normal typing style without noticing

that their data was recorded. The two data sets were compiled as follows:

• Typing Task-1: 20 participants are involved in this task, and the participants

were asked to type a story from a set of short and simple stories from the

American Literature4 for four minutes. The story was chosen randomly by the

participants. On average, four minutes of data corresponds to 25000 samples

for each participant (Total: 850000 samples).

• Typing Task-2: 20 participants are involved in this task and for this data

set, all the participants were asked to type the same text5 for four minutes.

For each participant, almost the same amount of data is collected as Typing

Task-1. This dataset is essential to be able to measure the quality of the

features.

• Typing Task-3: 34 participants are involved in this task, and the partici-

pants were instructed to imitate someone else’ typing pattern by watching the

prerecorded video of the other person. For these experiments, one of the par-

ticipants was recorded on video while typing a short and simple sentence for

15 seconds from a perspective that the hand motions, smartwatch, keyboard,

and the screen could be seen. Although it was not required, the perspective

allowed to infer what the victim was typing by watching. This dataset was

primarily used to analyze the attacking scenarios.

Note that in all the experiments, the dataset obtained from all these tasks were

always used by dividing them into equal size chunks. Therefore, even if all the

4https://americanliterature.com/100-great-short-stories

5https://en.wikipedia.org/wiki/The_Adventures_of_Tom_Sawyer
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participants in Typing Task-2 typed the same text, the compared samples always

corresponded to different texts for a participant.

Moreover, in our experiments, we split the collected data sets into equal size

chunks, called sample size. It is the number of samples (i.e., row) in a chunk.

Each chunk consists of 8 columns of data, two of which are timestamp, and the

others are 6-dimensional sensor data. The sample size is the main system design

parameter in our experiments as it has a direct impact on the time required to

collect data. Particularly, the time t required to collect data with the sample size

can be represented as t = sample size/100 in seconds as the sampling rate in our

experiments was 100Hz.

Performance Metrics. In the authentication experiments, we used Equal Error

Rate (EER) as it is a commonly accepted metric to assess the accuracy of WACA.

EER is calculated using two metrics: False Acceptance Rate (FAR) and False Re-

ject Rate (FRR). FAR is the rate of incorrectly accepted unauthorized users among

all the unauthorized attempts: The increase in FAR is a direct threat to the sys-

tem’s security level (i.e., confidence level on the decision). For more valuable assets,

increasing the threshold will decrease FAR. On the other hand, FRR is the rate

of incorrectly rejected authorized users among all the legitimate authentication at-

tempts. Contrary to FAR, FRR can be decreased by decreasing the value of the

threshold. Indeed, the threshold value effectively measures the confidence of the

decision for a given user. Finally, EER is the point that gives the closest FAR and

FRR point for a given threshold (ideal EER is the intersection point of FAR and

FRR) and the lower the EER, the better is an authentication system.

49



3.5.1 Results

In this section, we present and discuss the evaluation results.

Impact of the text dependency. In this experiment, our goal is to analyze how

EER changes among the participants. We try to answer: How does WACA perform

with the typed text? This is also a more advanced analysis of the framework and the

fundamental idea than that of in Section 2.

Specifically, for this experiment, we used Typing Tasks 1 (any text) and Typing

Task 2 (the same text) dataset and we fixed the sample size to 1000 and used Man-

hattan (Cityblock) as a representative distance measure to compare the samples.

Note that as later shown and analyzed in Figures 3.7-3.8, this distance metric was

chosen as it performed the best among the different distance measurement tech-

niques. This is because Manhattan is rectilinear distance, considering the absolute

differences and is more suitable for natural settings [KCB03, PGR07, BG04]. For

each sample of a particular user, we computed the differences from other users’ sam-

ples. For this purpose, we computed the N × N dissimilarity matrix, where N is

the total number of samples for all the participants. The dissimilarity matrix was

calculated by measuring the similarity of each sample to all the other samples using

leave-one-out cross-validation6 method [JL10].

Then, for a given threshold and participant, the ratio of the rejected and accepted

samples was computed to obtain FRR and FAR, respectively. This process was

repeated by incrementing the threshold by 0.01 in each step for all the samples of

all the participants. This gave us a set of EER for each participant. Note that in

a real system, FAR/FRR rate can be tuned according to the system preferences,

6Even though to show the feasibility of our method, we tested our method with leave-
one-out cross-validation, collecting and storing more than one samples from each user at
the enrollment phase may impact the accuracy in real-life implementations.
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Figure 3.5: EER for each participant with a sample size of 1000 using Manhattan
(Cityblock) distance metric during Typing Task-1. Average EER is 0.0513.
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Figure 3.6: EER for each participant with a sample size=1000 using Manhattan
(Cityblock) distance metric during Typing Task-2. Average EER is 0.0647.
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Figure 3.7: Average EER according to different sample sizes using different distance
metrics while users are performing Typing Task-1.

but here our purpose is to find an acceptable performance metric for WACA. The

results are plotted in Figure 3.5 for Typing Task-1 and Figure 3.6 for Typing Task-2.

Average EER for the Typing Task-1 experiment was 0.0513. Figure 3.6 compares

the EER of participants for the Typing Task-2 experiment. Average EER for this

experiment was 0.0647.

If we compare the ERR of each participant in both the experiments, we see

that they are also close to each other, where a few of the participants perform

very distinctive behaviors (e.g., participant 15). However, the overall distribution of

EER over the participants is similar in both the experiments. Recall that in Typing

Task-1, all the participants typed different texts, while they typed the same text in

Typing Task-2.

Overall, in this analysis we report the average EERs of both the experiments are

close (around %1), which supports the usability of WACA regardless of the typed

text for the continuous authentication session.
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Figure 3.8: Average EER according to different sample sizes using different distance
metrics while users are performing Typing Task-2.

Impact of the sample size and the distance measuring technique. In these

experiments, our goal was to assess how different sample sizes and the distance

measuring techniques used in WACA impact the performance. For this, we varied

the sample size from 300 to 3000 and utilized five different distance measuring

techniques, Euclidean (p=2), Cosine, Correlation, Cityblock, and Minkowski (p=5).

Again, two types of participant dataset, Typing Task-1 (any text) and Typing Task-

2 (the same text), were used. Figure 3.7 (Typing Task-1) and Figure 3.8 (Typing

Task-2) present the main results when the sample size increases.

As can be seen in Figure 3.7 when the participants typed different texts, the

EERs are generally decreasing with the increase of sample sizes as expected. The

EERs go under 0.05 after the sample size of 1500 for all the distance metrics utilized

except for Minkowski (p=5). Then, the EER is converging to the value of 0.01-0.02

through the sample size of 3000. In the best case, EER 0.007 is achieved with

the sample size of 2750 for the Manhattan (i.e., Cityblock) distance measurement

technique.
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Figure 3.8 presents the results of the same-text experiment (Typing Task-2). As

in Figure 3.7, the general behavior is that the EERs are decreasing with the increase

of the samples. The lowest EER of 0.01 is achieved using the Cityblock distance

measuring technique at 3000. We also see the convergence of EER in Figure 3.8

as Figure 3.7. Plots are starting to converge around sample sizes 1500-2000 and

converging to 0.01 for Cityblock and Correlation distance measuring techniques. We

also see that at 3000, 0.02 EER is obtained for Cosine and Correlation techniques.

However, if shorter data collection time is of interest, a sample size of 2000, which

needs 20 seconds for data collection, gives 0.03-0.04 EER. However, if we increase

the sample size, both the accuracy and the data collection time are increasing. This

means the time needed to catch an adversary or more generally, the re-verification

period would also increase. Therefore, an optimal sample size should be adjusted

according to the preferences in a real application based on the usage needs or security

policies.

To conclude, the features in WACA can successfully differentiate the users from

their typing rhythm with a minimal error rate (1%) independent of the typed text.

There is an inherent trade-off between the EER and data collection time, which

should be configured according to the security needs of an organization.

The accuracy of insider threat identification. As noted earlier, the insider

threat detection is important in continuous authentication systems as a potential

attacker is likely to be an insider. To effectively locate such an insider attacker

within an organization where WACA is employed, an identification mechanism is

needed. Depending on the security policy of the organization, the management may

want to do an investigation to find the insider attacker. In this case, we will have

many unknown samples of the attacker to find the owner of the samples, and we

will need a one-to-many classification task to exactly detect an insider attacker. For
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Table 3.2: Evaluation of the insider threat identification results with seven different
machine learning algorithms. MLP yields the best result and the training/validation
graphs of the MLP algorithm are given in Table 3.9.

Classifier Typing Task-1 Typing Task-2
SVM 98.7 98.1
Random Forest 98.9 97.8
Naive Bayes 93.6 87.3
Decision Tree 62.1 62.1
MLP 99.0 99.2
kNN 96.4 96.8
Logistic Regression 90.5 93.7

this purpose, we fix the sample size to 1500 and the number of training sample to

five. With those parameters, we tested different machine learning algorithms and

results are presented in Table 3.2. Here, we assume that the insider’s data is also

stored in the authentication server’s database (training set) as a legitimate user.

According to the results given in Table 3.2, the most accurate results are obtained

with the Multilayer Perceptron (MLP) algorithm. This happens because of two

reasons. First, MLP is a neural network model, which maps a set of input data

into a set of outputs through the interconnected processing elements (neurons).

The main advantage of MLP is that it approximates highly nonlinear functions

between input and output [GD98]. Second, when we look at literature [ASL15,

SIG+19, MT16, BVACM18, BCE+18], MLP is giving very high accuracy with the

features obtained from noisy sensor data collected from devices like smartphone or

smartwatch. Moreover, Table 3.3 shows the parameters used in the machine learning

algorithms given in Table 3.2.

We also analyzed the impact of the sample size and the size of the training data

on the accuracy. For this, we focused on two test scenarios that would be relevant in

real investigations and tested the efficacy of 7 different machine learning algorithms.

As seen in Table II, MLP performed the best and accordingly we picked MLP as a
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Figure 3.9: a) Training and b) Validation curve of MLP algorithm. Please note that
since the validation set size is 0 as provided in Table 3.3, the two curves are same.
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Table 3.3: Parameters used in the Machine learning algorithms in Table 3.2.

Classifier Parameters

SVM
The complexity parameter c = 1, γ = 0.01

Polynomial kernel with exponent 1

Random Forest
# of iterations (trees) = 100,

# of features = unlimited

Naive Bayes
Kernel estimator = False

Supervised Discretization = False

Decision Tree
tree= J48,

confidence factor = 0.25

MLP

# of hidden layers = (attribs + classes) / 2
# of neurons per hidden layer = 1

Learning rate = 0.3
Momentum = 0.2

Validation set size = 0%
Validation threshold = 20

kNN
k = 1

Search algorithm : linearNNSearch
Distance function : Euclidean Distance

Logistic Regression Ridge = 10−8

representative algorithm to be used in these scenarios: Scenario 1:7 In order to show

that MLP does not show any over-fitting, we plot the training and validation curves

in Figure 3.9. In the first scenario, we built our test model using the same text

and tested again using the same text with the 5-fold cross-validation technique. For

this scenario, we utilized Typing Task-2 Dataset for both the training and testing.

This type of scenario can be useful as all the users are asked to type a provided

text, and during the investigation, all users are requested again to type the same

text. The results are presented in Table 3.4. Scenario 2: In the second scenario,

the test model was trained with the same text dataset, which is the same for all

the participants and tested using random-text experiments, where each user typed a

randomly chosen text. For this scenario, we utilized Typing Task-2, Typing Task-1

7Please note that this is different the Typing Task-1 in Figure 3.2.
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Table 3.4: The accuracy results insider threat identification experiments for different
sample sizes in Scenario 1 and 2.

Scenario 1: Accuracy (%)

Training Set
Sample size 1 2 3 4 5

1500 77.8 93.7 97.2 98.4 99.2
1000 62.8 87.6 93.8 95.3 97.1
500 37.5 63.7 75.9 83.1 89.6
250 28.5 43 53.1 61.8 62.1

Scenario 2: Accuracy (%)

Training Set
Sample size 1 2 3 4 5

1500 55.8 80.1 88.7 89.8 91.8
1000 51.7 82.7 83.2 86.1 86.8
500 29.9 51.3 66.7 73.8 76.5
250 22.1 33.6 41.9 49.8 54.1

Table 3.5: Time taken to build the MLP model used in

Scenario 1 in Section 3.5.

Time taken to build the model (seconds)

Training Set
Sample size 1 2 3 4 5

1500 0.99 2.02 3 3.99 4.94
1000 1 1.99 2.98 3.95 4.94
500 0.98 2.02 3.01 3.98 4.95
250 1 1.95 2.93 3.92 4.95

Datasets for training and testing, respectively. This scenario is suitable for cases

where all the users are enrolled using the same text, but a user is verified while

typing a random text. The results for this test scenario are presented in Table 3.4.

As can be seen in Table 3.4, in the best case, 99.2% identification rate of an

insider threat can be achieved with the sample size of 1500 while the model is

trained with five samples. Even with two samples of the insider, 93.7% accuracy

rate can be achieved with the sample size of 1500. Finally, we also present the model

training time for the insider threat detection in Table 3.5 and 3.6.
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Table 3.6: Time taken to build the MLP model used in

Scenario 2 in Section 3.5.

Time taken to build the model (seconds)

Training Set
Sample size 1 2 3 4 5

1500 1 1.97 2.97 4.01 4.99
1000 1 1.99 2.95 4.04 4.93
500 0.99 2 2.98 3.98 4.98
250 0.99 1.96 3.02 3.96 4.96

Scenario 2 aims to answer the question of ”Can an insider be identified while

typing a random text even if s/he is enrolled while typing a given text ?” Table 3.4

presents the result of this question for Scenario 2. As can be seen from Table 3.4,

similar to Scenario 1, the accuracy rates increase as the sample sizes and training

set increase, and the time to build model and time required to catch the attacker is

also increasing. Three training samples and the sample size is 1500 or four training

samples with the sample size of 1000 may be the two most optimal choices for real

cases.

Overall, WACA can achieve 0.01 error rate with almost 30 seconds of the data

collection (see Figure 3.7 and 3.8) in the best case. If a shorter time is of interest,

0.02 error rate is achieved with 20 seconds of the data collection. Moreover, if five

training samples with 1500 sample sizes are obtained from a potential insider threat,

WACA could identify the insider with 99.2% accuracy rate while typing the provided

text (see Table 3.4) or with 91.8% accuracy rate while typing a random text (see

Table 3.4).
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3.5.2 Advanced Attacks on WACA with More Powerful Ad-

versaries

In this subsection, we evaluate the performance of WACA against two powerful

attacks: imitation [TGG13, HSU+16] and statistical [SP13, SSCG16] attacks. In

these attacks, the attacker is aware of WACA and can try to defeat WACA using

special tools and skills.

Numerous attacks against classical keystroke dynamics that exist in the litera-

ture can also be used to attack WACA. The attacker can be a human or a trained

bot. A human-type attacker can perform zero-effort attacks8 [RP13] or imitation at-

tacks [TGG13] to defeat the WACA’s authentication system. In zero-effort attacks,

the attacker tries to defeat the authentication system without any effort or prior

knowledge. Zero-effort attacks will not be successful due to the low EER values in

WACA as analyzed in the previous sub-sections. However, the effectiveness of the

imitation attacks performed by a human should be investigated as noted in some

recent studies [TGG13, HSU+16].

In addition to these attacks, another recent attack against the behavioral biomet-

rics [SP13, SSCG16] has emerged, which is called statistical attacks. In this attack,

a bot is first trained using typical user data from a large population. Then, the

bot generates random permutations of the features to mimic a legitimate user. In

addition to human and robot attacks, a replay attack using a key-logger [GOC12] is

noted in the literature, which can also be performed against the keystroke dynamics.

However, a key-logger installed on the computer can obtain only the timing of the

keystrokes, which is solely not enough to use it in a replay attack against WACA as

8Also called zero-information attack.
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there is not a way that a key-logger can obtain the three-dimensional sensor data

collected by the smartwatch.

In the next sub-sections, we consider these two powerful attacks (imitation and

statistical) and investigate the effectiveness of WACA against them. In these cases,

the attacker would have somehow obtained the victim’s smartwatch or manipulates

his smartwatch. We use the zero-effort attacks as a baseline to evaluate the success

of the imitation and statistical attacks. In imitation attacks, the attacker either can

steal the victim’s smartwatch or the victim can leave it behind for a while, then

the attacker wears the victim’s smartwatch and can try to impersonate him while

attacking. On the other hand, the statistical attack is more complex and requires

special tools and skills. In this type of attack, we assume the attacker can provide

its input data to the system. It manipulates its username and profile data to get

access to the computer that he does not have permission.

Imitation Attacks

In this subsection, we evaluate the performance of an imitating adversary, who knows

that WACA is already installed on the current system. The adversary is assumed to

be watching his victim by standing nearby or trying to imitate the victim’s typing

style by looking at the previously recorded video of the victim while typing. S/he is

also assumed to be opportunistically waiting for the right time to mimic the victim.

To replicate this imitation attack scenario, we recorded a 15 seconds video of

a legitimate user and presented this video to an attacker (i.e., another participant

in our experiments). The video showed the user as s/he was typing and thus the

hand, fingers, watch and keyboard were all visible. By watching the video (multiple

times allowed in experiments), the attacker tried to imitate the legitimate user.
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Figure 3.10: Attacker accept rates for different sample sizes. The results show that
an imitation attacker has no more advantage than a zero-effort attacker.

Note that this scenario would increase the chances of a successful attack when

compared to a real-life case where the attacker would possibly only have limited

opportunity to watch a victim. We also collected the victim’s typing data to evaluate

the performance of the attackers. We computed EER for this attack scenario and

compared it with the case when there was a zero-effort for the attack. In the zero-

effort attack, we used the data set obtained in Typing Task-1 Dataset. We applied

the leave-one-out method [JL10] by leaving the victim’s data out as in the other

authentication experiments While calculating EER (i.e., the intersection of FAR

and FRR) of the victim. In the imitation attack, since we only had the impostor

attempts, EER would be equal to the attacker’s acceptance rate. We also note

that WACA was directly tested without any change. The results are presented in

Figure 3.10.

As presented in Figure 3.10, the attackers have different success rates (attacker

accept rate) for different sample sizes. The highest success rate was achieved when
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Figure 3.11: 3 different statistical attacks against WACA with different sample sizes.

the sample size is equal to 500, but the success rates are decreasing to the much

lower rates as the sample sizes increase. A sample size of 500 corresponds to almost

2-3 keystrokes for the sampling rate used, which is not enough to measure and

settle down for some of the features. So, this is not practical from the attacker’s

perspective. Beyond 1500, which corresponds to 15 seconds of sensor readings, the

probability of an attacker to imitate a user is significantly decreasing (i.e., 0.04).

These results indicate that even though an attacker is aware of WACA in a targeted

system, s/he still has a meager chance to be successful.

Statistical Attacks

In this subsection, we evaluate WACA against statistical attacks. In this attack

scenario, it is assumed that the attacker has a database obtained from AS consisting

of the user profiles. Similar to the imitation attack, it is also assumed that the

attacker can provide its input to the system. As mentioned earlier, this can occur

either by obtaining the victim’s smartwatch or if the attacker is an insider, it can
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manipulate its input data to deceive WACA. It is also worth mentioning that we

assume the attacker has only a limited amount of time to attack; therefore, it only

tries the data that has the highest chance to get in, which we refer to as topBins in

the attack algorithm that will be utilized and noted below.

Note that statistical attacks are very powerful attacks and it is successfully im-

plemented to bypass the conventional keystroke-based systems [SP13]. It is based

on the generation of fake (synthetic) inputs using common features of a given pop-

ulation. The idea behind this attack is using the random combination of the most

common features of the population to defeat the authentication system. We designed

the following attack scenario to test WACA against the statistical attacks.

In our attack, we used both Typing Task-1 and Typing Task-2 dataset as input.

Each participant was chosen as a victim iteratively, and the other participants’

samples were used to generate forged data samples. Then, the forged samples were

used to attack the victim. For this, a histogram was created for each feature of all

the participants in the dataset except the victim. The forged samples were generated

as in Algorithm 1.Overall, we created three different statistical attackers with three

different capabilities (bin sizes in the histogram). Statistical Attacker-1, Statistical

Attacker-2, and Statistical Attacker-3. Before running the algorithm for attacking

WACA, we first calculated the EER for each user without adding any forged data.

Similar to the imitation attacks, the attacker acceptance rate in zero-effort attack

corresponds to the average EER. We conducted experiments without attack under

varying sample and bin sizes. The results are shown in Figure 3.11.

In Figure 3.11, we can see that bin number 50 has the most successful result on

attacking victims. This is because if we increase the bin number and keep the bins

with the highest number of occurrences constant, the width of the bins will narrow;

so, the range of the forged data will be confined to a very small range. On the other
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Algorithm 1 Calculation of EER for a statistical attacker.

Require: SamplesMXN []: M is # of samples and N is # of features
Require: outNumber: # of generated forged samples
Require: binNumber: # of bins
Require: topBins: # of top bins used to generate forge samples
Ensure: new eer: # new error rate against the attack
1: for each user do
2: victim← user;
3: victimSamples← getSamples(victim);
4: attackSamples← getSamples(∼ victim);
5: combin[] ← ComGen(N, outNumber, topBins);
6: for each forgeid si ∈ attackSamples do
7: for each feature fj ∈ attackSamples do
8: [freq, edges] ← histGen();
9: [∼,index] ← sortBins(freq);

10: index(topBins+ 1 : end)← [];
11: m← edges(index(combin[fj , forgeid]));
12: forgedSamples← random([m, m+ 1]);
13: end for
14: end for
15: victimSamples← addSamples(forgedSamples);
16: D ← calculateDissMatrix(TestingSamples);
17: eer for victim← calculateEER(D);
18: end for
19: new eer ← mean(eer for victim);
20: return new eer

hand, if we decrease the bin number significantly, the less frequently occurred bins

will also be included in the sample generation range, which will reduce the success

rate of the attacks. Finally, we note that in the attack scenario, we choose each user

in our dataset as a victim in an iterative way. These results show that despite the

small increase compared to zero-effort, the attacker does not have a chance to defeat

WACA using the systematically generated fake data due to its high dimensional

feature vector in WACA’s design.

As a summary, neither the imitation nor statistical attacks put WACA in danger

as their success rates are very close to zero-effort attacks.
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Table 3.7: Resource consumption of the smartwatches used in the experiments: LG
Watch R and Samsung Gear Live.

LG G Samsung
Watch R Gear Live

CPU (no WACA) 4.5% 4.5%
CPU (w/WACA) 7.5% 16.8%
Memory (no WACA) 4.5 MB 4.5 MB
Memory (w/WACA) 15.2 MB 13.8 MB
Battery 10Hz 1.1% 1.2%

30Hz 1.6% 0.3%
100Hz 2.1% 2.4%

Data Size 10Hz 0.3 MB 0.3 MB
30Hz 0.6 MB 0.9 MB
100Hz 4.1 MB 6.5 MB

3.5.3 Resource Consumption

In WACA, a smartwatch, a computer, and an authentication server work together.

In this subsection, we only analyze the resource consumption of relatively con-

strained smartwatches. It is worth noting that we monitored the consumption of

our application while it was running continuously; however, in WACA, the data

collection app does not have to be running continuously. It can happen periodi-

cally or on-demand because the data collection runs only when the smartwatch is

notified by the computer that the user is typing on. We analyze the performance of

both LG G Watch R and Samsung Gear Live smartwatches used in the experiments.

Both smartwatches have Cortex-A7 at 1.2GHz and 512MB RAM, but Samsung uses

300mAh battery, while LG is using 410mAh battery. The results are presented in

Table 3.7.

In all the experiments, we both monitored the memory and CPU resource uti-

lization of the smartwatches in the default mode (i.e., not actively running any app

- no WACA) and while the app was running (w/WACA). In the default mode, both

smartwatches used almost 4.5MB memory and 4.5% CPU their consumption while
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the app was running, as shown in Table 3.7. As compared to the default mem-

ory usage (no WACA), the memory consumption in the smartwatch in WACA is

increasing, but it is still at an acceptable rate.

In addition to memory and CPU consumption, we also analyzed the power con-

sumption and data size while running our app for 10 minutes. We excluded the

power consumption of the screen as the screen can be turned off or the smartwatch

can be in the ambient mode during the data collection of WACA. We see that the

power consumption of the app scales by the sampling frequency. However, when we

decrease the sampling rate, the time needed to collect a certain amount of data will

also increase. Hence, the optimum sampling rate should be tuned according to the

desired security policy.

3.6 Discussion

Security Policy Implementation Considerations. WACA works by checking

if the current user’s profile matched the profile of the logged-in user. When an

unauthorized access attempt is detected, the reaction depends on the previously

decided security policy. Depending on the security policy, when an attacker is

detected, the screen can be locked, and the user can be challenged to re-login; the

management and security teams can be alerted in real-time, or a notification e-mail

can be sent to the registered e-mail of the logged-in user, and so on. Moreover, we

showed that WACA could differentiate an insider from an outsider accurately. In

suspicious cases, the administrator can do further investigation to detect the insider,

and as we noted earlier, the insider detection is possible in WACA. We also note

that even if WACA catches an insider attacker, WACA can not know if the attacker

has the full key, which is out of scope this work. Therefore, even if the system is
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logged-out, an insider can log-in again if it has the full key. Therefore, resetting

the initial authentication factor should be considered in the security policy in this

case. Finally, the server can also log the failed attempts to prevent attacks aiming

to drain the smartwatch’s battery.

Moreover, if WACA is deployed in an environment where typing is not required

much, the actions that will be performed when the user is not typing should be

defined in the security policy. A straightforward solution to this problem can be

reducing the system to default security, i.e., locking out the user if there is inactivity

for a certain duration.

WACA captures the typing patterns of the user only from one wrist. If the wrist

wearable is on the left hand, for example, the typing pattern for the words ”and” and

”aod” would be the same. This can be perhaps exploited by the attacker by using

the letters on the right. However, this would be a remote possibility. In WACA,

we wanted to test our proposed method in a more realistic scenario assuming a user

will wear a wearable on both hands might be an unrealistic assumption. However,

in highly extreme cases, i.e., highly critical environments, two smartwatches can be

utilized to collect data from two hands of the users. This will prevent against this

type of attack. This should be considered while deploying WACA in a real-world

application.

Privacy. In WACA, the computer and the wearable are the devices that belong to

the user or belong to the same authentication realm and thus are trusted. The only

device that may threaten privacy is the AS. As for the security of the data at rest

at the server, the existing industry standards such as AES, RSA, ECC, RC4, can

be employed to establish the security of the data in these cases. In WACA, after

collecting the raw sensor data from the smartwatch, either the raw sensor data can be

transmitted to the AS, or the features can be computed on the smartwatch and the
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feature vector can be transmitted.No data is stored on the watch and as noted in the

Assumptions Section (Section 3.3), this channel is secured with existing methods.

If the raw sensor data is sent to the AS, the AS may try to infer the user’s typed

characters from the raw sensor data. The more secure way would be to compute

the features on the smartwatch and to keep the feature vectors of the profiles of the

users in the AS. In that case, the transmitted feature vector has only the mean of the

values of the multi-dimensional sensor data and thus inferring the typed characters

would not be possible at the AS.

3.7 Conclusion

In this chapter, we introduced a novel Wearable-Assisted Continuous Authentica-

tion (WACA) utilizing the sensory data from the built-in motion sensors available

on smartwatches. WACA is a practical and usable wearable-assisted continuous

authentication system that combines the functionality of wearables and usability

of continuous authentication. Particularly, WACA decreases the vulnerable time

window of a continuous authentication system to as low as 20 seconds, prevents the

privilege abuse and insider attacks and also allows the insider threat identification.

We evaluated the efficacy and robustness of WACA with real data from real exper-

iments. The results showed that WACA could achieve 1% EER for 30 seconds or

2− 3% EER for 20 seconds of data collection time and error rates are as low as 1%

with almost a perfect (99.2%) insider threat identification rate.
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CHAPTER 4

PACA: A LIGHTWEIGHT PRIVACY-AWARE CONTINUOUS

AUTHENTICATION PROTOCOL

4.1 Introduction

Efforts to improve the security of the authentication services have historically pro-

gressed from what-you-know (i.e., passwords) to what-you-have (i.e., tokens), then

to what-you-are (i.e., biometrics) as attacks have increased in sophistication and

become widespread [TGG13, SSY12]. While the deployment of biometric authen-

tication systems increases the usability of the authentication systems, the plethora

of cyber-attacks demands more user information from biometrics, which introduces

additional security and privacy challenges in the authentication systems. In this

landscape, another challenge is due to the nature of one-time authentication, which

verifies users only at the initial login session regardless of being single- or multi-

factor. This is a serious security risk as once the attacker bypasses the initial

authentication, it will have a forever access or if the user leaves the system in-

tentionally/unintentionally unlocked, anyone such as an insider or a strong outsider

adversary [ALUK19], who has physical access to the system will have access to the

system without the actual user notification. Therefore, the user should be contin-

uously monitored and re-authenticated. In the literature, several solutions such as

time-out or token (or even RFID) based solutions are proposed to address these

issues in the authentication systems [KSC10]. Indeed, biometric-based systems are

considered to be ideal and usable for such cases as they can not be easily misplaced

unlike tokens, or forgotten unlike passwords, or easily forged by an imposter.

In this chapter, we tackled these challenges and constructed a novel lightweight

privacy-aware continuous authentication protocol, called PACA. In our protocol, we
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utilize the password-authenticated key exchange (PAKE) primitive, which we adapt

for the biometric continuous authentication. This provides basic security require-

ments of our protocol, such as a secure channel between the user and server, mutual

authentication, forward secrecy, as well as the resistance against pre-computation at-

tacks. In our design for an actual privacy-aware continuous authentication method,

we utilize a secure and noise-tolerant template generation and matching technique

called NTT-Sec-R, and combine it with a wearable-assisted continuous authentica-

tion method called WACA. NTT-Sec-R irreversibly transforms the feature vectors,

but still allows us to distinguish genuine pairs from imposter pairs. The novel se-

curity enhancements proposed in this chapter are applicable to a wide range of

biometric authentication mechanisms when feature vectors are represented as fixed-

length real-valued vectors. One of the important applications of such systems is

sensor-based keystroke dynamics, which could be used in the authentication of com-

puter [AAUA18, AAUA20], smartphone [LL17], and wearable [FBM+13] users.

4.2 System and Security Model

In this section, in order to understand the threat model, we present the basic security

requirements of the protocol. Then, we also present the system components and

parameters of the protocol, and the assumptions made.

4.2.1 Security Requirements of the Protocol

The security requirements of our continuous authentication protocol are as follows:

Secure channel. The communication between the user and the authentication

server should be secure against any eavesdropping or interception.
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Figure 4.1: System components of our proposed continuous authentication protocol,
PACA. The detailed definitions are given in Section 4.2.2.

Mutual authentication. The proposed authentication protocol should support

the mutual authentication between the user and the authentication server.

Forward secrecy. This protects past sessions and session keys even after the

long term secret keys of the parties, future sessions, and future sessions keys are

compromised.

Resistance against known attacks. In addition to the security requirements

above, our proposed protocol should be resistant to the main threats known against

privacy-aware biometrics-based authentication protocols [RCB01, PM17]. We split

these threats into four categories: 1) Password recovery attack, 2) Impersonation

attacks, 3) Session intervene attacks, and 4) Biometric recovery attacks. The more

details about the attacks and their analysis for PACA are explained in Section 4.4.
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Table 4.1: The symbols used throughout the chapter.

Symbol Description

Useri i’th user
Idi the identity of user i

Pwdi i’th user’s password
Bioi,t Biometrics of the user i at time t

UsrDevi i’th user’s device
UsrDevi,k the k’th device of the i’th user

Ext Feature Extraction
fi,t feature vector of user i at time t
ti,t biometric template of the user i at time t

TempGen Template Generation algorithm
TempComp Template Comparison algorithm

s similarity score
DBi Information of the user i at database

SerDevk k’th Server Device
CAS Continuous Authentication Server
Ti threshold value of the user i

Time constant time
NumQuer number of query

NumMatch number of match query
MinQuer constant number of minimum query

MinMatch constant number of match query
Ki shared session key between user i and server
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4.2.2 System Components and Parameters

Our continuous authentication protocol consists of three main components: 1)

Password-authenticated Key Exchange (PAKE), 2) User, and 3) Continuous Au-

thentication Server (CAS). Figure 4.1 illustrates the interactions between the main

components of the protocol. (1) User extracts the elements of the feature vector via

a feature extraction algorithm and transforms the feature vector to its corresponding

template through template generation function. (2,3) After that, the template is

transmitted to (CAS) through the secure channel provided by the PAKE protocol,

which also provides the mutual authentication between the user and the server and

forward secrecy properties. (4,5) After receiving the user’s template, the AS also

extracts the user’s information from the database and compares it with the incoming

the template of the user via the template comparison function, which return a sim-

ilarity score. The server device decides the authentication result by comparing this

similarity score with a predetermined threshold value. In the end, the final authen-

tication result is returned to the user side via the underlying PAKE method. Before

explaining the details of our protocol and its components, we also give the descrip-

tion of the symbols used in the protocol in Table 4.1. In the following sub-sections,

we explain the details of the components.

1. Password-authenticated Key Exchange (PAKE). Our authentication pro-

tocol utilizes a (strong) password-authenticated key exchange (PAKE) method with

some strong security properties. OPAQUE [Kra18] and SRP-6 [Wu07] are examples

of such a protocol that satisfy the following features:

1. Public key infrastructure (PKI) is not needed because PAKE protocols reduce

the security of the system to only the user’s password without relying on an

outside keying material such as public keys [Kra18]. This is a big advantage
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from the efficiency point of view because TLS, any certification authority,

verification of certificates, long term private keys, etc. are not required. An-

other advantage from a security point of view is that any potential failure in

PKI is not an issue anymore (such as invalid certificates [Osb], stolen private

keys [Kas], etc.).

2. A user and server can mutually authenticate each other.

3. The server stores only a cryptographic transformation of the user’s password.

The password is never sent in clear, and the server does not learn the password

of the user.

4. Pre-computation attacks [Kra18] are not applicable. Such attacks do apply

to some password-based protocols if salts are not used, or they are sent in

clear from a server to a user, but they do not apply to the specific PAKE

instantiations as specified above.

5. To recover the password of a selected user, the adversary can only mount

an exhaustive offline dictionary attack after compromising user data on the

server. This attack can not be avoided but it is computationally not feasible as

only the cryptographic transformation of the password is stored on the server.

2. User. Throughout this chapter, Useri = (Pwdi,Bioi,t,UsrDevi) denotes a user

indexed with i, her password, her biometric data indexed with t, indicating different

measurements of the biometric data of a user, and her device used for collecting the

biometric data. A user has access to feature extraction and template generation

algorithms:

• fi,t ← Ext(Bioi,t): denotes a feature extraction algorithm. The parameter t

considers that different measurements of the same biometric data may result in

different feature vectors, i.e., in general, fi,t1 6= fi,t2 for t1 6= t2. We assume that
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the feature extraction always runs on a user device such as user’s computer.

Biometric data and extracted features are stored only temporarily on this

device, and they are deleted after communicated to another device or entity

in our protocol.

• ti,t ← TempGen(fi,t) refers to the one-way transformation of the feature vector

into a more secure template, while allowing comparison on the transformed

version as well as providing irreversibility and indistinguishability [JNN08] and

it corresponds to the traditional hash in password-based systems. Similar to

the feature extraction, the operation can be performed on the user device.

3. Continuous Authentication Server (CAS). CAS denotes an authentication

server that validates or invalidates an enrollment or an authentication query initiated

by a user (or by an adversary who is trying to impersonate a user). CAS indicates the

validity or invalidity of a query by an output of 1 or 0, respectively. CAS has access

to a template comparison algorithm and manages a database and server devices that

the users interact with:

• s ← TempComp(ti,t1 , ti,t2): denotes a template comparison algorithm that

takes two templates ti,t1 and tj,t2 captured at two different times as input,

and outputs a similarity score, s ∈ R quantifying the similarity of the under-

lying biometric data pair (Bioi,t1 ,Bioj,t2).

• DB denotes a database that stores information about the users who are en-

rolled with CAS. For convenience, DBi denotes the information about Useri.

This information is comprised of the user’s identity, a cryptographic transfor-

mation of her password, and her biometric template along with her matching

thresholds. The full definition is given in Section 4.3.
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• SerDev denotes a server device which the user is trying to log in, such as

desktop or laptop computers of the user. CAS may manage more than one

server device. In this case, the k’th device of CAS is denoted SerDevk.

4.2.3 Assumptions

We list our assumptions regarding the components of the system as follows:

• In general, Bioi,t1 6= Bioi,t2 . We assume that each user has at least one device

that can extract biometric information of that user. In one of the applications

described in this chapter, we equip users with a smartwatch that extracts the

typing behavior of its user. As they are commodity devices, they are easily

accessible to many users.

• The user-specific values and devices are distinct and not shared among other

users in a regular run of our protocol. More formally, we assume Useri 6= Userj,

Bioi,t1 6= Bioj,t2 , and UsrDevi 6= UsrDevj for i 6= j. It also worth noting that a

malicious user may control a user device, or a user password may be stolen,

but we treat these scenarios as attack scenarios and analyze them in detail to

show how our work is robust against these attacks in Section 4.4.

• A user may have more than one device. In this case, the k’th device of the

i’th user is denoted UsrDevi,k.

• We assume the adversary is a computationally bounded, active adversary who

tries to achieve some adversarial goals in Section 4.4.2 to break the security

and/or privacy of the users or the system.
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4.3 Continuous Authentication Protocol

In this section, we describe our novel continuous authentication protocol, which in-

cludes both the password authentication phase and continuous authentication using

the biometrics of the user. Particularly, in our continuous authentication protocol,

a user, Useri, is involved in two phases. The enrollment phase is implemented only

once and can be implemented at any time before the authentication phase. The

authentication phase consists of two parts. The initialization part is implemented

only one time, but it has to be implemented every time the user wants to log in. It

is required to establish a secure and authentic channel between the user and CAS.

Finally, the authentication phase is performed periodically, in which the period de-

pends on the underlying biometrics-based authentication mechanism. The quicker

and more accurate systems are better for security. We explain the details of en-

rollment and authentication phases below and illustrate them in Figure 4.2, 4.3,

and 4.4, respectively.

Enrollment Phase

In the enrollment phase, a secure template is generated from a biometric trait and

stored in CAS. The following are the steps of the enrollment phase:

𝑈𝑠𝑒𝑟𝑖
𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑟𝑣𝑒𝑟
(C𝐴𝑆)

• 𝑃𝑤𝑑𝑖
′ ← 𝑃𝑤𝑑𝑖

• 𝑡𝑖,𝑡 ← 𝑇𝑒𝑚𝑝𝐺𝑒𝑛(𝐸𝑥𝑡(𝐵𝑖𝑜𝑖,𝑡))

𝑃𝑤𝑑𝑖
′, 𝑡𝑖,𝑐𝑡𝑟0 , 𝐼𝑑𝑖

• 𝐷𝐵𝑖 = (𝐼𝑑𝑖 , 𝑃𝑤𝑑𝑖
′, 𝑡𝑖,𝑐𝑡𝑟0 , 𝑇𝑖)

Enrollment

time

Figure 4.2: The enrollment phase of our proposed continuous authentication proto-
col.
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• If AS outputs 0 then halt, otherwise 
continue

• CAS receives the shared session key 𝐾𝑖
• CAS grants access to 𝑈𝑠𝑒𝑟𝑖 on a server 

device 𝑆𝑒𝑟𝐷𝑒𝑣
• CAS sets the constants 𝑇𝑖𝑚𝑒, 𝑀𝑖𝑛𝑄𝑢𝑒𝑟

and 𝑀𝑖𝑛𝑀𝑎𝑡𝑐ℎ

• If 𝑈𝑠𝑒𝑟𝑖 outputs 0 then halt, otherwise 
continue

• 𝑈𝑠𝑒𝑟𝑖 receives the shared session key 
𝐾𝑖

𝑈𝑠𝑒𝑟𝑖

𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑞𝑢𝑒𝑟𝑦

PAKE

Initialization

time

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠
𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑟𝑣𝑒𝑟

(C𝐴𝑆)

Figure 4.3: The initialization phase of our continuous authentication protocol.

1. Useri computes ti,0 = TempGen(Ext(Bioi,0)).

2. Useri registers a cryptographic transformation of her password Pwdi, her tem-

plate ti,0 along with her identity, Idi by following the underlying PAKE pro-

tocol. Note that during enrollment, CAS may want to authenticate Useri

and her information through her physical presence. Moreover, CAS may

store additional information about the user in DBi such as her matching

threshold value Ti. The final stored information for each user is shown as

DBi = (Idi, Pwd
′

i, ti,ctr0 , Ti).

Authentication phase

In the authentication phase, a user’s biometric template is periodically verified by

the authentication server after a secure and authentic channel is initialized based

on PAKE.
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𝜎𝑗 , 𝑀𝑗 = ( 𝑡𝑖,𝑗||𝑗)

Continuous 
Authentication

• 𝑡𝑖,𝑗 ← 𝑇𝑒𝑚𝑝𝐺𝑒𝑛(𝐸𝑥𝑡(𝐵𝑖𝑜𝑖,𝑡))

• 𝑁𝑢𝑚𝑄𝑢𝑒𝑟 += 1 for every valid 
packet
• 𝑁𝑢𝑚𝑀𝑎𝑡𝑐ℎ += 1, if 

𝑇𝑒𝑚𝐶𝑜𝑚𝑝(𝑡𝑖,𝑐𝑡𝑟0 , 𝑡𝑖,𝑗) ≥ 𝑇𝑖

• If 𝑁𝑢𝑚𝑄𝑢𝑒𝑟 == 𝑀𝑖𝑛𝑄𝑢𝑒𝑟 at time t
and 𝑡 ≤ 𝑇𝑖𝑚𝑒,  then:
o If 𝑁𝑢𝑚𝑀𝑎𝑡𝑐ℎ ≥ 𝑀𝑖𝑛𝑀𝑎𝑡𝑐ℎ, 

then continue
o If 𝑁𝑢𝑚𝑀𝑎𝑡𝑐ℎ < 𝑀𝑖𝑛𝑀𝑎𝑡𝑐ℎ, 

then halt
• If 𝑁𝑢𝑚𝑄𝑢𝑒𝑟 < 𝑀𝑖𝑛𝑄𝑢𝑒𝑟 at time t

and 𝑡 = 𝑇𝑖𝑚𝑒, return halt

𝑈𝑠𝑒𝑟𝑖

…
• If continue, then
𝑡𝑖,𝑗 ← 𝑇𝑒𝑚𝑝𝐺𝑒𝑛(𝐸𝑥𝑡(𝐵𝑖𝑜𝑖,𝑡 ))

• AS sets t = 0, 𝑁𝑢𝑚𝑄𝑢𝑒𝑟 = 0, and 
𝑁𝑢𝑚𝑀𝑎𝑡𝑐ℎ = 0

continue/halt

𝜎𝑗 , 𝑀𝑗 = ( 𝑡𝑖,𝑗||𝑗)

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠
𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑟𝑣𝑒𝑟

(C𝐴𝑆)

time

Figure 4.4: The continuous authentication phase of our continuous authentication
protocol.

Initialization: Useri and CAS execute the underlying PAKE protocol to authen-

ticate each other mutually and generate a session key Ki, which then establishes a

secure and authentic channel. If the mutual authentication is successful, then

1. CAS sets the constants Time, MinQuer, and MinMatch.

2. CAS initiates a continuous session for Useri (granting access to Useri on the

server device, SerDev such as her computer.

Continuous Authentication: In this phase, a user generates her templates and

sends them to CAS through the secure and authentic channel established in the
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initialization phase. Assuming the mutual authentication in the initialization phase

is successful, the following steps are executed and are shown in Figure 4.4:

1. CAS sets its system time t = 0, NumQuer = 0, NumMatch = 0, and keeps

track of the system time t.

2. Useri continuously computes her secure biometric templates ti,j for j = 1, 2, ...,

and sends packages of the form (ti,j||j)1 to CAS using the confidential and

authentic channel established through the shared session key Ki. For each

valid package that CAS receives, CAS increments NumQuer by one, and for

each ti,j with TempComp(ti,0, ti,j) ≥ Ti, CAS increments NumMatch by one.

3. If NumQuer == MinQuer at time t and t ≤ Time, then

• If NumMatch ≥ MinMatch, then return (1), indicating the continuity of

the session.

• If NumMatch < MinMatch, then CAS terminates the session and the

protocol halts.

4. If NumQuer < MinQuer in time t and t = Time, then CAS terminates the

session and the protocol halts.

5. If AS returns 1, the protocol continues from step (2), where the user computes

her new biometric template periodically.

4.4 Security & Privacy Analysis

In this section, we analyze the security requirements of the protocol and we show

how PACA is secure and robust against eight well-known malicious in against the

privacy-aware biometrics-based authentication protocols.

1Here, appending j plays the role of a counter to prevent some obvious replay attacks.
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4.4.1 Analysis of Security Requirements of the Protocol

In our protocol, the basic requirements are provided through the PAKE protocol ex-

ecuted during the initialization phase. A particular example of this PAKE protocol

could be OPAQUE [Kra18], which is a strong asymmetric PAKE protocol provid-

ing security against pre-computation attacks. In [Kra18], the different versions of

the PAKE protocol with different security features are proposed. We specifically

consider the version called ”the generic OPRF+AKE construction”. This version

is based on Oblivious Pseudo-Random Functions (OPRF) and Authenticated Key

Exchange (AKE). The full description of the OPAQUE protocol providing the full

forward secrecy and mutual authentication and generating the shared session key

between the parties with only three messages exchanged between the user and server

can be found in Figure 12 of [Kra18]. In the following sub-sections, we will show

how this specific version of OPAQUE provides the secure channel and satisfies the

perfect forward secrecy and mutual authentication in PACA.

Secure channel. The primary use case of PAKE protocols [Kra18, Wu07] is that

the user does not need to rely on any outside key other than his password. The

shared session key Ki is generated from the user’s low-entropy password during

the execution of the OPAQUE protocol. Then, throughout the entire session, the

secure channel is provided through this shared session key. This provides a confiden-

tial and authentic communication channel and protects the current session against

eavesdropping and man-in-the-middle attacks. Particularly, in PACA, this shared

session key Ki is generated during the initialization phase of our protocol after

executing the PAKE protocol between the Useri and CAS.

Mutual authentication. TLS provides only server-side authentication through

the certificates, and the password provides the authentication for the user side. How-

ever, PAKE protocols achieve mutual authentication without the need for TLS or
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any PKI infrastructure. For example, the OPAQUE [Kra18] protocol uses HMQV [Kra05]

as a base AKE protocol to provide mutual authentication. HMQV extends the com-

putational Diffie-Hellman (DH) key exchange with Exponential Challenge-Response

(XCR) signatures. These signatures are proven to be unforgeable in [Kra05], and

they are computed directly on the identity of parties. The ability of parties to

provide the signature shows the proof that exchange is carried by the claimed par-

ties and since the messages on which the signatures are computed are directly the

identity of the user and server, it proves that the key they computed is uniquely

associated with the correct identities (i.e., mutually authenticated).

Forward secrecy. A protocol is said to have the forward secrecy [Kra05], if the

session keys of previous runs can not be recovered by the attacker after the keys are

established, used, and deleted from the memory even after the compromise of long-

term keys. Similar to the mutual authentication, the forward secrecy in OPAQUE

is provided by the HMQV protocol. The perfect forward secrecy can be achieved

if one of the user messages depends on the user’s private key. This is achieved by

letting DH values by both parties for the session.

4.4.2 Attack Resistance.

In this section, we first present several known attacks against privacy-aware biometrics-

based authentication systems [RCB01, PM17] and we also analyze if our protocol

is robust against these attacks. More specifically, we present the adversarial goals

(AGs); hence, the adversarial model, attack strategies, their analysis, and the coun-

termeasures our protocol provides against the attacks.

In our proposed continuous authentication protocol, the underlying PAKE method

provides the basic security features given in 4.4.1; however, it does not guarantee
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that the user data will not be revealed to the CAS. This violates the privacy of

the user against the server, and to protect the user privacy, in the next section, we

propose the use of NTT-Sec-R for realizing the function TempGen() which is used

as a black-box function. The proposed template generation function and its benefits

are separately evaluated in Section 4.5.3 and 4.5.4.

AG-1: Password recovery attacks. In this attack, the adversary’s goal is to

recover the password of a user. An adversary who is capable of actively controlling

sessions or compromising a server can achieve this goal only if he succeeds in an

exhaustive offline dictionary attack.

Analysis of the attack: Such dictionary attacks cannot be prevented perpetually, but

strong passwords would increase the run time of the attack. More precisely, assum-

ing that users choose their passwords uniformly at random from a password space

PassSpace, then the attack would require |PassSpace| trials. In OPAQUE [Kra18],

it has been shown that the cost can be increased by increasing the number of it-

erations in the hashing operation (i.e., replacing H with Hn in the full protocol).

Moreover, we quantify the cost of this attack in Section 4.5.3 particularly for our

implementation.

AG-2: Impersonating the user (or the server) at the initial login phase. In

this attack, the adversary’s goal is to initiate a session and generate a valid session

key on behalf of a user, or impersonate a server to a user. These may be achieved

by the following two attacks:

1. Replay attack: Adversary may try to replay messages from the previous runs

of the protocol between the user and the server.

Analysis of the attack: Such an attempt would fail thanks to the fresh and

randomized session keys generated per session with PAKE.
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2. Password recovery attack through the user impersonation: If an adversary achieves

AG-1 above, she can clearly achieve AG-2.

Analysis of the attack: As in the analysis of AG-1, an offline dictionary attack

cannot be prevented perpetually, but strong passwords would increase the run

time of the attack.

AG-3: Session intervene. In this attack, the adversary’s goal is to intervene an

active session of a user, and to stay undetected as long as possible while behaving

maliciously (e.g. interacting with SerDev and impersonating Useri). In the following,

we assume that Useri initiates a session with CAS and they both computes the shared

session key Ki. We also assume that UsrDevi stores a copy of Ki. The adversary

can achieve AG-3 as follows:

1. Package delay attack: In this first attack scenario, an adversary eavesdrops the

communication between Useri and CAS, and interrupts a sequence of legiti-

mate packages (including templates and their counters (ti,j||j), j = 1, 2, ..., k,

encrypted under Ki) going from Useri to CAS. Now, suppose that Useri is out

for lunch after sending her last package and leaves the server device SerDev

unlocked 2. Then, the adversary forwards the packages she already collected

to CAS while behaving maliciously on SerDev. Receiving sufficiently many

legitimate packages (e.g., at least MinQuer in time Time), CAS cannot distin-

guish the adversary from Useri, and therefore, the adversary stays undetected

and achieves her goal.

Analysis of the attack: This attack can be detected easily if the server device

SerDev (i.e., the user’s computer) acknowledges CAS immediately after an ac-

2This is a reasonable user behavior in a continuous biometric authentication scheme
as such systems assure that adversaries can successfully be detected when they try to
impersonate legitimate users.
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tion is received on SerDev because CAS can detect whether or not the adversary

is interrupting and delaying legitimate packages while Useri is legitimately in-

teracting with SerDev.

2. Zero-effort and mimicking attacks: In this second attack scenario, we assume

that Useri is out for lunch after initiating a session with CAS and establishing

Ki. We also assume that Useri leaves her device UsrDevi behind, and leaves

the server device SerDev unlocked. Now, the adversary captures UsrDevi, and

presents her own biometric measurements to CAS (zero-effort attack), or tries

to reproduce the physiological or behavioral characteristics of Useri (i.e., imi-

tation attack).

Analysis of the attack: The success rate of this attack would be strongly corre-

lated to the FAR of the system, and the uniqueness of the underlying biometric

trait. See Section 4.6.1 for the FAR rates of our protocol and see [AAUA18]

for the robustness of WACA against the mimicking attacks.

3. Session key reveal attacks: The third attack scenario is similar to the second

one, but we consider a more powerful adversary. We assume that Useri is out

for lunch after initiating a session with CAS, establishing Ki, and sending some

packages to CAS (including templates and their counters (ti,j|j), j = 1, 2, ..., k,

encrypted under Ki). We also assume that Useri leaves her device UsrDevi

behind and the server device SerDev unlocked. In addition, we assume that

the adversary recovers the session key Ki from UsrDevi. Having captured

some of the previously exchanged packages, the adversary can now recover ti,j

using the knowledge of the key Ki. Next, the adversary can form legitimate

packages with the appropriate counters and impersonate Useri during that

current session.

Analysis of the attack: We do not consider this cascaded third attack to be a
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practical attack because it requires an attacker to extract the session key from

the user device in a relatively short amount of time (i.e., before a new session

starts, and a new session key is generated).

4. Input device replacement attack: The fourth attack that we consider is rather

a physical attack. After a session is initiated between Useri and CAS, the

attacker replaces the legitimate input device of SerDev (e.g., a keyboard or

a smartwatch) by her own malicious input device. Useri may still think that

she is interacting with SerDev through the legitimate input device, and she

may keep sending valid packages to CAS. In the meantime, SerDev receives

the adversary’s malicious input through the legitimate input device, and CAS

keeps the session live based on the legitimate packages it receives from Useri.

Analysis of the attack: This attack may work in theory, but it may be challeng-

ing to deceive Useri that she is interacting with SerDev through the legitimate

input device while indeed she is providing her input through a malicious input

device. Therefore, we do not consider this fourth attack to be practical.

AG-4: Recovering biometrics. In this attack, the adversary tries to recover the

biometric information of a user.

1. Server compromise attack: The adversary may be able to capture some of the

biometric templates ti,j of Useri by compromising the server database, or by

capturing some of the packages from a previous session and the session key Ki

of that specific session. Then, the adversary can try to reverse the templates

back to the biometric information.

Analysis of the attack: The success rate of the adversary would depend on the

difficulty of reversing templates for the given template generation algorithm.

Therefore, this attack does not seem to be feasible if an irreversible and in-

87



distinguishable template generation algorithm TempGen is deployed. We show

the proof of this in Section 4.5.3 more formally for our implementation.

4.4.3 Further notes on the attacks, their limitations, and

justification for multi-factors

1. If an adversary captures the secure template of a user ti,t and a particular

session key Ki, but not the password (Pwdi), then the adversary can imper-

sonate Useri only for that session, because in the next session a fresh session

key is generated by the underlying PAKE method and without the knowledge

of the new session key, the adversary cannot produce secure templates and

legitimate packages to send to CAS.

2. If an adversary captures the password of a user (Pwdi), but not the template

of a user (ti,t), then she can initiate a session, but her chances for avoiding

detection are limited by the success probability of the mimicking attack or the

zero-effort attack (or FAR attack).

3. Another interesting scenario is when an adversary steals the template (ti,t) and

the password of a user (Pwdi). In this case, the adversary can impersonate the

user forever unless the user becomes aware and resets the password and re-

enrolls in the system. Therefore, one may consider equipping the user device

UsrDev with a public key private key pair and involve UsrDev in the session key

generation at the beginning of the protocol. For example, a UsrDev signature

together with a timestamp can independently be used to confirm that Useri is

initiating a session with CAS. In this scenario, the adversary would need the

template, password, and also the user device to impersonate Useri. If the user

cannot locate her device at any time, she may acknowledge CAS, reset her
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password, and re-enroll. Moreover, even if the two-way TLS is affordable in

the system, a password would still provide an extra barrier for the adversary

in case she captures the user’s biometric information and device.

We note that even if UsrDev has a long-term private key and it becomes a part

of the protocol in the session key generation, one would still need a biometric factor

because otherwise, an adversary would successfully impersonate Useri in lunchtime

type attacks by temporarily accessing UsrDev.

The use of a password is also important in our case because PAKE eliminates the

need for TLS for mutually authenticating Useri and CAS. Moreover, passwords pro-

vide extra protection against an adversary who already captured the user’s biometric

information and device. In summary, combining all three factors what you know

(password), what you have (device), and who you are (biometrics) would provide

the most comprehensive secure and privacy-aware setup.

4.5 Full Implementation

In this section, we describe our hybrid (password and keystroke dynamics), contin-

uous, and privacy-preserving biometric authentication system, which is illustrated

in Figure 4.5. Both for performance evaluation purposes and as a walk-through

proof-of-concept case study, we fully deployed Wearable-Assisted Continuous Au-

thentication framework called WACA [AAUA18, AAUA20] as an example continu-

ous biometric authentication system in this study. On the other hand, we utilized

NTT-Sec-R by improving NTT-Sec [KC16] as a template generation and comparison

algorithm, to address the aforementioned privacy issues in continuous biometric au-

thentication settings. We applied a feature selection algorithm and selected the top

15 features from WACA. These features included the time and frequency domain
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Figure 4.5: The architecture of our concrete continuous authentication system used
as a case study.

statistics (e.g., mean, median, entropy) of the raw sensor values for a certain pe-

riod. Moreover, we also improved NTT-Sec to handle the real-valued feature vectors

while moderately preserving accuracy. As both of these example methodologies are

generic, they can be applied to any biometric-based authentication algorithm, which

has a real-valued feature vector. For example, this could be sensor-based keystroke

dynamics, which can be used for the authentication of computer [AAUA18], smart-

phone [LL17], or wearable [FBM+13] users.

In the following sections, we first explain WACA’s design and our modifications.

Then, we explain NTT-Sec-R and show how to use it in the settings of continuous

authentication. Finally, we also show how NTT-Sec-R provides security properties

such as irreversibility and indistinguishability while protecting the user templates

from the third parties.
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4.5.1 Testing with a sample continuous authentication sys-

tem

WACA is based on the idea of sensor-based keystroke dynamics, where the authenti-

cation data is collected and extracted from the accelerometer and gyroscope sensors

of a wearable device (e.g., smartwatch). In our protocol, the wearable device corre-

sponds to the parameter UsrDev, while the user’s computer corresponds to SerDev

parameter. Since the continuous authentication is based on the sensor data trav-

eling from the smartwatch to the computer, the security and privacy of the data

become very important. NTT-Sec-R ensures the security and privacy of the data

and also makes authentication possible over the noisy nature of the context. In this

subsection, before presenting the evaluation study, we first provide an overview of

WACA.

In WACA, the raw motion sensor data of the smartwatch is acquired through an

app installed on the watch, and the sensor data is transmitted to the computer. In

our concrete system, we encrypt this data with the shared session key Ki generated

by the underlying PAKE protocol.

In the enrollment phase of WACA, the created feature vector and the user’s id

are stored together as a profile in the AS, which is located in a trusted place. Then,

in the authentication phase of WACA, the decision of the authentication is made

by the decision module by computing a similarity score between the feature vector

dispatched from the AS and the incoming feature vector of the current user. In the

end, the decision module makes a binary authentication decision (match/no-match)

by comparing the similarity score with a predetermined threshold value. If the deci-

sion is a no-match, then the user’s access to computing terminal is suspended, and

the user is required to re-login using the initial authentication method (e.g., pass-
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word, or 2FA [LUB14b, ALB+19]). If the decision is a match, then the user’s access

is maintained without interrupting the user. This process is repeated periodically

with a predetermined period.

Moreover, in WACA, the raw accelerometer data is represented in the format of

~acc =< ta, xa, ya, za > and gyroscope data is represented as ~gyro =< tg, xg, yg, zg >,

where t is timestamp information and x, y, z represent three axis values of the ac-

celerometer and gyroscope sensors. In the preprocessing, to remove the effect of the

noise from data, M-point Moving Average Filter (MAF) is applied. After filtering,

to obtain a scale-invariant feature vector, the feature vector is normalized through

the linear normalization. In this chapter, we start with the original size of 84 sta-

tistical features, but to increase both the computational efficiency and accuracy, we

applied a feature selection algorithm, which is explained in the next subsection. In

the decision module of WACA, the user is classified as authorized or unauthorized

for the claimed credentials entered during the initial login. The final authentication

decision is given by comparing the samples of through the distance measures such

as Euclidean or Manhattan distance.

New feature extraction and optimization

As noted above, in WACA, the length of the feature vector is 84. However, we

observed that this both affects the security and performance of the system negatively.

To prevent this, we improved WACA by applying a feature selection algorithm.

Specifically, we applied different univariate feature selection algorithms. The reason

we chose univariate algorithms is that we did not want the final feature vector to be

dependent on the algorithms used in the decision module. Particularly, we tested

three different univariate feature selection algorithms: Chi2 [PVG+11a], Mutual

Information [KL87], and F-score [PVG+11b]. The results are plotted according to
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Figure 4.6: The result of feature selection algorithms.

a varying number of features in Figure 4.6. As can be seen in Figure 4.6, the result

of F-score algorithms with the feature vector length of 15 gives the least (average)

EER, 0.0208. The top 15 features selected by F-score are specified in Table 4.2.

For the rest of the chapter, we use these 15 features of WACA, instead of originally

proposed 84 features in WACA.

4.5.2 Testing with a secure template generation and com-

parison method: NTT-Sec-R

As mentioned earlier (Section 4.2.2) that our protocol description requires secure

template generation (TempGen) and comparison (TempComp) functions. Our im-

plementation is based on the cryptographic primitive NTT-Sec [KC16]. We chose

NTT-Sec because (1) the NTT-Sec is solely based on publicly computable functions

(generalizing cryptographic hash functions in a setting with noisy measurements
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Table 4.2: 15 features chosen by F-score algorithm and used in our experiments.

Feature Formula F-scores

mean of accelerometer’ x-axis mean(accx) 1289.51
cross-correlation between accelerometer’ x- and z-axis sum(abs(xcorr(accx, accz)))) 989.89
median of accelerometer’ x-axis median(accx) 626.99
median of accelerometer’ y-axis median(accy) 497.72
mean of accelerometer’ y-axis mean(accy) 466.377
entropy of accelerometer’ y-axis entropy(accy) 377.96
entropy of accelerometer’ x-axis entropy(accx) 285.51
mean absolute deviation of gyroscope’ y-axis mad(gyroy) 205.32
cross-correlation between accelerometer’ y- and z-axis sum(abs(xcorr(accy, accz)))) 175.16
range of gyroscope’ y-axis range(gyroy) 171.11
covariance of gyroscope’ y-axis cov(gyroy) 151.62
spectral energy of gyroscope’s y-axis sum(fft(gyroy). ∗ conj(fft(gyroy))) 144.86
spectral energy of accelerometer’s z-axis sum(fft(accz). ∗ conj(fft(accz))) 136.50
mean absolute deviation of gyroscope’s z-axis mad(gyroz) 131.15
mean of accelerometer’s z-axis mean(accz) 122.00

of data), and (2) NTT-Sec offers formal security analysis with no known attacks

to date. Overall, NTT-Sec offers certain advantages over its alternatives. More

specifically, (1) homomorphic encryption-based methods [AAUC18] are not suitable

for the CA protocol due to the requirement of public key and private key on the

user side; (2) many of the previously known biometric cryptosystems (e.g., fuzzy

extractors [JW99]) are known to have security issues for their reusability [BA11]

and they are limited in their noise tolerance capability; (3) Cancelable biometrics

constructions [RU11], in general, lack formal security analysis, and many construc-

tions have been shown to be vulnerable under false acceptance and stolen key at-

tacks [AGKL19].

NTT-Sec consists of two algorithms called Proj (project) and Decomp (decom-

pose). The Proj algorithm maps a length-n binary vector (considered as the feature

vector) to a finite field element (considered as its secure template) using a priori-fixed

set of public parameters and a factor basis. Given a pair of secure templates, the

Decomp algorithm can detect whether the templates originate from a pair of binary

feature vectors that differ in at most t indices for a priori-fixed error threshold value
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t. In Decomp, the detection is achieved by checking whether a particular finite field

element can be written (decomposed) as a product of the factor basis elements in

a certain form. Computations in NTT-Sec are performed in a cyclotomic subgroup

G of the multiplicative group of a finite field. We adapt the same group structure

in our modification. More specifically, let Fq be a finite field with q elements where

q = pm. Let c ∈ Fq be a non-quadratic residue with minimal polynomial of degree

m over Fp. Let Fq2 = Fq(σ) be a degree two extension of Fq where σ is a root of

x2−c. Fq2 has a cyclotomic subgroup G of order q and every non-identity element in

G can be represented as a+σ
a−σ for some a ∈ Fq. Moreover, we say an element a ∈ G is

k-decomposable over Fp if it can be written as a product a =
∏k

i=1

(
ai+σ
ai−σ

)
for some

Fp-elements a1, a2, . . . ak.

The original NTT-Sec is only limited working with binary feature vectors by its

design. On the other hand, biometric data [AAUA18] we deal with in this work

and in most cases such as physiological biometrics [RKBT07] or behavioral biomet-

rics [FBM+13] is represented through real-valued feature vectors. Therefore, we

extend NTT-Sec to a new construction NTT-Sec-R, which comprises two algorithms

called NTT-Hash-R and NTT-Match-R. We use the scale-then-round transformation

in [AKK19] to transform the real-valued feature vectors to integer-valued vectors.

Moreover, we describe NTT-Param-R for the new parameters required in NTT-Sec-R.

NTT-Param-R

We assume that n and t are some fixed values that represent the length of feature

vectors and (original) system threshold, respectively. More specifically, a (non-

cryptographic) biometric authentication system would declare match for an input

pair of biometric data if and only if d(x, y) ≤ t, where d is the Manhattan distance
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function (`1), and x, y are the length-n feature vectors of the biometric data. The

parameters of NTT-Sec-R are defined as follows:

• a scaling factor s,

• a prime number p such that p > 2n,

• an integer m such that m ≥ bste,

• a set B = {g1, g2, . . . , gn} such that 1 ≤ gi ≤ p−1
2

for each i.

We pack all of these parameters under the set SP = {n, t, s, p,m,B}, and call this

as the system parameter set. Note that SP can be made public, and commonly

used in the NTT-Hash-R and NTT-Match-R algorithms. SP should be determined

in accordance with the desired security parameter λ in order to make NTT-Sec-R

resistant to adversarial attacks.

NTT-Hash-R

This algorithm maps a real-valued feature vector to a G-element called hash3 value

as follows: Assume a fixed-length real-valued feature vector x = (x1, x2, . . . , xn) in

[0, 1]n is given. Using the scaling factor s and the basis B = {g1, g2, . . . , gn}, it is

mapped to a G-element, defined as

NTT-Hash-R(x) =
n∏
i=1

(
gi + σ

gi − σ

)bsxie
where b·e is the nearest integer function.

NTT-Match-R

For a given hash value h = NTT-Hash-R(x) for some x = (x1, . . . , xn) in [0, 1]n, a

real-valued vector y = (y1, . . . , yn) in [0, 1]n and a positive real number t, the goal

3We have chosen the name “hash” because the algorithm eventually satisfies randomness
and irreversibility similar to the hash functions.
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of NTT-Match-R is to decide whether
∑

i=1 |xi − yi| ≤ t or not by using their hash

values. To achieve this goal, the following process is performed.

NTT-Hash-R computes hy = NTT-Hash-R(y), and then it decides whether the

G-element h/hy is bste-decomposable. Furthermore, if the retrieved Fp-elements

belong to the basis B, NTT-Match-R returns Match, otherwise No−Match.

4.5.3 A Security Analysis of NTT-Sec-R

The best strategy for an adversary to attack the new NTT-Sec-R method (with

respect to both irreversibility and indistinguisahbility notions) is to solve the dis-

crete logarithm problem in the underlying cyclotomic group, which belongs to the

finite field Fp2m . Discrete logarithms in Fp2m can be computed in time bounded by

(max(p,m))O(log2m) [BGJT14]. As analyzed in [KC16], an attacker needs to solve

(n + 1) discrete logarithms, and so we calculate the cost of this discrete logarithm

attack to be (n+ 1)(max(p,m))log2m.

Security Levels

In Section 4.6.1, we analyze the security level of our NTT-Sec-R implementations

using the scalars s = 100 and s = 400, and denoted by NTTSec100 and NTTSec400,

respectively. The prime number p = 31 is chosen for both implementations. Note

that the vector length is fixed as n = 15. Using these parameters, the security

levels λ, which correspond to the minimum cost of the DLP attack [BGJT14] and

considered as 2λ, are provided in Table 4.3.

Remark. We note that we are rather conservative in our security analysis, and

our estimated bit security levels can be increased in practice at almost no-cost.

For example, since a user is already equipped with a password in the protocol,
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Table 4.3: Security Levels of NTT-Sec-R for each user tested against the Discrete
Logarithm Problem (DLP) attack [BGJT14].

User
DLP

NTTSec100 NTTSec400

m λ m λ
1 71 42 281 70
2 101 48 389 78
3 73 42 307 72
4 59 39 227 65
5 101 48 397 79
6 67 41 241 67
7 97 48 367 77
8 131 53 509 85
9 59 39 239 66
10 229 65 919 101

User
DLP

NTTSec100 NTTSec400

m λ m λ
11 89 46 347 75
12 67 41 241 67
13 89 46 337 75
14 167 59 673 92
15 191 61 739 95
16 149 56 587 89
17 43 33 173 59
18 137 54 541 86
19 97 48 359 76
20 113 51 443 81

that password can be taken as part of the input in the feature extraction process,

while making attacker’s task harder in the template reversing attack. This would

also allow a legitimate user to revoke his template, and reissue a new template by

changing his password and re-enrolling to the system, and also to reuse his biometric

data over different systems by choosing different passwords.

4.5.4 Security benefits of NTT-Sec-R

In this section, we show the extra security benefits of NTT-Sec-R, in addition to the

security properties provided by the PAKE protocol.

User Data privacy. The user data is very sensitive as it contains the biometrics

information so it should be protected from any third party including the authenti-

cation server and as well as any kind of eavesdropping. In our protocol, the data is

transformed in an indistinguishable and irreversible way before transmitted to any

party from the users. Therefore, no party sees the sensitive user data in cleartext.
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No key required. The security of NTT-Sec-R is based on a discrete logarithm

problem, where it does not require to store any keys. Therefore, the security of

NTT-Sec-R is not based on a key.

4.6 Performance Evaluation

In this section, we evaluate our proposed system in terms of accuracy and resource

consumption.

Implementation Details. To evaluate the performance of our proposed concrete

privacy-aware continuous authentication system, we implemented it on a real sys-

tem. Specifically, for the timing results of NTT-Sec-R algorithm’s implementation,

the codes were written in the C programming language using the GCC 5.4.0 com-

piler. The Core i7-7700 CPU @ 3.60GHz desktop computer was used with Ubuntu

16.04 LTS running. The CPU time of the match operation was measured using

the function clock() from the time.h library. All the timings were provided in mil-

liseconds. For the linear algebra and finite field computations, we used the popular

FLINT C-library by William Hart et al. [HJP13]. In our implementation, for accu-

racy analysis, we used the scalars 40, 100, 400, and 1000 and denoted by NTTSec40,

NTTSec100, NTTSec400, and NTTSec1000, respectively.

To measure the resource consumption of our proposed continuous authentication

system, we used an Apple smartwatch. The results of the resource consumption

experiments are given in Figure 4.9. The feature calculation was strictly done on

the device. The measurements were taken on a 38mm Apple Watch. The feature

calculation code was implemented in C. We used KissFFT library [Bor] for FFT

calculations in spectral entropy and cross-correlation features. It is worth noting

that we only implemented the most time-consuming parts and the computations
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on the relatively constrained devices (e.g., smartwatches). The implementation of

PAKE was already implemented and analyzed in many works and languages [Wu07,

Coc20] before.

4.6.1 Accuracy Analysis

A User-based evaluation model with training

We pick the first 10 feature vectors of the i’th user for training. Denote this set by

Traini = {[i, j] : j = 1, ..., 10}, and the remaining 10 feature vectors by Testi =

{[i, j] : j = 11, ..., 20}. We picked a subset of 5 feature vectors from Traini, and

computed the mean of these 5 feature vectors combinations. This is also called as

the gallery feature vector of a user. As a result, we generated
(

10
5

)
= 252 gallery

feature vectors per user (simulating 252 different enrollments of a user), and denoted

this set by Galleryi. In our EERi calculations, we paired each vector from Galleryi

and Testi. This yielded 252 · 10 = 2520 genuine comparisons for the i’th user. For

the i’th user, we also paired the first 10 vectors from Galleryi with all the vectors

from Testj for all j 6= i. This yielded 10 · 10 · 19 = 1900 imposter comparisons for

the i’th user.

Implementation Results

In this section, we discuss our implementation results. Using the same dataset, we

implemented two different techniques: Manhattan Distance (MD) (i.e., no secure

template generation) and NTT-Sec-R algorithm. Unlike the MD, the NTT-Sec-R

algorithm requires the feature vector elements to be an integer; therefore, using the

accuracy preserving transformation idea in [AKK19], we transformed real-valued

to the integer-valued feature vector. The selection of scalar for scaling purposes is
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important, and for that reason, we analyzed the experimental results of different

(suitable) scalars. Note that we are reporting the FRR and FAR values at the first

threshold point where FRR becomes less than or equal to FAR, implying EER.

For the FRR and FAR values, the MD was implemented using the Python Pro-

gramming language, where the threshold value was incremented by 0.001 in each

step to obtain accurate results. Furthermore, the referenced vectors and query vec-

tors were both taken as floating-point values. Hence, the error rates of the MD

can be used as a point of reference — in terms of the result accuracy — for the

NTT-Sec-R implementations. Using the EER threshold points from the MD results,

we determined the parameters for the NTT-Sec-R algorithm. Among the parame-

ters, the threshold values were computed as T = bs · te where “s” is the (chosen)

scalar and “t” is the threshold value obtained from MD results. Considering accu-

racy and computational efficiency, we tested different scalars. Smaller scalar means

faster computation but more loss of error rate accuracy while larger scalar implies

slower computation and lesser loss of accuracy.

To show the change of error rate accuracy, we computed |MD−NTTSeci| using

the FRR and FAR values for each user where i ∈ {40, 100, 400, 1000}. The abso-

lute FRR and FAR differences of the NTTSec implementations w.r.t. the MD are

presented in Figure 4.7 and Figure 4.8, respectively.

For the ease of our readers and to save space, the Figures 4.7 and 4.8 are the

summary of our extensive results. It is evident that scalar 40 results in more loss

of error rate accuracy than other selected scalars in both figures. One the other

hand, the accuracy is well preserved using the scalar 1000. 1000 is 25 times of 40,

which implies that the efficiency of the match function of NTT-Match-R algorithm

will be affected even by a higher factor due to the very large underlying algebraic
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Figure 4.7: The absolute FRR difference between the Manhattan distance (MD)
and NTT-Sec-R implementations using the scalars 40, 100, 400 and 1000 for all the
20 users.
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and NTT-Sec-R implementations using the scalars 40, 100, 400 and 1000 for all the
20 users.
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structure. Hence, the scalars 100 and 400 seem to be good candidates for deciding

on efficiency and keeping security into consideration.

Timing Results

In this section, we report only the timing results of the matching function because

it is the bottleneck in the running time of NTT-Sec-R algorithm. The Match op-

eration corresponds to TempComp function in Figure 4.5 and in our protocol. As

explained in Section 4.5.2, the NTT-Sec-R requires finite field and linear algebra op-

erations over integers; therefore, the scalar is directly proportional to the efficiency

of the NTT-Sec-R. But one must also balance the loss of error rate accuracy and

computation efficiency. For example, for User-10, we find the average CPU tim-

ings of 4.494, 39.652 and 1408.454 milliseconds in the NTTSec40, NTTSec100, and

NTTSec400, respectively. The loss of computational efficiency from scalar 100 to

400 is more significant than the loss of error rate accuracy. But the security of the

protected template should also be considered. Therefore, we are focusing on and

reporting the timing results of the NTTSec100 and NTTSec400 for all users.

The NTT-Match-R algorithm is comprised of Hash and Match functions, as also

explained in Section 4.5.2. The Hash function takes the feature vector and finite

field parameters as input. Then, the function computes a new field element by using

the elements of the feature vector as an exponent of the field element. Therefore,

the hash function corresponds to the secure template generation algorithm in PACA

(i.e., TempGen). Similarly, the Match function takes the same finite field parameters

and two field elements to perform the comparison. The function outputs Match or

No-Match according to the (fixed) threshold. Similar to the hash function, the

match function corresponds to the secure template comparison algorithm in PACA

(i.e., TempComp) Note that the Match function requires the hashed values of both
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Table 4.4: The average timing results of the Match functions of NTTSec100 and
NTTSec400 algorithms in milliseconds.

User 1 2 3 4 5 6 7 8 9 10
NTTSec100 2.667 5.877 2.689 1.302 5.893 2.290 4.530 9.681 1.286 39.652
NTTSec400 68.773 154.441 83.268 39.198 143.128 35.313 113.392 290.592 43.850 1408.454

User 11 12 13 14 15 16 17 18 19 20
NTTSec100 4.305 2.264 4.285 15.924 27.268 14.821 0.769 12.034 4.527 6.740
NTTSec400 116.286 35.172 97.893 507.976 762.882 378.951 21.117 371.429 109.914 225.091

the query and reference vectors. The reference vectors are stored as hashed values

while the query vector is required to be hashed first and then pass to the Match

function for comparison. We report the average CPU time of the Match function

only for each user in Table 4.4.

In Table 4.4, for NTTSec100, the minimum and maximum average CPU time of

0.769 and 39.652 milliseconds, respectively. For NTTSec400, the minimum and max-

imum average CPU time of 21.117 and 1408.454 milliseconds, respectively. These

minimum and maximum timing results are observed for the users 17 and 10, respec-

tively.

4.6.2 Resource Consumption Analysis

To measure the resource consumption of our proposed continuous authentication

system, we implemented our proposed system on an Apple iWatch device. Fig-

ure 4.9 shows how the CPU was utilized throughout the feature calculation period

and a screenshot of the application used for the experiments. For 20 seconds, the

watch collects data from both the gyroscope and the accelerometer. The device

yields 50 measurements per second, giving us 1000 data points in one dimension.

For both gyroscope and accelerometer, we have three dimensions; hence the total

count of measurements amount to 6000. One CPU core is utilized in its complete

capacity for a brief amount of time when enough time is elapsed. The total time
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Figure 4.9: a) CPU profile of iOS implementation on an Apple iWatch. b) A
screenshot of the application used for the experiments on the Apple iWatch.

required for calculations, which is noted in Figure 4.9 by the peak, is 1.8 seconds;

the majority of this time (approximately 90%) is spent to calculate the hash. After,

the device begins to collect sensor measurements again, followed by a repeated fea-

ture calculation. This profile repeats as long as the framework is in operation. The

application cruises at 5% on the sensor measurement collection phase. After this,

the app calculates the features from sensor data and hashes it, which is illustrated

by the peak. The peak’s width is approximately 1.6 seconds, which corresponds to

the feature extraction (i.e., Ext) and template generation (i.e., TempGen) in total.

The measurement collection phase follows afterward. This profile repeats until the

application is stopped.

The memory footprint of the implementation is minuscule and constant, coasting

around 3.5 MB. Such a memory profile is expected because upon the completion of

the feature calculation period, the previous data is discarded, and since the period

and sampling rate is fixed, approximately the same amount of data is recorded anew.
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We measured the battery consumption by initiating the algorithm and sampling

the overall battery percentage every minute for more than 4 hours. We observed

that the application consumed 1% of the battery approximately every 4 minutes,

which yields us an operational time of 400 minutes, or 6.5 hours for PACA. Note

that this number is an absolute lower bound: during the measurements, a debugger

was attached to the device, the device’s screen was lit, and the maximum possible

values for s and t were selected, greatly increasing computational requirements and

the battery consumption. Hence, PACA is very promising in terms of resource

consumption.

4.7 Conclusion

Unlike the one-time authentication systems, the continuous authentication systems

are more suitable and better suited to the contemporary threats in cyberspace. Due

to its sensitivity and uniqueness, the biometric data requires proper security and

privacy mechanisms in place. Existing solutions like the password-hash-matching

systems do not work in noise-tolerant biometric authentication systems, while the

privacy-preserving homomorphic encryption constructs are not feasible for contin-

uous authentication due to its performance limitations. In this chapter, we con-

structed a lightweight, privacy-aware, and secure continuous authentication protocol

and a comprehensive system under the protocol. Formally proving its security and

privacy guarantees against eight different attacks, we further deployed our system

with NTT-Sec-R and a continuous biometric authentication system using an Apple

smartwatch. We evaluated our protocol’s efficiency with data collected from real

users and validated that it incurs a minimal overhead. The proposed novel scheme

and results can be easily generalized to other biometric authentication mechanisms
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for both continuous and traditional noncontinuous settings with real-valued feature

vectors. Hence, the proposed protocol enables privacy-aware continuous biometric

authentication, which can fundamentally improve the security in cyberspace.
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CHAPTER 5

PINTA: A PRIVACY-PRESERVING MULTI-FACTOR

AUTHENTICATION SYSTEM

5.1 Introduction

Both for highly sensitive systems such as online retail and e-banking and relatively

less critical systems such as desktop machines in a corporate Intranet and social

networks, it is crucial to protect users’ accounts and assets from malicious third par-

ties. Only password-based authentication systems suffer from many weaknesses, like

password cracking, susceptibility to phishing and cross-site password reuse. Once

the password is compromised, an adversary can easily misuse the victim’s account.

Thus, there is a great demand to establish a multi-factor authentication (MFA) sys-

tem, which requires two or more authentication factors (i.e., knowledge, possession,

identity) to validate users during their login. Popular web services such as Amazon

Web Services [Que12], Google Accounts [Goo12], Microsoft Outlook [Mic19] have

already deployed MFA. However, in all of these techniques, an out-of-band channel

(e.g., an App, text message) and an additional action from the user is required. This

reduces usability significantly. Similarly, in the literature, there have been a number

of academic works proposing MFA systems [PMZ+11, Ver12, SP12, JY11, ZPW11].

The more practical (and therefore more likely to be widely-adopted) MFA solu-

tions are based on users’ behavior; however, they do little to protect their privacy.

In particular, in an MFA system, users face the risk of exposing their personal

information to database servers or a malicious adversary. First, the owner of the

database server may use it for malicious purposes (e.g., selling user’s information for

economic interest) or if an adversary breaks into the database server and succeeds
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in obtaining the profile belonging to the targeted user, he/she can masquerade as a

legitimate user by crafting required authentication factors.

Nonetheless, there are several challenges in achieving a privacy-preserving MFA

system based on user profiles. First, a widely acknowledged challenge in the area

of user profiling is how to accurately model a user’s behavior while it constantly

changes [SKD+10]. Note that even for the same user, there may be a difference

between two profiles collected at different times. The second challenge is to identify

a unique user from others based on their own varying profiles. The third challenge

is to enable a server to verify the aforementioned profile, given that: (1) it cannot

be read by the server (to preserve user privacy), and (2) it will vary over time (so

standard cryptography cannot be used).

In this chapter, we designed a privacy-preserving method for multi-factor au-

thentication systems, called PINTA, in which the privacy of the collected hybrid

user behavior profiles serving as a second authentication factor is protected from

the authentication server. Moreover, we also adopt fuzzy hashing [Kor06] and fully

homomorphic encryption (FHE) [Gen09] techniques to ensure that a user’s personal

information is not leaked to servers or a third party. Furthermore, PINTA uses a

large combination of host-based characteristics and network-based features to pro-

file users. The combination of multiple features (26 configurable features in total)

enables a much simpler, distance metric-based user classification instead of expen-

sive machine learning. Finally, while fuzzy hashing is used to match the strings

portion of the user profile, FHE is used to match integer numbers without knowing

the actual value. For the experiments, we used a user profile database derived from

several public datasets [BSPvdM12, She12, KM12] and a dataset we generate. Our

results show that the proposed scheme can well detect imposters from legitimate

users while protecting user privacy.
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5.2 Problem Formulation & Preliminaries

In this section, we first introduce our assumptions and the adversary model. Then,

we outline the design goals of our work. We also provide a brief introduction of

fuzzy hashing and homomorphic encryption.

5.2.1 Assumptions and Adversary Model

In our system, we make the following two assumptions:

1) Perfect knowledge assumption: We assume that the adversary has perfect

knowledge of the multi-factor authentication system including the strategy of user

profile acquisition, the mechanism of profile encryption/hashing, and the details of

the authentication protocol.

2) First-Factor knowledge assumption: We assume that the adversary knows the

victim’s first authentication factor, which is the user password.

In our adversary model, a malicious entity can attack the proposed multi-factor

authentication system via impersonating a legitimate user (victim) in order to gain

access to the victim’s account. We note that we do not consider any low-level com-

munication adversary model such as man-in-the-middle and replay attacks because

those attacks can be prevented by the appropriate implementation of one or several

security protocols [IET08] and, hence, such attacks are not within the scope of our

work. We specifically consider the following two types of adversaries: brute-force

attacker and honest-but-curious server attacker.

1) Brute-force attacker : A computationally bounded third-party adversary may

attempt to authenticate with a spoofed second authentication factor by exhaustively

searching for the correct user profile. Such an attack consists of enumerating all
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possible user profiles until the correct one is found, which, in the worst case, would

involve traversing the entire message space.

2) Honest-but-curious server attacker : In our system, we assume the server that

processes the authentication requests is honest-but-curious that (1) stores incoming

cryptographic data without tampering with it; (2) honestly processes each authen-

tication request and returns the corresponding outcome; (3) but tries to derive the

underlying sensitive information from the user’s cryptographic profile.

5.2.2 Design Goals

The design goals of our work are outlined below.

1) Privacy Preservation Assurance: The system should guarantee that the pri-

vacy of each user is well preserved. To be specific, never should anyone including

the honest-but-curious server and the malicious third-party obtain the user profiles

in plaintext. We analyze the security of our proposed system in Section 5.5. We

adopt fuzzy hashing and fully homomorphic encryption techniques to provide this

assurance.

2) Authentication Usability Assurance: The system should ensure a pleasant

user experience by satisfying the following three conditions. First, a login should not

need extra effort other than typing the username-password pair. Second, the system

overhead (i.e., authentication delay) of the entire authentication process should be

tolerable. Third, the program that runs on the client’s machine should not consume

a lot of computing resources. We evaluate system overhead and resource utilization

in Section 5.4.

3) Authentication Accuracy Assurance: The system should ensure that the au-

thentication is accurate with acceptable recall and false positive rate (FPR), which
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poses two challenges. First, the system should be adaptive and flexible enough to

tolerate slight changes in the users’ profiles. Second, the system should be sensitive

enough to recognize a login request initiated by an adversary.

5.2.3 Fuzzy Hashing and Homomorphic Encryption

Fuzzy Hashing : The system proposed in this work uses fuzzy hashing, also called

Context Triggered Piecewise Hashing [Kor06], which is a hashing function that

can match data with similarities. Jesse Kornblum first proposed a generic fuzzy

hashing scheme in [Kor06] and implemented his algorithm as ssdeep [Kor18]. In

Rousseu’s approach, each similarity digest SD for a byte stream is generated by

employing a sequence of Bloom Filters, which are bit vectors used for space-efficient

set representation. Given two similarity digests SD1 and SD2, the similarity digest

score is generated by the function SDscore (SD1 , SD2), which yields a score of

zero for a mismatch or a matching score ranging from 1 to 100. In industry, fuzzy

hashing has been applied in the realm of security forensics, especially in identifying

morphing malware and spam [BCH+09]. In our system, we adopt fuzzy hashing to

evaluate the similarity of two fuzzy hash values of user behavior features in the forms

of strings, without revealing the user’s sensitive information to the authentication

server.

We conducted a simple experiment to show the efficacy of fuzzy hashing and

how fuzzy hashed strings can be compared to gauge their level of similarity. The

procedure of the experiment is as follows: (1) We used a newly-installed (clean)

Windows 7 OS and ten different software installation packages, labeled as A, B,

... J. (2) We installed Software A on the clean OS and used the tree command to

output the file hierarchy in the folder path ’C:“Program Files’ as a string, denoted
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Table 5.1: Similarity score between fuzzy hashes. The element in the ith row and
jth column represents the value of SDScore(SDi, SDj)

1 2 3 4 5 6 7 8 9 10
1 100 89 89 74 63 62 62 40 40 40
2 89 100 86 76 76 55 55 45 45 45
3 89 86 100 92 82 77 58 58 48 38
4 74 76 92 100 90 90 70 60 50 50
5 63 76 82 90 100 81 81 72 62 62
6 62 55 77 90 81 100 91 81 72 72
7 40 55 58 70 81 91 100 91 81 81
8 40 45 58 60 71 81 91 100 92 92
9 40 45 48 50 62 72 81 92 100 100
10 40 45 38 50 62 72 81 92 100 100

by Str1. (3) We installed ten software packages one by one and obtained 10 strings,

denoted Str1, Str2...Str10. Then, we generated the fuzzy hash for each string using

ssdeep, denoted by SD1, SD2...SD10. We computed the similarity score (SDScore)

between every hash generated by ssdeep. Since we had ten fuzzy hashes, there

are 100 combinations in total. The SDScore for each combination is presented in

Table 5.1. From Table 5.1, we make several observations. First, all the similarity

scores are diagonally symmetric because SDScore (SD1, SD2) and SDScore(SD2,

SD1) are the same. Second, the similarity score for the fuzzy hashes of the same

string is always 100. Third, with the installation of more software (i.e., more of a

change to the file hierarchy and corresponding string), the similarity score reduces.

Therefore, we can say that the similarity score of fuzzy hashes can roughly represent

how similar two fuzzy hashed strings are.

Homomorphic Encryption: The second technique, in this work, to achieve the

privacy of a user’s profile involves the application of fully homomorphic encryption

(FHE). After being an open problem for a long time, the first plausible FHE scheme

was introduced by Craig Gentry in his Ph.D. thesis [Gen09] in 2009. Homomorphic

encryption has an additional algorithm compared to the traditional encryption al-
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Figure 5.1: Fully Homomorphic Encryption

gorithms, which is called homomorphic evaluation algorithms and allows to be able

to perform operations on the encrypted data without decrypting it. Particularly, an

homomorphic encryption scheme ε has an algorithm Evaluateε that, given plaintext

π1, π2, ....πt, for any valid ε, private, public key pair (sk, pk), any circuit C, and any

ciphertext ψi ←− Encryptε(pk, πi), yields

ψ ←− Evaluateε(pk, C, ψ1...ψt)

such that Decryptε(sk, ψ) = C(π1, π2...πt)

(5.1)

A typical scenario of FHE is illustrated in Figure 5.1. In this scenario, the

user encrypts the data with public key pk and the function Encrypt and sends the

encrypted data to the server. The server in the cloud performs operations on the en-

crypted data by using the function Evaluate with public key pk and outputs ψ. The

server sends ψ back to the user. The user then decrypts ψ by function Decrypt with

his private key sk and obtains the result of C(π1, π2...πt). In this way, the server con-

ducts the desired operation for the user without acquiring any plaintext. Van Dijk
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et al. later used Gentry’s technique to establish a fully homomorphic encryption sys-

tem over integers [VDGHV10]. Coron and his colleagues further improved van Dijk’s

work by reducing the size of public keys and time complexity [CMNT11b]. Since

then many improvements have been proposed [BV11, Bra12, BGV14, BV14a] and

the research on FHE still an active research area [AAUC18]. In our experiments, we

used Microsoft’s open-source homomorphic encryption library called SEAL [MR18]

in our authentication system, which is a C++ implementation of homomorphic en-

cryption. The current version of the SEAL implements two different encryption

schemes: BFV and CKKS. We used the BFV version, which is originally proposed

in [FV12a] and we chose the parameters to provide 128 bits security.

5.3 Proposed System

In this section, we introduce the design of PINTA. Our proposed system collects

the user behavior to serve as a second authentication factor along with the user’s

password. However, unlike conventional user behavior profiling, the user informa-

tion acquisition, transmission, and storage all occur in a privacy-preserving fashion.

Furthermore, to prove that none of these stages in the system violates user privacy,

the proposed system is assumed to be open to the public, which corresponds to our

Perfect Knowledge Assumption as stated in Section 3.1.

5.3.1 System Overview

The architecture of the developed system has four primary components and is shown

in Figure 5.2: (1) an open-source profile acquisition program (PAP) that runs on

the user’s local host; (2) a user profile database (UPDB) that stores the user’s

information in a privacy-preserving fashion; (3) an authentication server (AS) that
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Figure 5.2: Overview of the Privacy-Preserving MFA System

processes and validates user’s login request; and (4) a content server. We assume

UPDB, AS and the server are owned by the same organization, but this is not a

strict requirement.

The first time a user uses PINTA with a specific site, he/she must go through

the process of enrollment. During the enrollment, the user information acquisition

program collects a user profile, denoted by P and then hashes or encrypts P with

Table 5.2: Operations in PINTA.

Function Operation

FuzzyHash(a) Obtain the fuzzy hash of bytestream a, denoted by ȧF

FuzzyCmp(ȧF ˙bF )
Compare the distance between two fuzzy hash ȧF and ˙bF ,
return a value ranging from 0 to 100.

FHE KeyGen() Generate a key pair (pk, sk) for fully homomorphic encryption.

FHE Encrypt(a, pk) Encrypt a with public key pk via FHE, outputting ˙aH
FHE Decrypt( ˙aH , sk) Decrypt ˙aH with public key sk via FHE, output a

FHE Sub( ˙aH ˙bH , pk) Subtract ˙aH with ˙bH via FHE under public key pk

FHE Div( ˙aH ˙bH , pk) Divide ˙aH by ˙bH via FHE under public key pk
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the FHE public key pk. Then, the user ID and user-assigned password, denoted by

uid and Psw, along with the cryptographic user profile, denoted by Ṗ , are passed to

the AS. The AS will interact with the UPDB and thus insert Ṗ into the user profile

database. For each login attempt afterward, the individual will pass his uid, typed

password, denoted by Psw′ as well as the newly captured user profile in ciphertext,

denoted by Ṗ ′. The AS is responsible for evaluating how much Ṗ ′ is different from Ṗ

(hereinafter referred to as distance) and returning the corresponding authentication

result denoted as AuthResult, a boolean value indicating authentication as success

or failure. If AuthResult is a success, the AS will send a content service ticket

along with AuthResult to the user, which contains a session ID and a timestamp.

Any user holding a valid service ticket may initiate a service request to the content

server.

The major challenge of the privacy-preserving multi-factor authentication system

is how to preserve the privacy of the user profile from servers and any third party

while enabling the server to determine the distance between user profiles. To achieve

this, we use fuzzy hashing and fully homomorphic encryption techniques. The seven

operation primitives used in PINTA are summarized in Table 5.2.

From Equation 5.1, we can derive operations (Circuit C in Figure 5.1) that

are used by the server on ciphertext values (ψ1..ψk) sent by the user when gener-

ating the ψ. Specifically, we implemented two simple arithmetic operations, sub-

straction and division using the underlying And/Xor gates that were proven to

be secure [CMNT11b]. Assuming that we have FHE key pair (pk, sk), ˙aH ←

FHE Encrypt (a, pk), ˙bH ← FHE Encrypt(b, pk), ψ1 ← FHE Sub( ˙aH , ˙bH , pk),

and ψ2 ← FHE Div ( ˙aH , ˙bH , pk), we can show the existence of Equations 5.2 and

5.3 as follows:
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FHE Decrypt(ψ1, sk) = a− b (5.2)

FHE Decrypt(ψ2, sk) = a/b (5.3)

5.3.2 User Profile Acquisition

To collect user profiles, we developed two user profile acquisition programs in C#

and Python for Windows and Linux OSs, respectively.

Hybrid User Profiling Model

The program has three main steps as illustrated by the cascading blocks in Figure

5.3: data summation, feature derivation, and hashing-encryption.

1) Data Summation: The Data Summation block is responsible for collecting

the user information in a sliding window - collection for some user information

occurs continuously, and at the end of each sliding window period, the collected

information is handed over to the Feature Derivation block, and Data Summation

starts again. To minimize the development effort, we use several third-party tools

(i.e., TSTAT [dT12]) to assist with data collection.

2) Feature Derivation: The Feature Derivation block receives the raw data from

the previous block and extracts the required features. The derivation of some fea-

tures might demand further calculation, like the packet interval and the keystroke

press interval. After each feature is ready for processing, the Feature Derivation

block passes the data to the next block.

3) Hashing-Encryption: The Hashing-Encryption block is responsible for gener-

ating a cryptographic profile based on all of the available features via fuzzy hashing

and fully homomorphic encryption. The fuzzy-hashed user profile is denoted by ṖF
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Figure 5.3: The Pipeline of User Profile Acquisition Program

Table 5.3: Features Used for User Profile Modeling

Category Section Number1 Type

Host-
Based

1 File System and Registry 2 string
2 Mouse Dynamics 3 number
3 Keystroke Activity 2 number
4 System Process 4 string

Network-
Based

5 Browser Information 3 string
6 Flow-Based Features 19 number

1 Number of features in the section.

while the homomorphically encrypted user profile is denoted by ṖH . Thus, the block

outputs a hybrid cryptographic user profile Ṗ ←− {ṖF , ṖH}. In addition, the Fea-

ture Derivation Block continues to produce feature information at the end of every

window period; therefore, the Hashing-Encryption block generates a new crypto-

graphic profile based on the latest incoming feature information and overwrites the

former one.
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Furthermore, as illustrated in Table 5.3, the features are divided into two cate-

gories: host-based and network-based, which are further classified into several sub-

categories as follows.

1) File System and Registry : This sub-category consists of fuzzy hashes of the

file hierarchy at a critical path and a portion of the registry contents (for Windows

systems). In particular, we target the information pertaining to the installed soft-

ware since, for most users, the installed software is relatively stable and is a good

representation of user habits compared to other attributes. For the Windows OS, the

folder path for installed software is typically ’C:\Program Files’ and ’D:\Program

Files’ while for the Linux OS, it is ’/usr/bin/’. Besides, the Windows Registry

is a hierarchical database which stores configuration settings and options for both

low-level OS components and high-level running applications, which reflects users’

utilization of software well. In our case, we only retrieve the part of the registry

which contains the information of the installed software.

2) Mouse Dynamics : User’s mouse movements can be characterized via three

fine-grained metrics: direction, curvature distance, and curvature angle. Nan Zheng

et al. [ZPW11] proved that these three angle-based features are relatively unique

from person to person and independent of the computing platforms and can, there-

fore, be used to distinguish legitimate users from intruders. To obtain a stable and

representative sample, we use the average values of these three metrics in a time

window as several features in the user’s profile. According to [ZPW11], a reasonable

choice of the window size is 20 mouse clicks, which takes up to approximately 3.03

minutes.

3) Keystroke Activity : User’s keystroke activity is modeled via two features: the

average key press-down time and the average time interval between key presses.

Kevin Killourhy and Roy Maxion described in [KM09b] a method by which timing
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Table 5.4: Notations Used

Ṗ Cryptographic user profile stored PF ← {pF1 , ...pFi
...pFn} User’s string features

Ṗ ′ Newly captured cryptographic user profile PH ← {pH1 , ...pHi
...pHm} User’s number features

n Number of string characteristics WF ← {wF1 , ...wFi
...wFn} Weight for each string feature

m Number of number characteristics WH ← {wH1 , ...wHi
...wHm} Weight for each number feature

pk User’s public key kj ← {0, 1...kj} Threshold for the jth number feature
sk User’s private key Vj ← {0, 1...vj} ADV for jth number feature (j ∈ [1,m])

data for keystroke activity of typing a password is collected and used to classify

impostors from legitimate users.Their experimental results show that these two-

time metrics are sufficient to represent different users. In our proposed system, the

timing metrics of keystroke activity are captured and derived while a user is typing

his password in order to log into the operating system.

4) System Processes : This sub-category is composed of fuzzy hashes of four

clusters of system process names. The clustering strategy is alphabetically and then

divide the names into four blocks.

5) Browser Information: In this sub-category, we utilize the auto-fill information

in browsers. We derive the fuzzy hash of personal information with attributes of

”Email”, ”Username” and ”Address”. The significance of auto-fill information is

that one tends to have the same auto-fill value for those frequently-used attributes,

in different browsers or hosts.

6) Flow-Based Features : We model users’ general network behavior via 19 flow-

based features. Note that it is commonly known that flow-based features indicate

the category of network traffic (e.g., stream video, online chat) and thus serve a

good reflection of user’s network usage patterns. In our system, we use the average

values of each feature, given a specific window of time.

We profiled users’ network behavior via the network flow-based features listed in

Table 5.5. Note that except ’flowDuration’, each feature is measured on both client-

to-server direction and server-to-client direction. Also, the value of each feature is
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Table 5.5: Network flow-based features

No Identifier Definition Weight

1,2 noPacket Number of packets 0.012, 0.007
3,4 maxSegment Maximum TCP segment 0, 0.001
5,6 maxWindow Maximum TCP Window 0.001, 0
7,8 minWindow Minimum TCP Window 0, 0
9,10 avgRTT Average Round-Trip Time 0.045, 0.032
11,12 stddevRTT Stddev of Round-Trip Time 0.003, 0
13,14 minTTL Minimum Time-To-Live 0, 0.005
15,16 maxTTL Maximum Time-To-Live 0, 0.005
17,18 avgInterPkt Average Packet Arrival 0.134, 0.119
19 flowDuration Flow Completion Time 0.087

based on one flow. A flow is defined as a sequence of packets sent from a particular

source to a particular destination. Taking feature ’stddevRTT’ as an example, it

represents the standard deviation of all the round-trip times in that flow.

Algorithm for User Profile Generation

From Table 5.3, we observe that the user characteristics can be classified as two

types: string (Sections 1, 4, 5) and numerical (Sections 2, 3, 6) values. Due to the

respective working mechanisms of fuzzy hashing and homomorphic encryption, we

apply the former on string characteristics and the latter on numerical ones. Suppose

each user has n string characteristics as well as m number characteristics where each

string feature is denoted by pFi
(i ∈ [1, n]) and each numerical feature is denoted by

pHj
(j ∈ [1,m]). Also suppose that the user has already generated one pair of

homomorphic encryption keys denoted by (pk, sk). The process of generating a

cryptographic user profile is given in Algorithm 1. The notations used in Algorithm

1 are presented in Table 3. Note that the user profiling approach we propose is an

extensible and configurable framework, which means that one can always edit the

user profile by deleting or inserting new user behavioral features.
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Figure 5.4: Sequence Diagram for User Enrollment

5.3.3 Enrollment of First-Time User and Profile Update

The sequence diagram of a first-time user’s enrollment is shown in Figure 5.4. To

initiate the enrollment, a user shares his public key pk with the authentication

server (message 1). After receiving the server’s acknowledgement (message 2), the

user passes his uid, Psw along with his cryptographic user profile Ṗ . Now, the server

has the user’s cryptographic profile stored in the database. As mentioned earlier,

the user profiles change constantly. Thus, the cumulative change of user profiles

makes it harder to recognize the distance between the newly captured profile and

the original one stored in the database. To address this issue, the UPDB should

update the cryptographic user profile for each user once every time period T . When

updating a user’s profile, the AS first authenticates the user as discussed in Section

4.4. After the user is validated, the profile update proceeds similar to the process of

enrollment, which is shown in Figure 5.4. The system administrator is responsible

for setting a reasonable T when deploying PINTA.

distancej =
|ṖHj

− PHj
|

PHi

× 100 (5.4)
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Figure 5.5: Sequence Diagram for Authentication

5.3.4 Server Authentication

The sequence diagram of the server handling each authentication request is pre-

sented in Figure 5.5. To initiate an authentication attempt, the user passes the

uid, Psw′ for the first-factor authentication (message 1). The failure of first-factor

authentication terminates the conversation. If the user passes the first step of the

authentication, he then passes his newly generated user profile, denoted by Ṗ ′ (mes-

sage 3), to the server. After evaluating the distance between Ṗ ′ and Ṗ , the server

returns a boolean value AuthResult (message 4), indicating the success or failure

of the second-factor authentication. In order to yield AuthResult, we introduce a

new concept, the Accepted Distance Value (ADV). To define ADV , we first define

distance value. Assuming PHj
and ṖHj

denote the values of the jth feature in profile

P and profile Ṗ , the distance value between PHj
and ṖHj

is defined in Equation 5.4:

ADV is used as the array of all accepted distance values, which is assigned by

the server for every numerical characteristic. In our system, for the jth numerical

feature, we propose a threshold kj of the distance value. We define ADV Vj as the

array of all integers ranging from 0 to kj (i.e., Vj ←− {0, 1...kj}). In addition, we

place different weights on each string feature and each numerical feature, denoted by
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WF and WH , respectively. We will address the problem of how to reasonably set the

threshold and weight for each feature in Section 5.3. The process of estimating profile

distance and calculating AuthResult is given in Algorithm 2 and the notations used

are presented in Table 3.

5.4 Experimentation and Evaluation

In this section, we evaluate the feasibility of our proposed system through a series of

experiments. We specifically conducted experiments with a combination of several

public datasets and a dataset which we generated. Particularly, we evaluate PINTA

in terms of authentication performance, the overhead caused on the system, and

computational performance.

5.4.1 Datasets and User Profile Generation

The names of the public datasets used in our experiments are shown in Table 5.6.
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Table 5.6: Data Source for Experiments

Section Data Set Subjects1

Mouse Dynamic NSKEYLAB Dataset [She12] 10
Keystroke Activity CMU Dataset [KM12] 51
General Network DACS Dataset [BSPvdM12] 132
1 number of subjects involved in the data set

A description of the datasets, along with a description of the necessary prepro-

cessing approach for each dataset are as follows. 1) NSKEYLAB Dataset [She12] is

a dataset containing mouse dynamics information from 10 subjects, each of who ac-

complishes at least 30 data sessions. Each session consists of about 30 minutes of a

user’s mouse activity in a free environment [SCG12, She12]. We derived three angle-

based metrics using the approach proposed in [ZPW11], thus, generating three data

points that represent the user’s mouse movement profile. 2) CMU Dataset [KM12]

is a dataset consisting of keystroke-timing information from 51 subjects (typists),

each typing a password 400 times [KM09b, KM12]. 3) DACS Dataset [BSPvdM12]

is a dataset consisting of the network trace for an educational organization. A 100

Mbit/s Ethernet link connecting the organization to the Internet was monitored to

generate the trace. Each user at this site is assigned a fixed IP address [BSPvdM12].

We used SplitPcap [AB12] to obtain separate pcap files for each IP address inside

the organization’s network and further partition each pcap file into smaller pcap

files with a period of 30 minutes. For each small pcap file, we ran TSTAT [dT12] to

derive the flow-based features, thus, generating the user’s network behavior profile.

This data set spans two months.

In addition to these three datasets, we generated the dataset that contains file

system and registry information as follows. First, we generated two Software Pools,

A and B, which are two lists of software names with 30 and 100 types of software.

Software Pool A represents the OS pre-installed software and common software,
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while Pool B represents personalized software. For 15 users, we randomly chose 20

software names from Pool A and five from Pool B for each user. We fuzzy-hashed

the list of the software names, thereby obtaining the first piece of the profile for

each individual. Then, for each user, we randomly chose two uninstalled software

packages from Pool B and inserted them into the user’s original software list, thus

generating a new piece of the user profile. We conducted this procedure iteratively

for 30 times in order to generate a data set representing the ”file system” with 15

individuals, each of which, has 30 profiles. We generated two software pools for

two reasons: First, in the initial stage, users have similar software environments,

in which most installed software is pre-installed with the OS by default and some

are commonly used software. Second, the software environment for users tends to

diverge afterward according to users’ habits, interests, and occupations. In our

approach, Software Pool A represents OS pre-installed and common software while

Software Pool B represents personalized software.

Based on these four datasets, we generated hybrid user profiles for each user. As

shown in Table 5.6, the NSKEYLAB Dataset only contains data from 10 partici-

pants. Therefore, we can at most generate user profiles for 10 distinctive subjects.

To generate one piece of the hybrid user profile for a certain user, we first randomly

chose four profiles, each from one dataset. Then, we combined 30-minute chunks

from each of the four datasets to create 30 hybrid profiles belonging to one user.

Hence, in our experiments, thirty 30-minute hybrid profile samples are created per

user. The users are labeled as User A, User B, and so on. Finally, we eliminated

the previously used profiles from the four datasets. By repeating this procedure,

we generated 30 hybrid user profile samples for each of the ten users, yielding 300

different hybrid profile samples, as illustrated in Figure 5.6.
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Figure 5.6: The Generation of Hybrid User Profile Samples

5.4.2 Experimental Setup

For each user, we registered his/her first piece of the cryptographic hybrid user

profile in the database (the enrollment of that user). Then, we appended a label

to each profile, indicating the owner of that profile. We randomly chose half of all

the hybrid user profile samples and intentionally mislabeled them making the actual

owner of that profile appears as an intruder. For the other half of the hybrid user

profile samples, we correctly labeled them, treating the owner as a legitimate user.

Finally, we randomly split all the labeled user profiles into two equal sized parts:

the training set and the testing set. We encrypted each profile in the testing set

via Algorithm 1 and left the profiles in the training set as plaintext (the data from

this training set can result from a bank’s focus group). The training set serves as a

priori knowledge for threshold setting and weight adjustment while the testing set

was the input of the system during experiments for performance evaluation. We first

performed a threshold setting and weight adjustment based on the training set, as

explained in Section 5.3. Then, we conducted a series of experiments by iteratively
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comparing the result generated by Algorithm 2 with the actual situation for each

piece of the user profiles. We conducted all the experiments on a standard laptop

computer with Intel CPU i5-M430 (2.27GHz) and RAM of 4 GB.

5.4.3 Decision Process

To decide whether a hybrid user profile is legitimate, we must first determine ap-

propriate thresholds for individual characteristics that comprise the profiles. Next,

we used a majority vote to make the final decision on the legitimacy of a profile

sample. A training set containing 150 labeled hybrid user profile samples served as

a priori knowledge in this section.

Threshold Setting

We used the following approach to find an optimal threshold for each feature based

on the a priori knowledge we had. Assume there are p features in each hybrid user

profile and altogether q hybrid profile samples as prior knowledge. dij denotes the

change percentage of the jth feature in the ith profile compared to the enrollment

profile stored in the database. li denotes the identity of the owner of the ith profile.

li = 1 if the owner is legitimate and lj = 0 if the owner is an intruder. thj denotes

the threshold for the jth feature. Thus, for the jth feature, we design a function F

of thj:

F (thj) = l1 ∗ Sgn(thj − d1j) + ...li ∗ Sgn(thj − dij)

+ ....ln ∗ Sgn(thj − dnj)

=

q∑
i=1

li ∗ Sgn(thj − dij)

(5.5)
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where F (thj) represents the total number of correctly classified cases for the jth

feature and Sgn denotes the sign operation. Thus, the optimal thj is the one that

makes F (thj) reach a relatively maximum value. In this way, the threshold setting

problem is transformed to a simple linear function maxima problem, which can be

easily solved by Matlab.

Weight Adjustment

After having a vector of optimal thresholds for all the features, each feature is used

as a voter, either voting for or against the user. The weight placed on each vote

is adjusted via linear programming as described in Equation 5.6, where vj ∈ {1, 0}

denotes the vote of the jth feature and rst ∈ {1, 0} denotes the actual result.

min

p∑
j=1

wj ∗ vj − rst, s.t.
p∑
j=1

wj = 1 (5.6)

After the implementation of linear programming with Matlab, we identified the fea-

tures that were assigned far more weight than others, which indicates that those

features better represent user behavior. See Appendix C for the weight adjustment

results. Note that in the deployment of our system, the system administrator can

always modify the weight adjustment based on his knowledge/experience. Addition-

ally, he can eliminate the feature with little or zero weight and add new features to

the system, which makes PINTA highly configurable and robust.

The result for weight adjustment is as follows: (1) For the mouse movement sub-

category, the weights for direction, curvature distance, and curvature angle were

0.106, 0.035 and 0.004, respectively. (2) For the keystroke activity sub-category,

the weights for key press-down time and average key-press interval were 0.048 and

0.023. (3) For the general network section, the weight for each feature is shown in

Table 5.5. (4) For the file system and registry, the weights for the file system feature
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and registry feature are 0.132 and 0.129. We have 26 features in total and the sum

of the weights equals to 1.

5.4.4 Results

In this section, we evaluate PINTA in terms of authentication performance, system

overhead, computational performance, and present our results.

Authentication Performance

In order to evaluate the PINTA’s authentication performance, we used recall, false

positive rate as a metric. We define recall and false positive rate as follows:

• Recall: Recall is the proportion of positive cases that are correctly identified

and was calculated using TP
TP+FN

. TP denotes True Positive, and FN denotes

False Negative while in our authentication system, an intruder is labeled as

Positive and a legitimate user as Negative. Thus, recall indicates the authen-

tication system’s ability to identify intruders.

• False Positive Rate (FPR): FPR is the proportion of negatives cases that are

incorrectly classified as positive and was calculated using TN
FP+TN

. TN denotes

True Negative while FP denotes False Positive. FPR refers to the probability

of the system’s falsely rejecting a legitimate user.

We conducted a series of experiments on the testing set containing 150 labeled

hybrid user profile samples within different time window sizes for data collection

and with or without weight adjustment. The experimental results in terms of recall

and false positive rate (FPR) are presented in Table 5.7.

From the table, it can be seen that the longer the time window for the data

collection, the better the system performance is in terms of recall and FPR. When
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Table 5.7: Experiment Results: Recall and FPR

Time For
Data Collection

Weight
Adjustment

Recall (%) FPR (%)

5 min
Without 74.2 26.9

With 75.1 24.3

10
min

Without 75.4 19.7

With 77.1 19.3

20
min

Without 78.8 16.2

With 79.9 15.1

30
min

Without 80.8 14.7

With 82.7 13.2

Table 5.8: Average timing results

GenerateCryptographicUserProfile CalculateAuthenticationResult
FHE KeyGen FuzzyHash FHE Encrcypt FuzzyCmp FHE Sub FHE Div FHE Decrypt
1449 microsecs 677 microsecs 47784 microsecs 57 microsecs 1392 microsecs 370728 microsecs 29040 microsecs

Subtotal = 0.05 seconds Subtotal = 0.37 seconds

the time window is as long as 30 minutes (initial bootstrap latency - this drops

to 0 for every attempt after 30 minutes), we achieve an optimal result with recall

of 82.7% and FPR of 13.2%. Nevertheless, a longer data collection time tends to

reduce the usability of the system. Therefore, there is a trade off between system

accuracy and efficiency. Also, it can be observed that weight adjustment makes

a positive impact on the system performance via a relatively higher recall and a

relatively lower FPR.

System Overhead & Utilization

In order to evaluate the overhead caused by PINTA on the system and the utilization

of PINTA, we computed packet size, system overhead, and resource utilization like

CPU and RAM utilization. We define and calculate them as follows:
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• Size of Authentication Packets (hereafter referred to as packet size): Packet

size is the size of all the authentication information transmitted from client to

the server.

• System Overhead: System Overhead is the initial latency during the entire

multi-factor authentication process. Measuring total system overhead is a

complex task. In Section 5.4, we evaluated the overhead introduced by user

profile acquisition, cryptography, data transmission, and server processing.

• Resource Utilization: Resource Utilization is defined as how much system re-

sources it takes for a user information acquisition program to retrieve informa-

tion and derive features continuously. We evaluated it in terms of CPU and

RAM utilization.

In terms of packet size, for the first-time user enrollment, the packet size is the

sum of the size of the user’s public key pk, uid, Password Psw, and cryptographic

user profile Ṗ . Since the size of uid and Psw are far less than the size of the rest,

we can neglect uid and Psw in the calculations. Packet size, Size, was calculated

using Equation 5.7, in which pkSize denotes the size of public key pk, n denotes

the number of string features, α denotes the size of each fuzzy hash, m denotes the

number of number features, and β denotes the size of each FHE ciphertext.

Size = pkSize+ n ∗ α +m ∗ β (5.7)

In PINTA, with pkSize = 128KB,n = 9, α = 0.125KB,m = 24, and β =

128KB, the packet size for the enrollment is approximately 3201 KB (message 1

and message 3 in Figure 5.4). In the authentication procedure, the user is not

expected to transmit their pk again; so, the packet size is around 3201 KB after

enrollment (message 3 in Figure 5.5).
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System overhead, T , is comprised of the time spent on authentication data trans-

mission, Tt and the server process, Ts. We can derive T using Equation 5.8. Tt largely

depends on the network environment. In a high-speed Internet environment, Tt is

normally under 30 seconds. Ts was less than 5 seconds in our experiments. In total,

the system latency after users initiate a login request is around 35 seconds. It is

worth mentioning that system overhead may vary because it is dependent on the

computing ability of both the client and the server sides and also to the specific

network conditions.

Tafter = Tt + Ts (5.8)

In terms of resource utilization, in our experiments, the running of the user

profile acquisition program takes less than 3% of CPU resources and about 15MB

of RAM. The most significant proportion of computing resource consumption stems

from the capturing of network packets. Because we only capture packet headers,

the resource demanded for network monitoring is still in an acceptable range. Note

that the statistic for resource utilization is based on a laptop computer with Intel

CPU i5-M430 (2.27GHz) and a RAM of 4 GB. The CPU utilization percentage will

decrease with a more powerful machine.

Computational Performance

Finally, we measure PINTA’s computational performance. For this purpose, we used

the timing results of two main algorithms: GenerateCryptographicUserProfile()

and Calcu lateAuthenticationResult(). Moreover, we also computed the timing

results of operations in Table 5.2.

CalculateAuthenticationResult includes subtraction and division operations.

While performing the subtraction, while we used the built-in subtraction function
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in the homomorphic library, the division is implemented by multiplying the reverse

of the second multiplier. Therefore each division is indeed the combination of en-

cryption and multiplication.

The results are given in Table 5.8. According to the results, while the generation

of cryptographic profiles takes around 0.05 seconds, the calculation of authentication

result takes about 0.37 seconds. When we look at the operations performed in these

algorithms, we see that the division operation dominates the authentication result

calculation algorithm. That’s because the division operation is a multiplication

operation and the homomorphic multiplication operations are computationally much

more expensive than the addition. However, still, the results show that PINTA is

feasible in terms of computational feasibility.

5.4.5 Security Analysis

In this subsection, we demonstrate how the authentication system thwarts the ad-

versaries discussed in Section 5.2.1.

1) Security Against Brute-Force Attacker : In this case, an adversary attempts to

log in by guessing a user’s profile, which, in the worst case, would involve traversing

the entire message space. For each fuzzy hash, the message space is 2128. For

each FHE, the message space is 21.5·105 . Since the message space for the fuzzy

hash is arbitrarily small compared to that of FHE ciphertext, we only consider the

computational cost to brute force the FHE ciphertext. First, denoting the length

of ciphertext by l, the probability of a malicious code correctly forging one correct

feature is:

Pforge = 1
2l

(5.9)
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In our system, we realize l = 1.5 · 105, so Pforge is 1

21.5·105
. Second, an adversary

that is brute-forcing the FHE ciphertext for each feature will have to put an overall

effort of

Ψ = γ
κ

(5.10)

where γ is the average number of possible ciphertext values (e.g., 21.5·105) and κ is

the frequency of the attacker’s computer at 1 attack/sec. Assuming an attacker

with computational resources such as Intel Core i7-3960 at 3.9GHz, approximately

21.499·105 years of Ψ would be needed to generate the correct ciphertext. Therefore,

it is safe to conclude that it is impossible for a computationally bounded adversary

to match a user’s profile by brute-force.

2) Security Against Honest-But-Curious Server Attacker : In this scenario, the

honest-but-curious server tries to reverse engineer a user’s cryptographic profile Ṗ ′.

The capability of resisting reverse engineering is also referred to as semantic secu-

rity in cryptology [GM84]. Informally, a traditional definition of semantic security

is that a system is semantically secure if any computationally bounded adversary is

not able to compute the plaintext even with the knowledge of both ciphertext and

the corresponding public key. Note that in our work, we also treat fuzzy hashing as

a special form of encryption. Because each Ṗ ′ comprises a piece of fuzzy-hashed user

profile ṖH
′

and a piece of homomorphically encrypted user profile ṖF
′
, we demon-

strate the semantic security of fuzzy hashing and FHE, respectively. For fuzzy

hashing, the only available information available to the honest-but-curious [AMN18]

server or any third-party adversary are the two fuzzy hashed values (after the initial

authentication attempt) and the only answer the server can obtain is the similar-

ity between two fuzzy hashes, which is just as intended. No further information

can be derived from the hash values due to the one-way property of fuzzy hash-
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ing [Kor06]. For FHE, Gentry and Coron showed that an FHE system is semanti-

cally secure [Gen09, CMNT11b], which means it is infeasible for a computationally

bounded adversary to derive significant information about a message (plaintext)

when given only its ciphertext and the corresponding public key.

5.5 Conclusion

In this chapter, we designed a privacy-preserving multi-factor authentication system,

called PINTA. In PINTA, while the first authentication factor is a password and

the second one is a hybrid behavioral user profile. PINTA focuses on the privacy

preservation of the second factor, which has two advantages over previously proposed

systems. First, user privacy is not leaked to the authentication server. We have

proven that the system is secure against both a brute-force matching attacker and an

honest-but-curious attacker. Second, the hybrid user profiling model is highly usable

and configurable. One can always modify the feature list for user profiling in PINTA

according to the actual circumstances. We evaluated the system performance via

a series of experiments, resulting in an optimal recall of 82.7% and FPR of 13.2%.

In addition, we also show that PINTA’s system overhead is within the acceptable

range.
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PART II - SMART HOME USER PRIVACY
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CHAPTER 6

PEEK-A-BOO: REVEALING THE USER ACTIVITIES VIA

MULTI-STAGE PRIVACY ATTACKS

6.1 Introduction

Previously, the Internet was mainly used for accessing and displaying content of

web pages (i.e., web browsing). However, with the emergence of IoT devices in

smart homes, users have now the ability to control their home’s electronic systems

(e.g., smart bulbs, smart locks, sensors, etc.) using appropriate smartphone apps

and also from remote locations [SAA+18, BSAU18, BSAU19, SBC+19]. To realize

smart home automation, the devices are mostly equipped with embedded sensors.

These sensors collect data from the environment and help users to control them.

Moreover, smart home devices are also continuously communicating with associated

back-end system servers or other devices (e.g., smart hubs) to transmit the sensor

data in a real-time manner. On the other hand, as IoT devices usually are single-

purpose devices, the capabilities of individual smart home devices are relatively

limited, comprising only a few states or actions. For example, a motion sensor

allows a user to detect any movement in a physical space, but the sensor has only

two states: motion and no-motion. If an attacker can reveal the current state of the

sensor, the attacker will also reveal the presence of the user at home.

In this chapter, we demonstrate how machine learning methods based on traffic

profiling of smart home IoT device communications can be used by an adversary to

automatically identify actions and activities of the IoT devices and its users in a vic-

tim’s smart home with very high accuracy, even if only encrypted data are available.

Indeed, device types, daily mundane activities of the users (e.g., left home, walking

from kitchen to bedroom), or states of the devices (e.g., door locked, unlocked) can
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all be easily identified even if the traffic is encrypted, thus posing a threat to user

privacy. We refer to this novel attack to user privacy as multi-stage privacy at-

tack, which is achieved in a cascading style by only observing passively the wireless

traffic from smart home devices. In this, a passive attacker can easily realize the

multi-stage privacy attack to extract meaningful data from any smart environment

equipped with smart devices including personal homes, residences, hotel rooms, of-

fices of corporations or government agencies. Here, unlike earlier approaches, the

presented attack is device-type and protocol-agnostic, making it easily applicable to

a wide variety of different IoT device types without the need for tedious harvesting

of device-type or protocol-specific knowledge about specifications for supporting the

activity identification task.

We evaluate the effectiveness of the novel multi-stage privacy attack with 22

different off-the-shelf IoT devices utilizing the most popular wireless protocols for

IoT. Our experimental results show that an attacker can achieve very high accuracy

(above 90 %) in identification of the types, actions, states, activities of the devices

and sensors. Moreover, to counter the identified privacy threats posed by the multi-

stage privacy attack, we also designed a new effective countermeasure solution based

on generating spoofed traffic to hide the real states of targeted IoT devices and

thereby the real activities of the users. Our solution does not require modifications

in targeted IoT devices and is, therefore, easier to deploy than previously proposed

solutions for IoT devices, for which it is very difficult to implement client-based

countermeasures due to the vast heterogeneity of smart devices and limited resources

available on the IoT devices. Also, even if the user is not at home, a fake traffic-

based solution for the user’s presence will mask the user’s absence, further improving

privacy.
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Figure 6.1: Local adversary model considered in this work.

6.2 Adversary Model

One of the unique challenges in the domain of IoT, and particularly smart home, is

that the attack surface is naturally extended and comprises a diverse set of devices

and sensors deployed at the user’s home. Figure 6.1 shows some of the data capturing

points that an attacker can take advantage of when inferring user activities. In this

work, we consider a local adversary located physically within the wireless range

of the targeted user’s smart home devices similar to [Fea16a, Fea16b, HCS+18].

For this, the attacker can install the sniffers only once and even manage them

remotely. Or, it could compromise a device inside the smart home, remotely, and

turn it into a sniffer. In this way, the attacker may never need to be present.

In all these cases, the adversary can eavesdrop on various wireless IoT network

communications transmitted by the user’s smart home devices. For example, as

presented in Figure 6.1, the attacker can sniff all the network traffic transmitted

over WiFi, BLE, and ZigBee protocols. The attacker only needs to passively sniff

the network traffic and does not need to interrupt. Therefore, the attacker may stay
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active long enough without being detected by the victim. An alternative adversary

would be an adversary who can launch the attack remotely, i.e., intercepting the

network traffic over the Internet such as a malicious ISP. We further discuss the

advantages and limitations of such an adversary in Section 6.7.

Assumptions. We further make the following assumptions:

• The attacker has access to the same kind of smart home devices and sensors

as the targeted user, s/he can analyze the devices by collecting the traffic of

these devices, and use the collected data to train its algorithms.

• The attacker has access to protocol headers data on all layers that are not

protected by encryption. The attacker does not need to know the specifica-

tions of analyzed protocols, instead it only needs to know how to run the

already publicly available scripts, which does not require an extensive knowl-

edge about the specifications of the protocol itself. Moreover , it can also use

Layer 2 information like MAC addresses, or BLE advertisement packets, to

automatically identify additional information, the brand of individual devices,

thereby reducing the search space of devices to guess the set of smart home

devices that the targeted user is using. Moreover, it is also worth noting that

the attacker does not need exactly same devices to train its algorithm, but it

needs exact brand and device type to get the results presented in this work as

we use the < brand, device− type > pair to uniquely identify devices.

Attacker’s goals. We model the attacker’s goals under four different categories:

• Goal-1: The attacker aims to infer the devices used in a smart home. (Sec-

tion 6.5.5)

• Goal-2: The attacker aims to infer the daily routine of the user. (Section 6.5.6)
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• Goal-3: The attacker aims to infer the state of a specific smart home device.

(Section 6.5.7)

• Goal-4: The attacker aims to infer specific user activities from the states of

multiple devices. (Section 6.5.8)

6.3 Smart Home Devices

In this section, we describe the typical characteristics of smart home devices relevant

to this chapter. First, we classify the smart devices according to their capabilities.

This capability-based classification can also be used to classify the device actions.

Second, we present required background information about the communication pro-

tocols used by these devices.

6.3.1 Capabilities of Smart Devices

We categorize smart devices in our study into three categories in terms of their

capabilities. The first category is the Hub-like devices. They are central communi-

cation hubs that connect other devices to both each other and to the Internet. They

mostly do not provide a functionality of their own to users as their main purpose is

to act as gateways connecting devices using other protocols than WiFi to the smart

home network. In some cases, like the Samsung ST Hub, they serve as a centralized

platform to install and run smart home apps for different smart devices. The second

category of devices is User-controlled devices. These devices can be controlled by

their users either manually or via a controller device like a smartphone or tablet.

Examples of such devices include Smart Lights, Smart Switches or Smart Locks.

These devices can be controlled both remotely and locally by the user. The third

category is Sensor-like devices. These devices are the most primitive ones and have
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Table 6.1: The communication protocols and capabilities of the smart home devices
used.

ID Device WiFi ZigBee BLE a Type-I Type-II Type-III

1 ApexisCam ● ○ ○ ○ ○ ●

2 AirRouter ● ○ ○ ● ○ ○

3 AugustSmartlock ○ ○ ● ○ ● ●

4 BelkinWemoLink ○ ○ ○ ○ ● ○

5 DLinkCam ● ○ ○ ○ ○ ●

6 DLinkDoorSensor ● ○ ○ ○ ○ ●

7 DLinkMotionSensor ● ○ ○ ○ ○ ●

8 DLinkSiren ● ○ ○ ○ ○ ●

9 EdimaxCam ● ○ ○ ○ ○ ●

10 EdimaxSPlug1101 ● ○ ○ ○ ● ○

11 EdinetCam1 ● ○ ○ ○ ○ ●

12 EdinetGateway ● ○ ○ ● ○ ○

13 FitbitAria ● ○ ○ ○ ● ○

14 Lightify2 ● ○ ○ ○ ● ○

15 PhilipsHueBridge ● ○ ○ ● ○ ○

16 SMCRouter ● ○ ○ ● ○ ○

17 STMotionSensor ○ ● ○ ○ ○ ●

18 STOutlet ○ ● ○ ● ● ○

19 STMultiSensor ○ ● ○ ○ ○ ●

20 TPLinkHS110 ● ○ ○ ○ ● ○

21 WansviewCam ● ○ ○ ○ ○ ●

22 WemoInsightSwitch ● ○ ○ ○ ● ○

Type-I: Hub-like devices,  Type-II: User-controlled devices,   Type-III: Sensor-like devices

Communication Capabilities
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only the capability of sensing the environment via their built-in sensors. An ex-

ample of this type of device is the Samsung ST Motion Sensor, which can detect

persons moving in its proximity. These devices send notification messages to their

associated services either when an event takes place, or periodically. All the devices

studied in this chapter are shown in Table 6.1.

Apart from these devices, a typical smart home environment uses a smartphone

or tablet as a controller device to control smart home devices. The smartphone or

tablet can also be used as an interface to connect smart devices and smart home

hubs and install different apps on the devices. We consider the smartphone or tablet

as the controller device in the user activity inference.

6.3.2 Communication Features

Both the smart home vendors and users mostly prefer wireless communication over

wired communication as it is more convenient. However, compared to wired com-

munication, the wireless network traffic from smart home devices is open to the

eavesdropping attacks.

In this work, we target three wireless protocols: WiFi, ZigBee, and Bluetooth

Low Energy (BLE). Among these, WiFi is used in the wired or plugged-in devices,

while other protocols, ZigBee and BLE, are implemented for short range communi-

cation tasks of battery-powered devices as they consume less power than WiFi.

WiFi-enabled devices

WiFi-enabled devices are connected to the Internet either through a Hub-like device

or directly connected to an access point. In both cases, the adversary can track

and capture the traffic through a specific device via MAC address. Even though
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MAC addresses may help the attacker to narrow down the device type, it can not

precisely decide the device type from MAC address. It may want to use IP addresses

of servers. However, the adversary can only see the traffic that is encrypted by both

the network protocols (SSL/TLS) and WiFi encryption (WPA). Therefore, it cannot

see the IP or transport layer headers encrypted by the WPA protocol. This prevents

the attacker from using header-based features for the device identification. However,

the traffic rates of the devices still cannot be hidden from the attacker.

ZigBee-enabled devices

ZigBee devices have two addresses: MAC address and Network Address (NwkAddr).

The MAC address is exactly the same as the MAC used in WiFi-enabled devices,

which is unique for every device in the world and never changes. On the other hand,

NwkAddr is created and assigned when the device joins a network and changes when

it leaves and re-joins another network. It is similar to IP, however, it is not encrypted

and source and destination NwkAddr of the packets can be seen by the attacker.

In addition, the network coordinator (i.e., hub) has the 0x0000 address and each

network has a unique identifier, called the Personal Area Network Identifier (PAN

ID). This information may additionally help the attacker.

BLE-enabled devices

In a BLE network, a device can be either a master or a slave. A slave can connect

to only one master node while a master can connect to multiple slave nodes. In

all the smart home devices that we used, while the smartphone acts as a master,

targeted smart device acted as a slave. Before establishing the connection, a slave

device broadcasts advertising packets (ADV IND) randomly on channel 37, 38, and

39. Once a connection starts, they agree on a channel map, where they follow in the
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ON->OFF

OFF>ON
ON->OFF

(a) Wemo Insight Switch (WiFi)

ON->OFF
OFF->ON OFF->ON

(b) Samsung SmartThings Outlet (ZigBee)

LOCKED->UNLOCKED UNLOCKED->LOCKED

(c) August Smart Lock (BLE)

Figure 6.2: The traffic rates of (a) Wemo Insight Switch, (b) Samsung ST outlet,
and (c) August Smart Lock. Here, a number of actions are illustrated, with many
signals easily discerned by the naked eye. For instance, when the lock is turned on,
the significant amount of packets are transmitted and received, which creates a peak
in the traffic rate for a certain duration.
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rest of the communication. If an attacker wants to follow the BLE traffic through

a smart device, it needs to capture the first packet so that it can learn the channel

mapping. Once the attacker captures the access address, it can follow the rest of

the communication.

6.4 Case Studies

In this section, we show the feasibility and possibility of privacy leaks from encrypted

network traffic of smart home devices. We show that an attacker who can sniff the

network traffic of the devices can easily infer some simple information without using

any advanced techniques. We consider one device for each protocol: Wemo Insight

Switch (WiFi), Samsung ST Outlet (ZigBee), and August Smart Lock (BLE). We

analyze the raw network traffic of each device and see if it is really possible to extract

information from the network traffic, specifically from data rate.

Wemo Insight Switch (WiFi)

Wemo Insight Switch is a Wifi-enabled device and used to monitor and control other

appliances (e.g., smart light) from a smartphone. It has only two capabilities: ON

and OFF. Figure 6.2a shows the data rate of the sample traffic collected from Wemo

Insight Switch, where we illustrated a number of actions of the user to change the

state of the device. As can be seen from the figure, the data rate shows a significant

increase when the device state is changing. Therefore, the data rate clearly reveals

the device state changes. In the first peak, the device’s state is changed by the user,

i.e., the device is turned on and in the second peak, the user turned off the device

and so on.
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Samsung ST Outlet (ZigBee)

Samsung SmartThings (ST) Outlet uses ZigBee protocol to communicate with Sam-

sung ST Hub. It can also act as a repeater and repeats the broadcast packet of Hub

for the smart devices, which is not in the range of Hub. This increase the range of

Hub. Other than repeating Hub’s broadcasting packets, it has only two capabilities:

ON and OFF. The traffic rate of a sample network capture of Samsung ST Outlet is

plotted in Figure 6.2b. In the given sample network traffic, the device’s activity has

been changed by the user three times, which clearly corresponds to the three large

peaks. On the other hand, small peaks correspond to the repeating of the broadcast

packets of the hub, which is periodic with 15 seconds.

August Smart Lock (BLE)

The August Smart Lock communicates with the user’s smartphone via BLE. In

addition to locking and unlocking from the app on the smartphone, the owner (main

user) can also give access to guest users through the web servers. The user can

also enable the auto-unlock, where the lock is unlocked when the user is in range.

However, the lock itself does not have the remote control capability. For remote

access, it needs other accessories (e.g., WiFi bridge). Here, we only consider the

BLE communication between the lock and smartphone. Figure 6.2c shows the plot

of the sample packet capture of August Smart Lock. As in the previous case studies,

the transition between the device’s actions can be clearly identified by the attacker.

The small increase in the traffic rate in the first part of the capture is because of

the advertising packets.
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Figure 6.3: Overview of our multi-stage privacy attack.

6.5 Multi-stage Privacy Attack

As shown in Figure 6.3, our novel multi-stage privacy attack consists of four stages

connected in a cascaded manner. While the goal of the attack is to infer user

activities at the final stage, every stage also leaks partial information about devices

and their actions and can be independently used by the attacker for various purposes.

In the following, we first outline the high-level overview of the attack and then

present details of individual stages and related results.

6.5.1 Attack Stages

Stage-1: In the first stage, the attacker’s goal is to identify the type of each smart

home device. Even though used protocols use unique identifiers for each device (e.g.,

MAC address, NwkAddr), the attacker does not know the device type a specific

address corresponds to. By sniffing packets of individual protocols, the attacker

will obtain network traffic profiles of all devices using that protocol. Identifying

individual devices’ types becomes then a multi-class classification task based on the

traffic profiles of individual devices.
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Stage-2: After discovering the types of individual devices, the attacker’s goal is

to infer the state of individual devices. As shown in Figure 6.2, a state change

typically results in a significant increase in network traffic related to the device,

causing an increase in the data rate and decrease in the inter-arrival time of the

packets. Therefore, the attacker can in most cases detect state changes of devices by

observing changes in these metrics. At the end of this stage, as shown in Figure 6.3,

the attacker converts the network packets into 1s and 0s, where the 1s show where

the transition occurred.

Stage-3: After detecting transitions between device states, the attacker splits the

network trace of a device into segments corresponding to different device states (e.g.,

ON, OFF). Identifying these states is then reduced to a multi-class classification

problem, where classes represent possible device states.

Stage-4: In this stage, by using the results of the state classification in Stage-3,

the attacker knows the inferred states of all devices. For example, at a particular

moment, the attacker may know the smart lock is in the LOCKED state, no motion

is detected in the motion sensor placed in the kitchen and so on. Using the state

information of the devices, the attacker can guess that the user is sleeping. Any

user activity in a smart home can be inferred by observing the inferred states of

devices and sensors and using a Hidden Markov Model to infer the corresponding

user activity.

In the next sections, we evaluate the efficiency of our multi-stage privacy attack

on network traffic data collected from 22 different off-the-shelf IoT devices used in

smart homes.
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Table 6.2: Characteristics of network traces used in experiments.

Device Period (mins) Size (MB) Packets
ApexisCam 133 80 152220
AirRouter 85 49 115192
AugustSmartLock 25.8 0.66 8129
BelkinWemoLink 71 0.66 2039
DLinkCam 225 1.15 5389
DLinkDoorSensor 74 0.48 3519
DLinkMotionSensor 74 0.47 2849
DLinkSiren 71 0.41 3073
EdimaxCam 225 0.27 1798
EdimaxSPlug1101 74 0.5 2823
EdinetCam1 117 0.3 2779
EdinetGateway 225 0.34 3240
FitbitAria 213 0.043 257
Lightify2 74 0.25 1022
PhilipsHueBridge 53 0.8 2680
SMCRouter 124 47 150768
STOutlet 6 0.04 1061
STMotionSensor 11 0.05 1291
STMultiPurpose 12 0.22 5255
TPLinkHS110 71 0.14 473
WansviewCam 193 11 73759
WemoInsightSwitch 117 0.8 1675
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6.5.2 Dataset and Evaluation Metrics

In order to evaluate the attacks in the stages above, we collected the network data

from 22 different smart home devices. Data collection was performed in two stages:

In the first stage, controlled experiments were performed in which detailed instruc-

tions were followed to initiate specific actions on the tested device. These instruc-

tions were compiled based on the on-line or hardcopy manual of each tested device

(specs and data sheets). The controlled experiments were performed in order to en-

sure that all relevant actions for each device were represented in the usage dataset

sufficiently many times. Each experiment was therefore repeated n = 20 times for

each device. In addition to the controlled experiments, also uncontrolled testing was

performed in order to capture background traffic of relevant devices. In this set-up,

several devices were configured to be used simultaneously and device actions were

occasionally triggered during a test period of ca. 1-2 hours.

The duration and the total size of the captures and the number of the packets

are given in Table 6.2. The devices used include a representative cross-section of

IoT device types, typically available in the European and North American markets

during the study. The devices were also selected based on the market share of

different device categories. The most popular device categories are smart security

systems such as smart cameras and smart locks (22.2%), lighting (3.03%), outlets

and switches (1%), gateways including hubs and routers (24.5%), and smart speakers

(22.39%) [Ana17]. In addition to these categories, we also included several smart

sensors as these devices hold significant smart home market share (approximately

23.9%) [Int18]. We installed all the devices in a laboratory network and emulated

user inputs triggering device state changes. We captured all the network traffic from

a device and performed the analysis offline.
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For evaluating the efficiency of our attacks, we use different metrics. First, we

use accuracy, which is the ratio of correctly inferred observations to total obser-

vations. In some cases, as in real deployments, the collected network data may

have imbalanced data, where the duration of the active state is much less than the

inactive one. In those cases, we use additional metrics such as Precision, Recall,

F1 score, and Support. In the cases that the dataset includes a lot more label 0

(no activity) rows than label 1 (activity) rows, we observed that F1 score is a bet-

ter performance measurement than accuracy although accuracy is a more intuitive

performance measurement, in general.

6.5.3 Performance Metrics

To evaluate our proposed novel attack, we used seven different performance met-

rics: True Positive Rate (TPR), False Negative Rate (FNR), True Negative Rate

(TNR), False Positive Rate (FPR), Precision, Accuracy, and F1-score. These can

be calculated using following equations:

TPR (Recall) =
TP

TP + FN
(6.1)

FNR =
FN

TP + FN
(6.2)

TNR =
TN

TN + FP
(6.3)

FPR =
FP

TN + FP
(6.4)

Precision = TP/(TP + FP ) (6.5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6.6)

F1− score =
2 ∗ TP ∗ TN
TP + TN

(6.7)

where TP = True Positive, FP = False Positive, TN = True Negative and

FN = False Negative.
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6.5.4 Calculating Features from Network traffic

In this sub-section, we explain how we use the traffic flow for the classification

task. Particularly, we take advantage of the fact that while the encryption layer

in the protocol protects the payload of a packet, it fails to hide other information

revealed by network traffic patterns, for instance, sequence of packet lengths (SPL)

and direction (incoming/outgoing). We consider each network traffic flow as a time

ordered sequence of packets exchanged between two peers during a session. Before

processing the network traffic for classification, we converted packet in traffic flow

into a Sequence of Packet Lengths and Times (SPLT) as in following format:

pkt = [timestamp, direction, packet length], (6.8)

where the direction is 1(0) if it is an incoming (outgoing) packet. This transforma-

tion is done for each packet in the captured trace, where each result is written to a

new row. In the end, we obtained a matrix with three columns. Then, in the feature

extraction of each attack, we calculated the features from this matrix.

6.5.5 Stage-1: Device Identification

Several different identification approaches for IoT devices have been proposed in

literature. Numerous works have shown that IoT devices can be identified with high

accuracy for both WiFi-enabled [MMH+17, DJ17, BBP+18, MBS+17, NMM+19]

and BLE-enabled [DPCM16] devices. Therefore, in this section (e.g., Stage-1),

we implemented already existing device identification algorithm for ZigBee-enabled

smart home devices using our features to see whether we can identify the ZigBee-

enabled smart home devices from their network traffic.

In our dataset, each device can be uniquely identified by the < brand, device−

type > pair. We did not consider the different models of devices as different devices.
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On the other hand, a hub in ZigBee always uses the network address 0x0000, so

it can be easily recognized by the attacker. Therefore, we did not include the hub

in the identification of ZigBee devices. After collecting ZigBee network traffic, the

second step involves extracting the features to identify the devices. In this step, the

features we used include mean packet length, mean inter-arrival time, and standard

deviation in packet lengths. We split each individual network traffic trace of a device

into equal time intervals (e.g., 5 sec, 10 sec). Then, we calculated these features for

each interval.

For the classification, we used the kNN classification algorithm. The classifier

could correctly identify devices with an overall accuracy of 93% for ZigBee devices.

This shows that as for WiFi and BLE, also devices using ZigBee can be identified

with high accuracy.

6.5.6 Stage-2: Device State Detection

When an interaction between the device and the user occurs, a significant amount of

data is transmitted, which leads to a significant increase in the traffic rate. After this

data exchange, the data transmission drops to the minimum until a new interaction

starts. When there is no activity, only the minimum amount of continuation packets

like heartbeat messages are sent to minimize the device’s power and bandwidth

consumption. We also observed that almost the same amount of data transfer

occurs for the same activities. All this information allows us to detect transitions

between the activities or states of the device. For further validation, we do the

following experiments.
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Table 6.3: Evaluation results of device activity detection stage.

Device
Random Forest kNN

F1 Score Accuracy F1 Score Accuracy
ApexisCam 93 97 94 98
AirRouter 98 97 98 97
AugustSmartLock 100 100 100 100
BelkinWemoLink 80 79 85 83
DLinkCam 85 80 85 80
DLinkDoorSensor 94 98 92 97
DlinkMotionSensor 74 96 69 95
DlinkSiren 89 99 91 99
EdimaxCam 84 82 82 81
EdimaxSPlug1101 91 97 92 97
EdinetCam1 76 96 76 96
EdinetGateway 80 99 66 99
FitbitAria 100 100 100 100
Lightify2 86 99 81 98
PhilipsHueBridge 74 98 76 98
SMCRouter 94 91 100 100
STOutlet 83 99 92 99
STMotionSensor 91 97 92 97
STMultiSensor 86 99 92 99
TPLinkPlug1101 98 99 92 99
WansviewCam 91 87 91 86
WemoInsightSwitch 86 98 88 98
Avg 88 99 91 95
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Feature Extraction

Our goal is to transform a sequence of packets into a supervised learning dataset. To

achieve this, we divided the sequence of packets into windows of size W . For a given

time interval length W , we extracted a feature vector comprised of three variables:

mean packet length, mean inter-arrival time and median absolute deviation of packet

size. Based on timestamped labels telling whether an activity was ongoing or not, we

labeled the given vector with 1 for an ongoing activity or 0 for no activity. We found

that the window size has significant influence on the performance of our model. The

window size for the best performance depends on adjusting the size according to

the duration of the activity. In general, selecting a smaller window size improves

the performance until some level, but any further reduction results in decline of

the performance. From our observation, better performance was observed when the

window size is about a quarter of the duration of an activity.

Results

After obtaining feature vectors with labels from the sequence of packets, any su-

pervised learning algorithm can be applied on the dataset. We have evaluated

two supervised learning algorithms, namely Random Forest classifier (RF) and k-

Nearest Neighbors classifier (kNN). As shown in Table 6.3 both RF and kNN have

similar performance with RF averaging 88% and kNN with 91% average of correctly

detecting activities. F1 Score of each device in Table 6.3 differs slightly. DlinkMo-

tionSensor has the worst F1 score 74% using RF and 69% using kNN and the best

F1 score is 100% for the Aria Fitbit and AugustSmartLock.
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6.5.7 Stage-3: Device State Classification

In the device state classification experiments, the attacker’s goal is to decide the

state of the device (e.g., deciding if it is ON or OFF). When looking at the device’s

exchanged network packets, unlike previous steps, this is more difficult to determine.

However, each state has a unique pattern which helps us to differentiate them from

each other. In order to see if it is possible to differentiate the states, we did the

following experiments:

Feature extraction

To conduct device state classification, informative and distinctive features must

be extracted from time-series generated in the preprocessing steps. We used the

tsfresh [CBN18] tool that automatically calculates a large number of time series

characteristics and features and then constructed our feature vector. Examples of

the features extracted from time-series are as follows: Absolute Energy of time-

series, Length of time-series, Mean of time-series, Median of time-series, Skewness

of time-series, Entropy of time-series, Standard deviation of time-series, Variance

of time-series, Continuous wavelet transform coefficients, Fast Fourier Transform

Coefficients, Coefficients of polynomial fitted to time-series.

Feature selection

The output of the feature extraction phase is a set of feature vectors including

795 binary features. A large number of features, some of which redundant or ir-

relevant might present several problems such as misleading the learning algorithm,

and increasing model complexity. A feature selection technique was therefore used

to mitigate these problems and also to reduce over-fitting, training time and im-

prove accuracy. We used a technique leveraging ensembles of randomized decision
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trees (i.e., Extra Trees-Classifier) for determining the importance of individual fea-

tures. We exploited Extra-Trees Classifier to compute the relative importance of

each attribute to inform feature selection. The features considered unimportant

were discarded. The feature selection phase effectively reduced the feature vector

size from 795 binary features to 197 features.

Results

Our objective was to build a performant model to correctly classify IoT devices’

states even if their traffic is encrypted. To this end, we employed several machine

learning algorithms for the classification such as XGBoost, Adaboost, Random Forest,

SVM with RBF kernel, kNN, Logistic Regression, Näıve Bayes, and Decision Tree.

In order to ensure that our machine learning model got the most of the patterns from

the training data correctly, and it was not picking up too much noise, we shuffled

and split the data-points to conduct the following experiments: (i) we performed

5-fold Cross Validation (CV) on a training set of 377 samples (75% of data) for

assessing the effectiveness of the machine learning model and (ii) we carried out

Hold-out Validation on 126 samples (25% of data) to test the machine learning

model performance against unseen data.

5-fold Cross Validation: To avoid the risk of missing important patterns or

trends in the dataset, we applied cross validation, as it provides ample data for

training the model and also leaves ample data for validation. Thus, we conducted a

5-fold cross validation experiment. In 5-fold CV, the data are randomly partitioned

into 5 equal-sized sub-samples. Of the 5 sub-samples, a single sub-sample is retained

as the validation data for testing the model, and the remaining 4 sub-samples are

used as training data. The process is then repeated 5 times with each of the 5

sub-samples used exactly once as the validation data. The 5 results from the folds
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Table 6.4: Cross-validation and hold-out validation results for device state classifi-
cation.

Classifier
5-fold CV Held-out data (25% of data)

(75% of data) Precision Recall F1 Score
SVC RBF Kernel 86 89 87 87
Logistic Reg. 87 90 89 88
Random Forest 92 96 94 94
Naive Bayes 87 92 87 88
Decision Tree 66 62 63 61
K-NN 84 91 87 87
Adaboost 86 89 87 87
XGBoost 85 91 87 87

can then be averaged to produce a single estimation. We obtained 92% accuracy in

terms of F1 Score in the detection of devices’ states using Random Forest classifier,

as shown in Table 6.4.

Hold-out Validation: To make sure that our classifier can generalize well and

is not over-fitted, we tested the classifiers’ performance in terms of Precision, Recall,

and F1 Score against unseen data (the data was removed from the training set and

is only used for this purpose). Table 6.5 shows the detailed results obtained by

Random Forest classification algorithm when conducting the device state classifica-

tion over 126 unseen samples. As can be seen, the F1 Score of each device used in

the experiment differs slightly. We obtained an average performance measurement

of 0.94 (94%) of correctly classifying activities. This shows that an attacker can

easily differentiate the devices’ states.

6.5.8 Stage-4: User Activity Inference

Modern smart home environments comprise several sensors and devices that are con-

nected with each other and share information. These devices and sensors are con-

figured as independent entities, but work co-dependently to provide an autonomous

161



Table 6.5: Hold-out validation results of RF classifier for all IoT devices.

Device name Action Pre. Recall F1 Supp.

ApexisCamera live view 100 100 100 4

AirRouter surfing on amazon 80 100 89 4

AugustSmartLock off 100 67 80 3

AugustSmartLock on 67 100 80 2

BelkinWemoLink off 80 100 89 8

BelkinWemoLink on 100 50 67 4

DLinkCamera live view 100 100 100 3

DLinkDoorSensor open 100 100 100 5

DLinkSensor motion detection 100 100 100 6

DLinkSiren turn on 100 100 100 1

EdimaxCam live view 100 100 100 1

EdimaxSPlug1101 on 100 100 100 5

EdinetCam1 live view 100 100 100 2

EdinetGateway on 100 100 100 3

FitbitAria measure weight 100 100 100 4

Lightify2 change light type 100 100 100 6

PhilipsHueBridge turn scene off 100 100 100 3

PhilipsHueBridge turn scene on 100 100 100 5

SMCRouter surfing on amazon 100 80 89 5

STOutlet on 100 89 94 9

STMotion active 88 100 93 7

STMotion inactive 100 71 83 7

STMultiSensor acceleration active 100 100 100 8

STMultiSensor acceleration inactive 71 100 83 5

TPLinkPlugHS110 turn off 100 100 100 5

WansviewCam reboot 100 100 100 9

WemoInsightSwitch on 100 100 100 2

Avg./Total ———– 96 94 94 126
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Figure 6.4: User walking scenario in a smart home environment.

system. Any user activity in a smart home can be inferred by observing the states

of the devices and sensors.

Modelling User Activities via Hidden Markov Model

In Figure 6.4, we demonstrate a simple walking scenario of a user. Here, a user is

entering the smart home from outside to the bedroom through the hallway. The

scenario consists of five different devices with lights both inside and outside the

home controlled by the motion sensor (M) and light sensor (L). This simple activity

can be illustrated as a sequential pattern: Sub-activity 1- moving towards the door

from outside (L1 is active), Sub-activity 2- user opens the front door (L1, D1, Lo1

are active), Sub-activity 3- user enters the hallway (L2, M1, Li1 are active), Sub-

activity 4- user enters the room (Li2, L2, M2, D1, Lo1 are active), Sub-activity 5-

user inside the home (L2, M2, Li2 are active). To complete the activity, a user must

follow the same sequence of sub-activities and complete each step. As discussed

earlier, the devices’ states (active/inactive) for a specific time can be determined

from the network traffic captured from the devices. These device states can be used

to infer an on-going activity in a smart home setting.
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Feature Extraction

To infer user activities, different device features must be extracted from network

traffic data. Network traffic data contain several features including timing infor-

mation, sensor information, device states, location, etc. Based on the data-type,

the extracted features from the network traffic for user activity inference can be

represented as follows:

Data array, ET = {S,D,M,L}, (6.9)

where T is the set of timing features extracted from the network traffic, S is the

set of sensors’ features, D is the set of device features, M is the features extracted

from the controlling device (smartphone/tablet), and L is the set of location features

extracted from the network traffic. We describe the characteristics of these features

below.

• Timing features (T): Smart home devices change their state according to user

activities and commands. Some devices perform time-independent tasks (e.g.,

switching lights with motion), while some devices perform a task in a certain

pattern with different user activities (e.g., walking from one point to another)

based on smart home settings. We extract the time of an event from the

network traffic captured from different devices to build the overall state of the

smart home at the time of the user activity.

• Sensor State features (S): Smart home environment consists of different sen-

sors (e.g., motion sensor, light sensor, door sensor, etc.) which act as a bridge

between devices and the peripheral. Sensors in a smart home can sense dif-

ferent environment parameters which can trigger different pre-defined tasks in

multiple devices. Moreover, sensors can sense any change occurred because of
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a user interaction and forward this information as an input to the associated

devices. These sensor data can be both logical (motion sensor) and numerical

(temperature sensor) depending on the nature of the sensor. We observe the

changes in both logical and numerical value of a sensor from the captured

network traffic and use as a feature to infer user activities. We represent the

changes in sensor data as binary output: 1 for active state and 0 for inactive

state.

• Device State features (D): In a smart home environment, multiple devices such

as smart light, smart thermostat, etc. can be connected with each other and

with a central hub to perform different tasks. These devices can be configured

to change their states (active/inactive) to perform a pre-defined task or to

perform a task based on user activities. We consider the state information

of all the connected devices as features and extract this information from

captured network traffic to infer the on-going user activity. The active and

inactive states of the devices are illustrated as 1 and 0 respectively in the data

array.

• Controller State features (M): Smart home devices can be controlled in an

autonomous way and also by using a controller device (smartphone/tablet).

To understand the changes in states of the sensors and devices, one should

consider the control commands generated by the controller devices. We con-

sider the state of controller device as active (represented as 1 in data array)

when a user interacts with smart home devices via controller device and inac-

tive otherwise (represented as 0 in data array). This state information of the

controller devices can be extracted from the captured network traffic to build

the data array.
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• Controller Location features (L): The devices connected in a smart environ-

ment can be controlled from a different location and this location information

can be collected from the captured network traffic. We consider the location of

the controller device as a feature to understand any activities on smart home.

We consider the home location of the controller device as 1 and the away loca-

tion of the controller as 0 to represent the location feature as a binary number

in the data array.

For Stage 4, we captured the network traffic from a smart home environment

and create the feature array explained in Equation 6.9. We captured the network

traffic for a specific time to correctly portray user activities from the network data.

Each element of the data array represents the operating conditions of different smart

devices, sensors, and controller devices. These data were then used to train a Hidden

Markov Model (HMM) to detect user activities in a smart home environment.

Hidden Markov Model (HMM) is a statistical Markov model, where each state

of the model contains unobserved states. In traditional Markov model, all the states

of an ongoing process are observable while in Hidden Markov model the states are

not directly visible. Here, only the output depending on the states is visible. The

main assumptions of HMM are similar to the Markov Chain model which are as

follows: (1) The probability of occurring a particular state depends only on the

previous state. (2) The transition between two consecutive states is independent of

time. (3) Hidden states are not visible, but each hidden state randomly generates

one of the defined observations or visible states. We use these properties of HMM

to detect different user activities from the captured network traffic in a smart home

environment. The probabilistic condition of HMM is shown in Equation 6.10, where
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Xt denotes the state at time t for a user activity in a smart home [SAU17].

P (Xt+1 = x|X1 = x1, X2 = x2..., Xt = xt) =

P (Xt+1 = x|Xt = xt),

when, P (X1 = x1, X2 = x2..., Xt = xt) > 0

(6.10)

For each activity in the smart home environment, multiple feature arrays were cre-

ated and these arrays maintain different, but specific sequences for different user

activities. For a specific time, t, the state of the smart home can be represented by

the data array ET where each element of this data array illustrates the conditions of

smart home devices’ and sensors’ as binary output (1 for active status of an entity

and 0 for inactive status). Thus, each state can be represented as an n-bit binary

number, where n is the total number of devices in the smart home. Let assume

the smart home environment is in state i at time t and changing to state j at time

t + 1. The transition probability from state i to state j can be noted as Pij. If the

smart home environment comprises of n number of devices and m = 2n states in

the system, the transition matrix of HMM is given as follows:

P =



P11 P12 P13 . . . . . . P1m

P21 P22 P23 . . . . . . P2m

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

Pm1 Pm2 Pm3 . . . . . . Pmm


(6.11)

If the smart home environment has Xt number of states where t = 0, 1, . . . , T , the

elements of the transition matrix can be shown as follows [NPVB05]:

Pij =
Nij

Ni

, (6.12)

where Nij denotes the number of transition from Xt to Xt+1, where Xt is the state

at time t and Xt+1 is the state at time t+ 1.
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To build the observation probability matrix, we consider different user activities

as hidden states of the smart home environment and correlates with the system’s

states build from the data arrays. Let assume the smart home environment has

k number hidden states (H) in the system. The observation probability matrix of

HMM is given as follows:

B =



X1(H1) X2(H1) X3(H1) . . . . . . Xm(H1)

X1(H2) X2(X2) P3(X2) . . . . . . Xm(H2)

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

X1(Hk) X2(Hk) X3(Hk) . . . . . . Xm(Hk)


(6.13)

where Xm(Hk) is the probability of observing Hk from state Xm. Xm(Hk) can be

represented by Equation :

Xm(Hk) = P (Hk|Xm), (6.14)

For our work, we want to detect the hidden state (user activity) from a given state

sequence. To calculate the probability of user activity, we use the Forward-Backward

(FB) algorithm to decode HMM. The FB algorithm can be expressed by the following

equations.

Forward recursion, Pm(t+ 1) = BmHt+1

m∑
a=0

Pa(t)Pam (6.15)

Backward recursion,Bi(t) =
k∑
b=1

PijBjHt+1Bj(t+1), (6.16)

where, t= 0,1, ..., T-1. The probability of occurring a hidden state (user activity)

from the sequence of observable states (device states) can be calculated from the

following equation.

P (H1, H2, . . . , Hk) =
K∑
l=1

Pk(t)Bk(t). (6.17)
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Table 6.6: Typical activities of users in a smart home environment.

Task Category Task Name

Time-independent
1. Controlling device within smart home.
2. Controlling device from outside of the home.
3. Presence in a specific point at home.

Time-dependent
4. Walking in the smart home.
5. Opening/ closing doors/windows.
6. Entering/ exiting from smart home

To train this HMM, we collected data from a smart home environment with

real smart devices. We consider common smart home devices to build our training

environment [dL17]. Our test smart home environment included Samsung Smart-

Things hub, Samsung multipurpose sensor, Samsung motion sensor, Netgear Arlo

security camera, Philips Hue smart light, Ecobee Smart Thermostat, and August

Smart Lock. We collected network traffic data from 10 different users for different

user activities.

Activity Types

User activities in a smart home environment can be instantaneous (e.g., switching

on a device) or sequential over time (e.g., walking from one place to another). We

categorized user activities in a smart home environment in two categories - time-

independent and time-dependent user activities.

• Time-independent Activities: These user activities are instantaneous, non-

sequential activities which do not depend on time. For example, a user can

switch on/off a device in the smart home environment at a specific time in-

stance. This activity will show changes in different features for only one time.

• Time-dependent Activities: These user activities are time-dependent, sequen-

tial activities. For example, a user can move from one point to another point.
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This activity will show changes in different features over time in a specific

sequence.

We tested our HMM model with data collected from six different user activities.

Our user activity model is explained below.

• User Activity- 1. A user is controlling a device from inside of the smart home

environment.

• User Activity- 2. A user is controlling a device from outside of the smart home

environment.

• User Activity- 3. A user is performing tasks from a specific point of a smart

home environment.

• User Activity- 4. A user is walking from one point to another inside the smart

home environment.

• User Activity- 5. A user is entering/ exiting from the smart home environment.

• User Activity- 6. A user is opening/ closing a window/ door in smart home

environment.

Results

To train our proposed HMM for user activity inference, we collected user activity

data for a week from 15 different people (total 30 datasets) in an emulated smart

home environment. We asked the users to perform their daily activities in a timely

manner (from morning to night) and performed the same activities in defined se-

quences in a real-life smart home setting. We considered single authorized smart

home user interacting with smart devices at a time for data collection. We trained

our HMM model with these data. We also collected data for this activity model to
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Table 6.7: User activity inference from network traffic data in a smart home envi-
ronment.

Smart Home
TPR FNR TNR FPR Accuracy F-score

User Activity
Activity-1 1 0 1 0 1 1
Activity-2 1 0 1 0 1 1
Activity-3 1 0 1 0 1 1
Activity-4 0.96 0.03 0.94 0.05 0.95 0.95
Activity-5 0.95 0.04 0.87 0.12 0.93 0.91
Activity-6 0.97 0.02 0.91 0.08 0.94 0.94

test our proposed method. We collected two datasets for each activity (12 in total)

to test the efficacy of the activity inference model.

In Table 6.7, the evaluation results of our activity inference model are shown.

For time-independent activities (Activity-1, Activity-2, and Activity-3), one can

infer with 100% accuracy and F-score from the captured network traffic data in a

smart home environment. On the contrary, accuracy and F-score decreases slightly

for time-dependent activities as these activities introduce FP and FN instances in

the activity inference model. For Activity-4, our proposed stage 4 activity inference

HMM can achieve both accuracy and F-score over 95%. The false positive rate

(FPR) and false negative rate (FNR) are over 5% and 3% respectively for Activity-4.

For Activity-4 and Activity-5, the accuracy of user activity inference decreases (93%

and 94% respectively) while FPR and FNR increases. The reason for the increment

of FPR and FNR is that different time-dependent user activities can have similar

patterns over time with small changes in specific time instances. This affects the

probability of occurring an activity calculated from HMM. In summary, an attacker

can infer time-independent activities more accurately (with 100% accuracy and F-

score) than the time-dependent activities (with over 95% accuracy and F-score).
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Finally, note that an accurate user activity inference means that all the stages

in the multi-stage attack have to be correctly guessed, which may lower the end-

to-end successful inference rate of the attacker. For example, if the stage 1, 2, 3,

and 4 are X, Y , Z, and T , respectively, for an attacker, the probability of correctly

guessing the Activity-4 of the user is X × Y × Z × T . However, we also note that

independently inferred information in every stage is also valuable as it may also

include sensitive information (e.g., inferring the device type of a connected medical

device may reveal the health status of the subject [Sø17]).

6.6 Mitigating the Privacy Leaks

Despite the security vulnerabilities exploited before, as these privacy concerns are

inherent and insidious, it is too hard to detect and avoid these types of threats

associated with smart home devices. An attacker can passively listen to the wireless

medium and record all the network traffic from a smart home environment without

interrupting the normal activities of devices and their users.

6.6.1 Straightforward Solutions

Using VPN or Tor-like Tools

The use of VPN will prevent an attacker from recording the victim’s outgoing traffic

after the gateway as it is going to be encrypted by the VPN provider. An ISP cannot

record the network traffic of the user anymore. On the other hand, Tor will make

the source and destination IPs impossible to determine for the ISP. Both methods

will protect the communication between the home AP and the server of the hub.
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However, they provide no protection against an attacker within range (e.g., outside,

near home) and sniffing the internal traffic.

Signal Attenuation

A signal attenuator can be used in theory to protect from an attacker sniffing the

internal network traffic of the smart home. This can be realized via a wired connec-

tion or using Faraday cages [SSW08]. Nonetheless, forcing all the devices to such a

modification in the hardware level and a Faraday cage could be too unrealistic and

very expensive to set up for the smart home users.

Traffic Shaping

The traffic shaping solutions have been widely studied in the literature of web-

site classifiers. Padding to proper MTU, exponential padding, or random padding

are some of the countermeasures with the traffic shaping methods. Indeed, not only

padding, but also constant or random delays can be applied to the packets transmit-

ted to protect from inference attacks. In all these solutions, the underlying protocol,

which needs to provide a real-time accurate values from the devices, is modified in

a way that unfortunately lowers the efficiency and accuracy of the devices.

6.6.2 Proposed Approach

In this sub-section, we introduce a solution based on generating spoofed traffic. In

this way, even if the user is not at home, generating false activity for the user’s

presence traffic will mask the user’s absence.

In order to measure the efficacy of our proposed spoofed traffic, we investigated

the injection of false packets by modifying the feature vectors and evaluated how
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the performance measurements would change. Then, we applied it to the device

state detection and device activity classification attacks. Since the user activity

inference is based on the results of the device state detection and device activity

classification attacks, if we can falsify their results, the attacker will not able to

infer the activities correctly. Particularly, we conducted a set of experiments where

we injected falsified data into the training set to observe how the previously shown

detection and classification algorithms would behave in such a situation. The results

are shown in Figure 6.5.

Impact of False Data Injection on Device State Detection. Figure 6.5a

shows the average of the accuracy measures for the kNN algorithm after increasingly

injecting false packets. When there is no injected false packet, all of the devices

have 91% F1 score, then it linearly decreases with the increase of false packets. For

example, injecting false data equivalent to 10% of packets exchanged during the

observation time resulted in a decrease by 13%. For 90% false traffic addition, the

accuracy of device state detection declined by about 57%. This shows that traffic

injection can be efficiently used for hiding the state of devices from the adversary.

Impact of False Data Injection on Device State Classification. We injected

the falsified data into the training data and computed the accuracy metrics in terms

of F1 Score, Precision, and Recall. We injected 10% falsified data and continued

injecting until 90% of the dataset contained false data. As can be seen in Figure 6.5b,

the F1 Score plunges dramatically when injecting 90% false data and reaches 15%.

This is due to the fact that randomly falsified features deteriorate traffic patterns

used for classifying the devices’ states. Also here, we can see that by injecting

increasing amounts of fabricated traffic, the adversary can effectively be prevented

from making inferences about the types of device events occurring.
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Figure 6.5: Impact of false data injection experiments on the attack accuracy. Its
impact on device state detection and device state classification attacks are shown in
a) and b), respectively.
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Figure 6.6: Remote adversary model (e.g., a malicious ISP).

6.7 Discussion

ISP as an adversary: Note that so far, our adversary model included only local

adversary, where the adversary is within the range of radio frequency. An exten-

sion to this adversary model can be a remote adversary that can monitor outgoing

network traffic of the smart home. A concrete example of such an adversary is an

ISP. Compared to the local adversary model considered in this work, an ISP-like

adversary has both advantages and disadvantages. It does not have to be within

a range and it can see the source and destination IPs of the packets, which a lo-

cal adversary can not see if the WPA encryption is enabled. However, it can only

collect the outgoing network traffic, not the internal two-way (upstream and down-

stream) network traffic as all the traffic is merged by the gateway (i.e., access point).

Figure 6.6 shows the complete topology of the network from device to cloud.

As can be seen in Figure 6.6, an ISP will only see the router’s (i.e., gateway/access

point) MAC address. Therefore, it can not use the MAC addresses of the smart home
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devices for the device identification. However, it can still try to use IPs in order to

identify the devices and infer activities. Though there are number of challenges that

attacker needs to solve in order to able use IP as a device identifier. First of all, if

Network Address Translation (NAT) is deployed by the AP1, the ISP can not find

out the topology of the smart home and the number of devices. Even though NAT

is not enabled, ZigBee and BLE devices have never been assigned an IP as they

communicate with the AP through a hub, where only the hub they are connected

to gets an IP. Moreover, devices do not communicate with only one server. Instead,

sometimes multiple devices use one server (i.e., destination IP) as in the Samsung

ST Hub, or sometimes one device can use multiple servers [CLBR16, ARS+17].

Therefore, even though the ISP-like attacker has some advantages (i.e., seeing IPs)

over the local adversary, there are several additional challenges that it needs to solve

to get the same attack working. We leave this kind of adversary out of scope for

now and will be studied in a future work.

Multi-user vs. single user: Smart home devices support multiple authorized

users. In a multi-user smart home scenario, more than one user can control and

change the settings of smart devices. Additionally, different users can perform dif-

ferent activities within the smart environment at a time. This can create some

false positive and false negative cases in user activity inference using our proposed

method. Nonetheless, an attacker can still infer the device type and devices states

from the network traffic. Additionally, the attacker can also infer the presence of

multiple users and the specific point of ongoing activities in multi-user smart home

environment using the network traffic. Compared to a multi-user scenario, a single

user smart home environment is more vulnerable to our proposed threat as it is

easier to infer a single on-going user activity in the smart home.

1Assuming IPv4 is still in use.
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Local vs. remote control: To improve the user control over smart devices and

increase convenience, smart homes offer remote access control in addition to tra-

ditional local access. Our proposed threat model can guess both local and remote

access from location feature of the captured network traffic. This is a serious threat

to user privacy as attackers can detect when a user is changing the state of a specific

device remotely and perform malicious activities. For example, an attacker can infer

when a user is accessing the smart lock remotely, which may result in physical access

to the home environment.

Smart device diversity: Smart devices have no common network protocols. In-

deed, some of them such as WiFi, ZigBee, and BLE are more popular than others.

This makes it harder to sniff all the devices that the smart home user is using. In

addition to the diversity of network protocols, smart home devices come with differ-

ent computational resources, hardware types, capabilities, exchanged data format

etc. All of these differences in smart devices make it very challenging to build a

generic solution as well as an attack. However, with our automated multi-stage

privacy-attack, we showed the feasibility of the attack with the most popular net-

work protocols, which covers the most of the commercial devices.

Limitations of defense: As our results show, injecting false data to the commu-

nication clearly decreases the accuracy of the attacks. However, even though it is

an effective method and it has the advantage of not affecting the efficiency of real

traffic on the devices, but it requires an extension to the protocols to put a flag

on the fake activities, which will be known by both devices and server. Here, we

propose two different ways to implement this solution with trade-offs on the power

consumption and security.

1. Only on the Hub: This countermeasure can be implemented only on the smart

hub devices and does not require relatively-constrained smart home devices to
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be part of the countermeasure. Even though this type of solution is effective

and better for battery-powered devices, it can be discovered by the attacker;

after a while, an attacker can use the network traffic from the device(s) to hub

only, but the attacker’s success and accuracy will decrease in that case. ’

2. On the Hub and Device: This countermeasure requires to modify the com-

munication protocol both on the smart home device and the hub. This will

generate a more realistic interaction between the device and the hub, but this

may cause slightly more power consumption (depending on the size of the ex-

tra field for the flag) in the device and requires a modification on the devices

to send the false data.

Depending on the devices, where the solution to be implemented on, the required

modification in the current system and the implementer can change. For example,

if our solution is preferred to be implemented only on the hub, then it can be

implemented by the manufacturer of the hub only. However, if it is going to be

implemented on the devices and the hub together, it requires either the collaboration

of both sides or a protocol-level modification.

Generalizability of the attack: As we noted in the assumptions, the attacker we

considered in this work does not need exactly the same devices to train its attack

model, but it needs exact brand and device type to get the results presented in this

work as we use the < brand, device − type > pair to uniquely identify devices. In

other words, we assume at the end of the device identification stage of our attack, the

attacker knows < brand, device − type > pair. However, this assumption weakens

the attack model. An attacker who can infer the device type and does not need the

same device with the same brand would be more realistic. In order to remove this

assumption, the same device type with different brands should be used to train the

models and to attack (i.e., testing). It would be interesting to train and test the
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attack models on the same device type with different brands, or the same brand

with different device types. Moreover, it would be also interesting to test the affects

of model numbers, device configurations, or firmware updates etc.

6.8 Conclusion

In this chapter, we explored how encrypted traffic from a smart home environ-

ment can be used to infer sensitive information about smart devices and sensors.

Specifically, we introduced a novel multi-stage privacy attack, which an attacker can

exploit to automatically detect and identify particular types of devices, their actions,

states, and related user activities by passively monitoring the traffic of smart home

devices and sensors. Our evaluation on an extensive list of off-the-shelf smart home

devices, sensors, and real users showed that an attacker can achieve very high accu-

racy (above %90) in all the attack types. As opposed to to earlier straightforward

activity identification approaches, the novel multi-stage privacy attack can perform

detection and identification automatically, is device-type and protocol-agnostic, and

does not require extensive background knowledge or specifications of analyzed pro-

tocols. Finally, we proposed a new yet effective mitigation mechanism to hide the

real activities of the users. The effectiveness of the multi-stage privacy attack raises

serious privacy concerns for any smart environment equipped with smart devices and

sensors including personal homes, residences, hotel rooms, offices of corporations or

government agencies.
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CHAPTER 7

HOMOMORPHIC ENCRYPTION

In the next two chapters, in order to provide user privacy, we use homomorphic

encryption (HE). In this section, we first give an overview of HE schemes in the

literature.

7.1 Introduction

In ancient Greeks, the term ”ὁμός” (homos) was used in the meaning of ”same”

while ”μορφή” (morphe) was used for ”shape” [LS96]. Then, the term homomor-

phism is coined and used in different areas. In abstract algebra, homomorphism is

defined as a map preserving all the algebraic structures between the domain and

range of an algebraic set. The map is simply a function, i.e., an operation, which

takes the inputs from the set of domain and outputs an element in the range, (e.g.,

addition, multiplication). In the cryptography field, the homomorphism is used as

an encryption type. The Homomorphic Encryption (HE) is a kind of encryption

scheme which allows a third party (e.g., cloud, service provider) to perform certain

computable functions on the encrypted data while preserving the features of the

function and format of the encrypted data. Indeed, this homomorphic encryption

corresponds to a mapping in the abstract algebra. As an example for an additively

HE scheme, for sample messages m1 and m2, one can obtain E(m1 + m2) by us-

ing E(m1) and E(m2) without knowing m1 and m2 explicitly, where E denotes the

encryption function.

Normally, encryption is a crucial mechanism to preserve the privacy of any sen-

sitive information. However, the conventional encryption schemes can not work on

the encrypted data without decrypting it first. In other words, the users have to
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sacrifice their privacy to make use of cloud services such as file storing, sharing and

collaboration. Moreover, untrusted servers, providers, popular cloud operators can

keep physically identifying elements of users long after users end the relationship

with the services [McM13]. This is a major privacy concern for users. In fact, it

would be perfect if there existed a scheme which would not restrict the operations

to be computed on the encrypted data while it would be still encrypted. From a

historical perspective in cryptology, the term homomorphism is used for the first

time by Rivest, Adleman, and Dertouzous [RAD78] in 1978 as a possible solution

to the computing without decrypting problem. This given basis in [RAD78] has led

to numerous attempts by researchers around the world to design such a homomor-

phic scheme with a large set of operations. In this work, the primary motivation is

to survey the HE schemes focusing on the most recent improvements in this field,

including partially, somewhat, and fully HE schemes.

A simple motivational HE example for a sample cloud application is illustrated

in Figure 7.1. In this scenario, the client, C, first encrypts her private data (Step

1), then sends the encrypted data to the cloud servers, S, (Step 2). When the client

wants to perform a function (i.e., query), f(), over her own data, she sends the

function to the server (Step 3). The server performs a homomorphic operation over

the encrypted data using the Eval function, i.e., computes f() blindfolded (Step 4)

and returns the encrypted result to the client (Step 5). Finally, the client recovers

the data with her own secret key and obtains f(m) (Step 6). As seen in this simple

example, the homomorphic operation, Eval(), at the server side does not require

the private key of the client and allows various operations such as addition and

multiplication on the encrypted client data.
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An early attempt to compute functions/operations on encrypted data is Yao’s

garbled circuit1 study [Yao82]. Yao proposed two party communication protocol

as a solution to the Millionaires’ problem, which compares the wealth of two rich

people without revealing the exact amount to each other. However, in Yao’s garbled

circuit solution, ciphertext size grows at least linearly with the computation of every

gate in the circuit. This yields a very poor efficiency in terms of computational

overhead and too much complexity in its communication protocol. Until Gentry’s

breakthrough in [Gen09], all the attempts [RSA78, GM82, ElG85, Ben94, NS98,

OU98, Pai99a, DJ01, KTX07, Yao82, BGN05, SYY99, IP07] have allowed either one

type of operation or limited number of operations on the encrypted data. Moreover,

some of the attempts are even limited over a specific type of set (e.g., branching

programs). In fact, all these different HE attempts can neatly be categorized under

three types of schemes with respect to the number of allowed operations on the

encrypted data as follows: (1) Partially Homomorphic Encryption (PHE) allows

only one type of operation with an unlimited number of times (i.e., no bound on

the number of usages). (2) Somewhat Homomorphic Encryption (SWHE) allows

some types of operations with a limited number of times. (3) Fully Homomorphic

Encryption (FHE) allows an unlimited number of operations with unlimited number

of times.

PHE schemes are deployed in some applications like e-voting [Ben87] or Private

Information Retrieval (PIR) [KO97]. However, these applications were restricted

in terms of the types of homomorphic evaluation operations. In other words, PHE

schemes can only be used for particular applications, whose algorithms include only

addition or multiplication operation. On the other hand, the SWHE schemes sup-

1A circuit is the set of connected gates (e.g., AND and XOR gates in boolean circuits),
where the evaluation is completed by calculating the output of each gate in turn.
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C: m, Enc, Dec, f() S: Eval

4 S eva-

lutes f()

homomor-

phically

1 C encrypts his

message m, Enc(m)

6 C computes

Dec(Enc(f(m))) =

f(m), and re-

covers f(m)

2 C sends Enc(m) to store

3 C queries, f()

5 S returns Enc(f(m))

Figure 7.1: A simple client-server HE scenario, where C is Client and S is Server

port both addition and multiplication. Nonetheless, in SWHE schemes that are

proposed before the first FHE scheme, the size of the ciphertexts grows with each

homomorphic operation and hence the maximum number of allowed homomorphic

operations is limited. These issues put a limit on the use of PHE and SWHE schemes

in real-life applications. Eventually, the increasing popularity of cloud-based services

accelerated the design of HE schemes which can support an arbitrary number of ho-

momorphic operations with random functions, i.e. FHE. Gentry’s FHE scheme is

the first plausible and achievable FHE scheme [Gen09]. It is based on ideal-lattices

in math and it is not only a description of the scheme, but also a powerful framework

for achieving FHE. However, it is conceptually and practically not a realistic scheme.

Especially, the bootstrapping part, which is the intermediate refreshing procedure of

a processed ciphertext, is too costly in terms of computation. Therefore, a lot of

follow-up improvements and new schemes were proposed in the following years.

7.2 Homomorphic Encryption Schemes

In this section, we explain the basics of HE theory. Then, we present notable PHE,

SWHE and FHE schemes. For each scheme, we also give a brief description of the

scheme.
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Definition 1. An encryption scheme is called homomorphic over an operation ’?’

if it supports the following equation:

E(m1) ? E(m2) = E(m1 ? m2), ∀m1,m2 ∈M, (7.1)

where E is the encryption algorithm and M is the set of all possible messages.

In order to create an encryption scheme allowing the homomorphic evaluation of

arbitrary function, it is sufficient to allow only addition and multiplication operations

because addition and multiplication are functionally complete sets over finite sets.

Particularly, any boolean circuit can be represented using only XOR (addition)

and AND (multiplication) gates. While an HE scheme can use the same key for

both encryption and decryption (symmetric), it can also be designed to use the

different keys to encrypt and decrypt (asymmetric). A generic method to transform

symmetric and asymmetric HE schemes to each other is demonstrated in [Rot11].

An HE scheme is primarily characterized by four operations: KeyGen, Enc,

Dec, and Eval. KeyGen is the operation, which generates a secret and public key

pair for the asymmetric version of HE or a single key for the symmetric version.

Actually, KeyGen, Enc and Dec are not different from their classical tasks in con-

ventional encryption schemes. However, Eval is an HE-specific operation, which

takes ciphertexts as input and outputs a ciphertext corresponding to a functioned

plaintext. Eval performs the function f() over the ciphertexts (c1, c2) without see-

ing the messages (m1,m2). Eval takes ciphertexts as input and outputs evaluated

ciphertexts. The most crucial point in this homomorphic encryption is that the for-

mat of the ciphertexts after an evaluation process must be preserved in order to be

decrypted correctly. In addition, the size of the ciphertext should also be constant to

support unlimited number of operations. Otherwise, the increase in the ciphertext

size will require more resources and this will limit the number of operations.
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Of all HE schemes in the literature, PHE schemes support Eval function for only

either addition or multiplication, SWHE schemes support for only limited number

of operations or some limited circuits (e.g., branching programs) while FHE schemes

supports the evaluation of arbitrary functions (e.g., searching, sorting, max, min,

etc.) with unlimited number of times over ciphertexts. The well-known PHE,

SWHE, and FHE schemes are summarized in the timeline in Figure 7.2 and are

explained in the following sections with a greater detail. The interest in the area of

HE significantly increased after the work of Gentry [Gen09] in 2009. Therefore, we

articulate the HE schemes, FHE anymore, after Gentry’s work in a greater detail

and we also discuss their implementations and recent techniques to make it faster

in Section 7.3. Here, we start with the PHE schemes, which are the first stepping

stones for FHE schemes.

7.2.1 Partially Homomorphic Encryption Schemes

There are several useful PHE examples [RSA78, GM82, ElG85, Ben94, NS98, OU98,

Pai99a, DJ01, KTX07] in the literature. Each has improved the PHE in some way.

However, in this section, we primarily focus on major PHE schemes that are the

basis for many other PHE schemes.

RSA

RSA is an early example of PHE and introduced by Rivest, Shamir, and Adle-

man [RSA78] shortly after the invention of public key cryptography by Diffie Hel-

man [DH76]. RSA is the first feasible achievement of the public key cryptosystem.

Moreover, the homomorphic property of RSA was shown by Rivest, Adleman, and

Dertouzous [RAD78] just after the seminal work of RSA. Indeed, the first attested
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use of the term ”privacy homomorphism” is introduced in [RAD78]. The security of

the RSA cryptosystem is based on the hardness of factoring problem of the product

of two large prime numbers [Mon94]2 RSA is defined as follows:

• KeyGen Algorithm: First, for large primes p and q, n = pq and φ = (p−1)(q−

1) are computed. Then, e is chosen such that gcd(e, φ) and d is calculated by

computing the multiplicative inverse of e (i.e, ed ≡ 1 mod φ). Finally, (e, n)

is released as the public key pair while (d, n) is kept as the secret key pair.

• Encryption Algorithm: First, the message is converted into a plaintext m such

that 0 ≤ m < n, then the RSA encryption algorithm is as follows:

c = E(m) = me (mod n), ∀m ∈M, (7.2)

where c is the ciphertext.

• Decryption Algorithm: The message m can be recovered from the ciphertext

c using the secret key pair (d, n) as follows:

m = D(c) = cd (mod n) (7.3)

• Homomorphic Property: For m1,m2 ∈M ,

E(m1)∗E(m2) = (me
1 (mod n))∗(me

2 (mod n)) = (m1∗m2)e (mod n) = E(m1∗m2).

(7.4)

The homomorphic property of RSA shows that E(m1 ∗ m2) can be directly

evaluated by using E(m1) and E(m2) without decrypting them. In other words, RSA

2Here, we do not mean that RSA is secure. We mean the most basic attack on RSA
(e.g., key recovering attack) has to solve the problem of factoring of two large primes.
For example, plain RSA is not secure against Chosen Plaintext Attacks (CPA) as its
encryption algorithm is deterministic. We use the same idea for the rest of the paper as
well. Because of the limited space, we do not discuss the details of the security of each
encryption scheme.
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Figure 7.2: Timeline of HE schemes until Gentry’s first FHE scheme

is only homomorphic over multiplication. Hence, it does not allow the homomorphic

addition of ciphertexts.

Goldwasser-Micali

GM proposed the first probabilistic public key encryption scheme proposed in [GM82].

The GM cryptosystem is based on the hardness of quadratic residuosity problem [Pai99b].

Number a is called quadratic residue modulo n if there exists an integer x such that

x2 ≡ a (mod n). Quadratic residuosity problem decides whether a given number q

is quadratic modulo n or not. GM cryptosystem is described as follows:

• KeyGen Algorithm: Similar to RSA, n = pq is computed where p and q are

distinct large primes and then, x is chosen as one of the quadratic nonresidue

modulo n values with (x
n
) = 1. Finally, (x, n) is published as the public key

while (p, q) is kept as the secret key.

• Encryption Algorithm: Firstly, the message (m) is converted into a string of

bits. Then, for every bit of the message mi, a quadratic nonresidue value yi is

produced such that gcd(yi, n) = 1. Then, each bit is encrypted to ci as follows:

ci = E(mi) = y2
i x

mi (mod n), ∀mi = {0, 1}, (7.5)
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where m = m0m1...mr, c = c0c1...cr and r is the block size used for the message

space and x is picked from Zn
∗ at random for every encryption, where Zn∗ is the

multiplicative subgroup of integers modulo n which includes all the numbers

smaller than r and relatively prime to r.

• Decryption Algorithm: Since x is picked from the set Zn
∗ (1 < x ≤ n−1), x is

quadratic residue modulo n for only mi = 0. Hence, to decrypt the ciphertext

ci, one decides whether ci is a quadratic residue modulo n or not; if so, mi

returns 0, else mi returns 1.

• Homomorphic Property: For each bit mi ∈ {0, 1},

E(m1) ∗ E(m2) = (y2
1x

m1 (mod n)) ∗ (y2
2x

m2 (mod n))

= (y1 ∗ y2)2xm1+m2 (mod n) = E(m1 +m2).

(7.6)

The homomorphic property of the GM cryptosystem shows that encryption of

the sum E(m1 ⊕m2) can be directly calculated from the separately encrypted bits,

E(m1) and E(m2). Since the message and ciphertext are the elements of the set

{0, 1}, the operation is the same with exclusive-OR (XOR)3 Hence, GM is homo-

morphic over only addition for binary numbers.

El-Gamal

In 1985, Taher Elgamal proposed a new public key encryption scheme [ElG85]

which is the improved version of the original Diffie-Hellman Key Exchange [DH76]

algorithm, which is based on the hardness of certain problems in discrete loga-

rithm [Kev90]. It is mostly used in hybrid encryption systems to encrypt the secret

key of a symmetric encryption system. The El-Gamal cryptosystem is defined as

follows:

3XOR can be thought as binary addition.

190



• KeyGen Algorithm: A cyclic group G with order n using generator g is pro-

duced. In a cyclic group, it is possible to generate all the elements of the

group using the powers of one of its own element. Then, h = gy computed for

randomly chosen y ∈ Zn∗. Finally, the public key is (G, n, g, h) and x is the

secret key of the scheme.

• Encryption Algorithm: The message m is encrypted using g and x, where x is

randomly chosen from the set {1, 2, ..., n−1} and the output of the encryption

algorithm is a ciphertext pair (c = (c1, c2)):

c = E(m) = (gx,mhx) = (gx,mgxy) = (c1, c2), (7.7)

• Decryption Algorithm: To decrypt the ciphertext c, first, s = c1
y is computed

where y is the secret key. Then, decryption algorithm works as follows:

c2 · s−1 = mgxy · g−xy = m. (7.8)

• Homomorphic Property:

E(m1) ∗ E(m2) = (gx1 ,m1h
x1) ∗ (gx2 ,m2h

x2) = (gx1+x2 ,m1 ∗m2h
x1+x2) = E(m1 ∗m2).

(7.9)

As seen from this derivation, the El-Gamal cryptosystem is multiplicatively ho-

momorphic. It does not support addition operation over ciphertexts.

Benaloh

Benaloh proposed an extension of the GM Cryptosystem by improving it to encrypt

the message as a block instead of bit by bit [Ben94]. Benaloh’s proposal was based

on the higher residuosity problem. Higher residuosity problem (xn) [Pai99b] is

the generalization of quadratic residuosity problems (x2) that is used for the GM

cryptosystem.
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• KeyGen Algorithm: Block size r and large primes p and q are chosen such

that r divides p − 1 and r is relatively prime to (p − 1)/r and q − 1 (i.e.,

gcd(r, (p − 1)/r) = 1 and gcd(r, (q − 1)) = 1). Then, n = pq and φ =

(p − 1)(q − 1) are computed. Lastly, y ∈ Zn∗ is chosen such that yφ 6≡ 1

mod n, where Zn∗ is the multiplicative subgroup of integers modulo n which

includes all the numbers smaller than r and relatively prime to r. Finally,

(y, n) is published as the public key, and (p, q) is kept as the secret key.

• Encryption Algorithm: For the message m ∈ Zr, where Zr = {0, 1, ..., r − 1},

choose a random u such that u ∈ Zn∗. Then, to encrypt the message m:

c = E(m) = ymur (mod n), (7.10)

where the public key is the modulus n and base y with the block size of r.

• Decryption Algorithm: The message m is recovered by an exhaustive search

for i ∈ Zr such that

(y−ic)φ/r ≡ 1, (7.11)

where the message m is returned as the value of i, i.e., m = i.

• Homomorphic Property:

E(m1) ∗ E(m2) = (ym1u1
r (mod n)) ∗ (ym2u2

r (mod n))

= ym1+m2(u1 ∗ u2)r (mod n) = E(m1 +m2 (mod n)).

(7.12)

Homomorphic property of Benaloh shows that any multiplication operation on

encrypted data corresponds to the addition on plaintext. As the encryption of the

addition of the messages can directly be calculated from encrypted messages E(m1)

and E(m2), the Benaloh cryptosystem is additively homomorphic.
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Paillier

In 1999, Paillier [Pai99a] introduced another novel probabilistic encryption scheme

based on composite residuosity problem [Jag12]. Composite residuosity problem is

very similar to quadratic and higher residuosity problems that are used in GM and

Benaloh cryptosystems. It questions whether there exists an integer x such that

xn ≡ a (mod n2) for a given integer a.

• KeyGen Algorithm: For large primes p and q such that gcd(pq, (p−1)(q−1)) =

1, compute n = pq and λ = lcm(p − 1, q − 1). Then, select a random integer

g ∈ Z∗n2 by checking whether gcd(n, L(gλ mod n2
)) = 1, where the function L

is defined as L(u) = (u − 1)/n for every u from the subgroup Z∗n2 which is a

multiplicative subgroup of integers modulo n2 instead of n like in the Benaloh

cryptosystem. Finally, the public key is (n, g) and the secret key is (p, q) pair.

• Encryption Algorithm:

For each message m, the number r is randomly chosen and the encryption

works as follows:

c = E(m) = gmrn (mod n2), (7.13)

• Decryption Algorithm: For a proper ciphertext c < n2, the decryption is done

by:

D(c) =
L(cλ (mod n2))

L(gλ (mod n2))
mod n = m, (7.14)

where private key pair is (p, q).

• Homomorphic Property:

E(m1) ∗ E(m2) = (gm1r1
n (mod n2)) ∗ (gm2r2

n (mod n2))

= gm1+m2(r1 ∗ r2)n (mod n2) = E(m1 +m2).

(7.15)
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This derivation shows that Pailliler’s encryption scheme is homomorphic over

addition. In addition to homomorphism over the addition operation, Pailliler’s

encryption scheme has some additional homomorphic properties, which allow ex-

tra basic operations on plaintexts m1,m2 ∈ Z∗n2 by using the encrypted plaintexts

E(m1), E(m2) and public key pair (n, g):

E(m1) ∗ E(m2) (mod n2) = E(m1 +m2 (mod n)), (7.16)

E(m1) ∗ gm2 (mod n2) = E(m1 +m2 (mod n)), (7.17)

E(m1)m2 (mod n2) = E(m1m2 (mod n)). (7.18)

These additional homomorphic properties describe different cross-relation be-

tween various operations on the encrypted data and the plaintexts. In other words,

Equations (7.16), (7.17), and (7.18) show how the operations computed on encrypted

data affects the plaintexts.

Others

Moreover, Okamoto-Uchiyama (OU) [OU98] proposed a new PHE scheme to im-

prove the computational performance by changing the set, where the encryptions of

previous HE schemes work. The domain of the scheme is the same as the previous

public key encryption schemes, Z∗n, however, Okamoto-Uchiyama sets n = p2q for

large primes p and q. Furthermore, Naccache-Stern (NS) [NS98] presented another

PHE scheme as a generalization of Benaloh cryptosystem to increase its computa-

tional efficiency. The proposed work changed only the decryption algorithm of the

scheme. Likewise, Damgard-Jurik (DJ) [DJ01] introduced another PHE scheme as

a generalization of Paillier. These three cryptosystems preserve the homomorphic

property while improving the original homomorphic schemes.

194



Table 7.1: Homomorphic properties of well-known PHE schemes

Homomorphic Operation

Scheme Add Mult

RSA [RSA78] 3

GM [GM82] 3

El-Gamal [ElG85]4 3

Benaloh [Ben94] 3

NS [NS98] 3

OU [OU98] 3

Paillier [Pai99a] 3

DJ [DJ01] 3

KTX [KTX07] 3

Galbraith [Gal02] 3

Similarly, Kawachi (KTX) et al. [KTX07] suggested an additively homomorphic

encryption scheme over a large cyclic group, which is based on the hardness of un-

derlying lattice problems. They named the homomorphic property of their proposed

scheme as pseudohomomorphic. Pseudohomomorphism is an algebraic property and

still allows homomorphic operations on ciphertext, however, the decryption of the

homomorphically operated ciphertext works with a small decryption error. Finally,

Galbraith [Gal02] introduced a more natural generalization of Paillier’s cryptosys-

tem applying it on elliptic curves while still preserving the homomorphic property of

the Paillier’s cryptosystem. Homomorphic properties of well-known PHE schemes

are briefly summarized in Table 7.1.

4The method to convert El-Gamal into an additively homomorphic encryption scheme
is shown in [CGS97]. However, it is still PHE as it still supports only addition operation,
not both at the same time.
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7.2.2 Somewhat Homomorphic Encryption Schemes

There are useful SWHE examples [Yao82, SYY99, BGN05, IP07] in the literature

before 2009. After the first plausible FHE published in 2009 [Gen09], some SWHE

versions of FHE schemes were also proposed because of the performance issues

associated with FHE schemes. We cover these SWHE schemes under the FHE

section. In this section, we primarily focus on major SWHE schemes, which were

used as a stepping stone to the first plausible FHE scheme.

BGN

Before 2005, all proposed cryptosystems’ homomorphism properties were restricted

to only either addition or multiplication operation i.e., SWHE schemes. One of

the most significant steps toward an FHE scheme was introduced by Boneh-Goh-

Nissim (BGN) in [BGN05]. BGN evaluates 2-DNF5 formulas on ciphertext and it

supports an arbitrary number of additions and one multiplication by keeping the

ciphertext size constant. The hardness of the scheme is based on the subgroup

decision problem [Gjø04]. Subgroup decision problem simply decides whether an

element is a member of a subgroup Gp of group G of composite order n = pq, where

p and q are distinct primes.

• KeyGen Algorithm: The public key is released as (n,G,G1, e, g, h). In the

public key, e is a bilinear map such that e : G × G → G1, where G,G1 are

groups of order n = q1q2. g and u are the generators of G and set h = uq2 and

h is the generator of G with order q1, which is kept hidden as the secret key.

• Encryption Algorithm: To encrypt a message m, a random number r from the

set {0, 1, ..., n− 1} is picked and encrypted using the precomputed g and h as

5Disjunctive Normal Form with at most 2 literals in each clause.
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follows:

c = E(m) = gmhr mod n (7.19)

• Decryption Algorithm: To decrypt the ciphertext c, one firstly computes c′ =

cq1 = (gmhr)q1 = (gq1)m (Note that hq1 ≡ 1 mod n) and g′ = gq1 using the

secret key q1 and decryption is completed as follows:

m = D(c) = logg′ c
′ (7.20)

In order to decrypt efficiently, the message space should be kept small because

of the fact that discrete logarithm can not be computed quickly.

• Homomorphism over Addition: Homomorphic addition of plaintexts m1 and

m2 using ciphertexts E(m1) = c1 and E(m2) = c2 are performed as follows:

c = c1c2h
r = (gm1hr1)(gm2hr2)hr = gm1+m2hr

′
, (7.21)

where r = r1 + r2 + r and it can be seen that m1 +m2 can be easily recovered

from the resulting ciphertext c.

• Homomorphism over Multiplication: To perform homomorphic multiplication,

use g1 with order n and h1 with order q1 and set g1 = e(g, g), h1 = e(g, h),

and h = gαq2 . Then, the homomorphic multiplication of messages m1 and m2

using the ciphertexts c1 = E(m1) and c2 = E(m2) are computed as follows:

c = e(c1, c2)h1
r = e(gm1hr1 , gm2hr2)h1

r

= g1
m1m2h1

m1r2+r2m1+αq2r1r2+r = g1
m1m2h1

r′
(7.22)

It is seen that r′ is uniformly distributed like r and so m1m2 can be correctly

recovered from resulting ciphertext c. However, c is now in the group G1 instead

of G. Therefore, another homomorphic multiplication operation is not allowed in
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Table 7.2: Comparison of some well-known SWHE schemes before Gentry’s work

Evaluation Size Evaluation Circuit Ciphertext Size

Yao [Yao82] arbitrary garbled circuit grows at least linearly
SYY [SYY99] polly-many AND & one OR/NOT NC1 circuit grows exponentially
BGN [BGN05] unlimited add & 1 mult 2-DNF formulas constant
IP [IP07] arbitrary branching programs doesn’t depend on the size of function

G1 because there is no pairing from the set G1. However, resulting ciphertext in

G1 still allows an unlimited number of homomorphic additions. Moreover, Boneh et

al. also showed the evaluation of 2-DNF formulas using the basic 2-DNF protocol.

Their protocol gives a quadratic improvement in terms of the protocol complexity

over Yao’s well-known garbled circuit protocol in [Yao82].

Others

In the literature of HE schemes, one of the first SWHE schemes is Polly Cracker

scheme [FK94]. It allows both multiplication and addition operation over the cipher-

texts. However, the size of the ciphertext grows exponentially with the homomorphic

operation, especially multiplication operation is extremely expensive. Later more

efficient variants [LdVP04, VL06] are proposed, but almost all of them are later

shown vulnerable to attacks [Ste10, LdVMPT09]. Therefore, they are either inse-

cure or impractical [Le03]. Recently, [AFFP11] introduced a Polly Cracker with

Noise cryptosystem, where the homomorphic addition operations do not increase

the ciphertext size while the multiplications square it.

Another idea of evaluating operations on encrypted data is realized over dif-

ferent sets. Sander, Young, and Yung (SYY) described first SWHE scheme over

a semi-group, NC1,6 [SYY99], which requires less properties than a group. NC1

is a complexity class which includes the circuits with poly-logarithmic depth and

polynomial size. The proposed scheme supported polynomially many ANDing of

6NC stands for ”Nick’s Class” for the honor of Nick Pippenger
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ciphertexts with one OR/NOT gate. However, the ciphertext size increased by a

constant multiplication with each OR/NOT gate evaluation. This increase limits

the evaluation of circuit depth. Yuval Ishai and Anat Paskin (IP) expanded the

set to branching programs (aka Binary Decision Diagrams), which are the directed

acyclic graphs where every node have two outgoing edges with labeled binary 0

and 1 [IP07]. In other words, they proposed a public key encryption scheme by

evaluating the branching programs on the encrypted data. Moreover, Melchor et

al. [MGH10] proposed a generic construction method to obtain a chained encryp-

tion scheme allowing the homomorphic evaluation of constant depth circuit over

ciphertext. The chained encryption scheme is obtained from well-known encryption

schemes with some homomorphic properties. For example, they showed how to ob-

tain a combination of BGN [BGN05] and Kawachi et al. [KTX07]. As mentioned

before, BGN allows an arbitrary number of additions and one multiplication while

Kawachi’s scheme is only additively homomorphic. Hence, the resulting combined

scheme allows arbitrary additions and two multiplications. They also showed how

this procedure is applied to the scheme in [MCG08] allowing a predefined number

of homomorphic additions, to obtain a scheme which allows an arbitrary number

of multiplications as well. However, in multiplication, ciphertext size grows expo-

nentially while it is constant in a homomorphic addition. The summary of some

well-known SWHE schemes is given in Table 7.2. As shown in Table 7.2, while in

Yao, SYY, and IP cryptosystems, the size of the ciphertext grows with each homo-

morphic operation, in BGN it stays constant. This property of BGN is a significant

improvement to obtain an FHE scheme. Accordingly, Gentry, Halevi, and Vaikun-

tanathan later simplified the BGN cryptosystem [GHV10]. In their version, the

underlying security assumption is changed to hardness of the LWE problem. The

BGN cryptosystem chooses input from a small set to decrypt correctly. In contrast,
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FHE

Ideal Lattice-based

[Gen09]

Over Integers

[VDGHV10]

(R)LWE-based

[BV11]

NTRU-like

[LATV12]

Figure 7.3: Main FHE families after Gentry’s breakthrough

a recent scheme introduced in [GHV10] have much larger message space. Moreover,

some of the attempts to obtain an FHE scheme based on SWHE schemes are re-

ported as broken. For instance, vulnerabilities for [iF96, GP06, DF02] were reported

in [CBW07, Wag03, CKN06], respectively.

7.2.3 Fully Homomorphic Encryption Schemes

An encryption scheme is called Fully Homomorphic Encryption (FHE) scheme if

it allows an unlimited number of evaluation operations on the encrypted data and

resulting output is within the ciphertext space. After almost 30 years from the

introduction of privacy homomorphism concept [RAD78], Gentry presented the first

feasible proposal in his seminal PhD thesis to a long term open problem, which is

obtaining an FHE scheme [Gen09]. Gentry’s proposed scheme gives not only an

FHE scheme, but also a general framework to obtain an FHE scheme. Hence, a lot

of researchers have attempted to design a secure and practical FHE scheme after

Gentry’s work.

Although Gentry’s proposed ideal lattice-based FHE scheme [Gen09] is very

promising, it also had a lot of bottlenecks such as its computational cost in terms

of applicability in real life and some of its advanced mathematical concepts make it

complex and hard to implement. Therefore, many new schemes and optimization

have followed his work in order to address aforementioned bottlenecks. The security
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of new approaches to obtain a new FHE scheme is mostly based on the hard problems

on lattices.

A lattice is the linear combinations of independent vectors (basis vectors), b1, b2, ..., bn.

A lattice L is formulated as follows:

L =
n∑
i=1

~bi ∗ vi , vi ∈ Z, (7.23)

where each vectors b1, b2, ..., bi is called a basis of the lattice L. The basis of a

lattice is not unique. There are infinitely many bases for a given lattice. A basis is

called ”good” if the basis vectors are almost orthogonal and, otherwise it is called

”bad” basis of the lattice [MR09]. Roughly, while good bases are typically long,

bad bases are relatively shorter. Indeed, the lattice theory is firstly presented by

Minkowski [Min68]. Then as a seminal work, Ajtai mentioned a class of random

worst-case lattice problem in [Ajt96]. Two well-known modern problems suggested

in [Ajt96] for lattice-based cryptosystems are Closest Vector Problem (CVP) and

Shortest Vector Problem (SVP) [Pei16]. A year after, Goldreich, Goldwasser, and

Halevi (GGH) [GGH97] proposed an important type of PKE scheme, whose hardness

is based on the lattice reduction problems [Pei16]. Lattice reduction tries to find a

good basis, which is relatively short and orthogonal, for a given lattice. In GGH

cryptosystem, the public key and the secret key is chosen from ”bad” and ”good”

basis of the lattice, respectively. The idea behind this choice is that CVP and SVP

problems can easily be solved in polynomial time for the lattices with the known

good bases. However, best known algorithms (for example LLL in [LLL82]) solve

these problems in exponential time without knowing the good bases of the lattice.

Hence, recovering the message from a given ciphertext is equal to solving the CVP

and SVP problems. In GGH cryptosystem, the message is embedded to the noise to
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obtain the ciphertext. In order to recover the message from ciphertext, the secret

key (good basis) is used to find the closest lattice point.

Before Gentry’s work, in [Reg06], cryptographers’ attention is drawn to lattice-

based cryptology and especially its great promising properties for post-quantum

cryptology. Its promising properties are listed as its security proofs, efficient imple-

mentations, and simplicity. Moreover, another lattice-related problem, which gains

popularity in last few years, especially after being used as a base to built an FHE

scheme is LWE [Zha14]. One of the most significant works for lattice-based cryp-

tosystems was studied in [HPS98], which presented a new PKE scheme and whose

security is based on SVP on the lattice. In the SVP problem, given a basis of a

lattice, the goal is to find the shortest nonzero vector in the lattice.

After Gentry’s work, the lattices have become more popular among cryptography

researchers. First, some works like [SV10] focused on just improving Gentry’s ideal

lattice-based FHE scheme in [Gen09]. Then, an FHE scheme over integers based

on the Approximate-GCD problems is introduced [VDGHV10]. The main moti-

vation behind the scheme is the conceptual simplicity. Afterwards, another FHE

scheme whose hardness based on Ring Learning with Error (RLWE) problems is

suggested [BV11]. The proposed scheme promises some efficiency features. Lastly,

an NTRU-like FHE is presented for its promising efficiency and standardization

properties [LATV12]. NTRUEncrypt is an old and strongly standardized lattice-

based encryption scheme whose homomorphic properties are realized recently. So,

these and similar attempts can be categorized into under four main FHE families as

shown in Figure 7.3: (1) Ideal lattice-based [Gen09], (2) Over integers [VDGHV10],

(3) (R)LWE-based [BV11], and (4) NTRU-like [LATV12]. In the following sections,

we will articulate these four main FHE families in greater detail. And, we will also

explore other follow-up works after these.
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Ideal Lattice-based FHE schemes

Gentry’s first FHE scheme in his PhD thesis [Gen09] is a GGH-type of encryption

scheme, where GGH is proposed originally by Goldreich et al. [GGH97]. However,

Gentry encrypted the message by embedding noise using double layer instead of one

layer idea in GGH cryptosystem. Indeed, Gentry started his breakthrough work

from SWHE scheme based on ideal lattices.

As mentioned earlier, an SWHE scheme can evaluate the ciphertext homomor-

phically for only a limited number of operations. After a certain threshold, the

decryption function fails to recover the message from the ciphertext correctly. The

amount of noise in the ciphertext must be decreased to transform the noisy ci-

phertext into a proper ciphertext. Gentry used genius blueprint methods called

squashing and bootstrapping to obtain a ciphertext which allows a number of ho-

momorphic operations to be performed on it. This processes can be repeated again

and again. In other words, one can evaluate unlimited operations on the ciphertexts

which make the scheme fully homomorphic.

As an initial construction, Gentry used ideals and rings without lattices to de-

sign the homomorphic encryption scheme, where an ideal is a property preserving

subset of the rings such as even numbers. Then, each ideal used in his scheme was

represented by the lattices. For example, an ideal I in Z[x]/(f(x)) with f(x) of

degree n in an ideal lattice can easily be represented by a column of lattice with

basis BI of length n. Since the bases BI will produce an n × n matrix. Gentry’s

SWHE scheme using ideals and rings is described below:

• KeyGen Algorithm: For the given ringR and the basisBI of ideal I, IdealGen(R,BI)

algorithm generates the pair of (Bsk
J , B

pk
J ), where IdealGen() is an algorithm

outputting the relatively prime public and the secret key bases of the ideal
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lattice with basis BI such that I + J = R. A Samp() algorithm is also used

in key generation to sample from the given coset of the ideal, where a coset

is obtained by shifting an ideal by a certain amount. Finally, the public key

consists of (R,BI , B
pk
J , Samp()) and the secret key only includes Bsk

J .

• Encryption Algorithm:

For randomly chosen vectors ~r and ~g, using the public key (basis) Bpk chosen

from one of the ”bad” bases of the ideal lattice L, the message ~m ∈ {0, 1}n is

encrypted by:

~c = E(~m) = ~m+ ~r ·BI + ~g ·Bpk
J , (7.24)

where BI is basis of the ideal lattice L. Here, ~m + ~r · BI is called ”noise”

parameter.

• Decryption Algorithm:

By using the secret key (basis) Bsk
J , the ciphertext is decrypted as follows:

~m = ~c−Bsk
J · b(Bsk

J )−1 · ~ce mod BI , (7.25)

where b·e is the nearest integer function which returns the nearest integers for

the coefficients of the vector.

• Homomorphism over Addition: For the plaintext vectors ~m1, ~m2 ∈ {0, 1}n,

additive and multiplicative homomorphisms can be verified easily as follows:

~c1 + ~c2 = E( ~m1) +E( ~m2) = ~m1 + ~m2 + (~r1 + ~r2) ·BI + (~g1 + ~g2) ·Bpk
J (7.26)

It is clear that ~c1 + ~c2 still preserves the format and is within the ciphertext

space. And, to decrypt the sum of the ciphertext, one computes (~c1 + ~c2)
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mod Bpk
J which is equal to ~m1 + ~m2 + (~r1 + ~r2) ·BI for the ciphertexts whose

noise amount is smaller than Bpk
J /2. Then the decryption algorithm works

properly and recovers the sum of the message m1 +m2 correctly by taking the

modulo BI of the noise.

• Homomorphism over Multiplication: Similarly for the multiplication, after

setting ~e = ~m+~r ·BI , the homomorphic property can be expressed as follows:

~c1× ~c2 = E( ~m1)×E( ~m2) = ~e1× ~e2 + (~e1× ~g2 + ~e2× ~g1 + ~g1× ~g2) ·Bpk
J (7.27)

where ~e1× ~e2 = ~m1× ~m2 + ( ~m1× ~r2 + ~m2× ~r1 + ~r1× ~r2) ·BI . It can be easily

verified that the multiplication operation on ciphertexts yields the output still

within the ciphertext space. It is said that if the noise |~e1× ~e1| is enough small

enough the multiplication of plaintexts ~m1 × ~m2 can be correctly recovered

from the multiplication of ciphertexts ~c1 × ~c2.

To have a better understanding of the ”noise” concept, let us consider the

encryption scheme over integers7. The encryption of the bit b is the ciphertext

c = b+ 2r+ kp, where the key p > 2N is an odd integer and r is a random number

from the range (−n/2, n/2) and k is an integer. The decryption works as follows:

b← (c mod p) mod 2, where (c mod p) is called as noise parameter. If the noise

parameter exceeds |p/2|, the decryption fails since (c mod p) is not equal to b+ 2r

anymore. And, the noise parameter grows linearly with each addition and exponen-

tially with each multiplication operation. If the noise parameter is very close to a

lattice point (i.e., (c mod p) << |p/2|), further addition and multiplication oper-

ations are still allowed. This is why Gentry’s ideal lattice based scheme is called

Somewhat Homomorphic ”for now” allowing only limited number of operations.

Since the noise grows much faster with the multiplication operations, the number of

7Further details about FHE over integers will be explained in Section 7.2.3.
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multiplication operations before exceeding the threshold is more limited. In order to

make the scheme fully homomorphic, the bootstrapping technique was introduced

by Gentry. However, the bootstrapping process can be applied to the bootstrappable

ciphertexts, which are noisy and have small circuit depth. The depth of the circuit

is related to the maximum number of operations. Hence, first the circuit depth is

reduced with squashing to the degree that the decryption can handle properly.

Squashing: Gentry’s bootstrapping technique is allowed only for the decryp-

tion algorithms with small depth. Therefore, he used some ”tweaks” to reduce the

decryption algorithm’s complexity. This method is called squashing and works as

follows:

First, choose a set of vectors, whose sum equals to the multiplicative inverse

of the secret key ((Bsk
J )−1). If the ciphertext is multiplied by the elements of this

set, the polynomial degree of the circuit is reduced to the level that the scheme

can handle. The ciphertext is now ”bootstrappable”. Nonetheless, the hardness of

the recovering the secret key is now based on the assumption of Sparse Subset Sum

Problem (SSSP) [HPSS08]. This basically adds another assumption to the provable

security of the scheme.

Bootstrapping: Bootstrapping is basically ”recrypting” procedure to get a

”fresh” ciphertext from the noisy ciphertext corresponding to the same plaintext.

A scheme is called bootstrappable if it can evaluate its own decryption algorithm cir-

cuit [Gen09]. First, the ciphertext is transformed into a bootstrappable ciphertext

using squashing. Then, by applying bootstrapping procedure, one gets a ”fresh” ci-

phertext. The bootstrapping works as follows: First, it is assumed that two different

public and secret key pairs are generated, (pk1, sk1) and (pk2, sk2) and while the
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secret keys are kept by the client, the public keys are shared with the server. Then,

the encryption of the secret key, Encpk1(sk1), is also transmitted to the server,

which already has c = Encpk1(m). Since the above obtained SWHE scheme can

evaluate its own decryption algorithm homomorphically, the noisy ciphertext is de-

crypted homomorphically using Encpk1(sk1). Then, the result is encrypted using a

different public key pk2, i.e., Encpk2(Decsk1(c)) = Encpk2(m). Since the scheme is

assumed semantically secure, an adversary can not distinguish the encryption of the

secret key from the encryption of 0. The last ciphertext can be decrypted using sk2,

which is kept secret by the client, i.e., Decsk2(Encpk2(m)) = m. In brief, first the

homomorphic decryption of the noisy ciphertext removes the noise, and then the

new homomorphic encryption introduces new small noise to the ciphertext. Now,

the ciphertext is like just encrypted. Further homomorphic operations can be com-

puted on this ”fresh” ciphertext until reaching again to a threshold point. Note

that Gentry’s bootstrapping method increases the computational cost noticeably

and becomes a major drawback for the practicality of FHE. In a nutshell, starting

from constructing a SWHE scheme and then squashing method to reduce the cir-

cuit depth of decryption algorithm and the bootstrapping to obtain fresh ciphertext

completes the creation of an FHE scheme. Hence, one can apply bootstrapping

repetitively to compute an unlimited number of operations on the ciphertexts to

successfully have an FHE scheme.

After Gentry’s original scheme, some of the follow-up works tried to generally

improve Gentry’s original work. In [Gen09], Gentry’s key generation algorithm is

used for a particular purpose only and the generation of an ideal lattice with a

”good” basis is left without a solution. Gentry introduced a new KeyGen algo-

rithm in [Gen10] and improved the security of the hardness assumption of SSSP by

presenting a quantum worst case/average case reduction. However, a more aggres-
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sive analysis of the security of SSSP was completed by Stehle and Steinfeld [SS10].

They also suggested a new probabilistic decryption algorithm with lower multiplica-

tive degree, which is square root of previous decryption circuit degree. Moreover,

a new FHE scheme, which was a variant of Gentry’s scheme was introduced in

[SV10]. The scheme uses smaller ciphertext and key sizes than Gentry’s scheme

without sacrificing the security. Some later works [GH11, SS11a, OYKU10] focused

on the optimizations in the key generation algorithm in order to implement the FHE

efficiently. Moreover, Mikuš proposed a new SWHE scheme with bigger plaintext

space to improve the number of homomorphic operations with a slight increase in

complexity of the key generation algorithm [Mik12].

FHE schemes Over Integers

In 2010, one year after Gentry’s original scheme, another SWHE scheme is presented

in [VDGHV10] which suggests Gentry’s ingenious bootstrapping method in order

to obtain an FHE scheme. The proposed scheme is over integers and the hardness

of the scheme is based on the Approximate-Greatest Common Divisor (AGCD)

problems [GGM16]. AGCD problems try to recover p from the given set of xi =

pqi + ri. The primary motivation behind the scheme is its conceptual simplicity.

A symmetric version of the scheme is probably one of the simplest schemes. The

proposed symmetric SWHE scheme is described as follows:

• KeyGen Algorithm: For the given security parameter λ, a random odd integer

p of bit length η is generated.
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• Encryption Algorithm: For a random large prime numbers p and q, choose a

small number r << p. Then, the message m ∈ {0, 1} is encrypted by:

c = E(m) = m+ 2r + pq, (7.28)

where p is kept hidden as private key and c is the ciphertext.

• Decryption Algorithm: The ciphertext can be decrypted as follows:

m = D(c) = (c mod p) mod 2. (7.29)

Decryption works properly only if m + 2r < p/2. This actually restricts the

depth of the homomorphic operations performed on the ciphertext. Then,

Dijk et al. used Gentry’s squashing and bootstrapping techniques to make the

scheme fully homomorphic. The homomorphic properties of the scheme can

be shown easily as follows:

• Homomorphism over addition:

E(m1)+E(m2) = m1+2r1+pq1+m2+2r2+pq2 = (m1+m2)+2(r1+r2)+(q1+q2)q.

(7.30)

The output clearly falls within the ciphertext space and can be decrypted if

the noise |m1 + 2r1 + m2 + 2r2| < p/2, where p is the private key. Since

r1, r2 << p, various number of additions can still be performed on ciphertext

before noise exceeds p/2.

• Homomorphism over Multiplication:

E(m1)E(m2) = (m1+2r1+pq1)(m2+2r2+pq2 = m1m2+2(m1r2+m2r1+2r1r2)+kp.

(7.31)

The output preserves the format of original ciphertexts and holds the homo-

morphic property. The encrypted data can be decrypted if the noise is smaller
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than half of the private key, i.e., |m1m2 + 2(m1r2 +m2r1 + 2r1r2)| < p/2. The

noise grows exponentially with the multiplication operation. This puts more

restriction over homomorphic multiplication operation than addition.

In fact, the scheme presented so far [VDGHV10] was the symmetric version of

the homomorphic encryption. Transforming the underlying symmetric HE scheme

into an asymmetric HE scheme is also presented in [VDGHV10]. It is enough to

compute many ”encryptions of zero” xi = pqi + 2ri, where p is private key. Then,

many xis are shared as the public key. To encrypt the message with the public key,

it is enough to add the message to a subset sum of xis. Same decryption is used

to decrypt the ciphertext. As there is no efficient algorithm to recover p from the

given xis in polynomial time, the scheme is considered as secure. The scheme is now

basically a public key encryption scheme, since it uses different keys to encrypt and

decrypt.

The FHE scheme proposed in [VDGHV10] is conceptually very simple. However,

this simplicity comes at a cost in computations. So, the scheme is not very efficient.

Hence, some early attempts directly tried to improve the efficiency. For example,

some follow-up optimizations focused on reducing the size of public keys [CMNT11a]

(O(λ10) → O(λ7)), [CNT12] (O(λ7) → O(λ5), [YXWT12] (O(λ5) → O(λ3). A

more efficient public key generation [RK12b] and re-encryption [CBH14] are other

suggested works without reducing the security of the scheme. Later, an important

variant, which is batch FHE over integers, was proposed [CCK+13] (merged version

of [CLT13] and [KLYC13]). Batch FHE has the ability to pack multiple ciphertexts

into a single ciphertext. Moreover, the proposed scheme provides two options for

the hardness of the base problem: Decisional AGCD and Error-free AGCD. In

[CCK+13], it is also shown how to achieve recryption operation in parallel l-slots.
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Some further approaches for FHE schemes over integers are also proposed: a new

scale invariant FHE over integers [CLT14], a new scheme with integer plaintexts

[RK12a], a new SWHE scheme for computing arithmetic operations on large integer

numbers without converting them into bits [PAD12], a new symmetric FHE without

bootstrapping [AGS14], and a new FHE for non-binary message spaces [NK15]. All

these schemes improved FHEs over integers in the way that their names imply.

LWE-based FHE schemes

Learning with Error (LWE) is considered as one of the hardest problems to solve in

practical time for even post-quantum algorithms. First, it was introduced by Oded

Regev as an extension of ”learning from parity with error” problem [Reg09]. Regev

reduced the hardness of worst-case lattice problems like SVP to LWE problems,

which means that if one can find an algorithm that can solve LWE problem in an

efficient time, the same algorithm will also solve the SVP problem in an efficient

time. Since then, it is one of the most attractive and promising topics for post-

quantum cryptology with its relatively small ciphertext size. Lyubashevsky et al.

suggested another significant improvement on the LWE problem which may lead

to a new applications by introducing ring-LWE (RLWE) problem [LPR13]. The

RLWE problem is an algebraic variant of LWE, which is more efficient for practical

applications with strong security proofs. They proved that the RLWE problems are

reducible to worst-case problems on ideal lattices, which is hard for polynomial-time

quantum algorithms.

In the LWE-based FHE schemes, an important step towards to a practical

FHE scheme is made in [BV11]. Brakerski and Vaikuntanathan established a new

SWHE scheme based on Ring-Learning with Error (RLWE) to take advantage of

the efficiency feature of RLWE [BV11]. In other words, although both LWE and
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RLWE problems can be used as the hardness assumption of an FHE scheme, RLWE

shows better performance. Then, the scheme uses Gentry’s blueprint squashing and

bootstrapping techniques to obtain an FHE scheme. They used polynomial-LWE

(PLWE), which is simplified version of RLWE. PLWE is also reducible to worst-case

problems such as SVP on ideal lattices. The schemes proposed after [BV11] is also

called second generation FHE schemes.

Below, for the sake of simplicity, as we did in the previous part, we first show

symmetric version.

Notation: A very common notation is that 〈a, b〉 is used to denote the inner

product of vectors a and b. Moreover, d
$←− D denotes that d is randomly assigned

by an element from the distribution D and Z[x]/(f(x)) denotes the ring of all poly-

nomials modulo f(x). The ring of polynomials modulo f(x) with coefficients in Zq

is denoted with Rq ≡ Zq[x]/(f(x)). Finally, χ denotes an error distribution over the

ring Rq.

The symmetric version of the underlying scheme is given as follows:

• KeyGen Algorithm: An element of the ring is chosen as a secret key from the

error distribution, i.e., s
$←− χ. Then, the secret key vector is described as

~s = (1, s, s2, ..., sD) for an integer D.

• Encryption Algorithm: After choosing a random vector a
$←− Rq

n and the noise

e
$←− χ, the message m is encrypted by:

~c = (c0, c1) = (as+ te+m,−a) (7.32)

where ~c ∈ R2
q .
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• Decryption Algorithm: In order to decrypt the ciphertext to recover the mes-

sage, it can be easily computed that:

m = 〈~c, ~s〉 (mod t). (7.33)

Decryption works properly if 〈~c, ~s〉 is smaller than q/2. Furthermore, in order

to make the scheme asymmetric, it is sufficient to generate a random set of

pairs (a, as+te). Also, the homomorphic property of the scheme is very similar

to those in [Gen09] and [VDGHV10].

• Homomorphism over Addition:

E(m)+E(m′) = (c0 + c′0, c1 + c′1) = ((a+a′)s+ t(e+e′)+(m+m′),−(a+a′)),

(7.34)

Similar to previous schemes, decryption works if the noise is small. And, it is

clear that homomorpically added ciphertexts keep the format of the original

ciphertexts and stay within the ciphertext space.

• Homomorphism over Multiplication:

E(m)+E(m′) = (c0c
′
0, c1c

′
1) = (−a′s2+(c′0a+c0a

′)s+t(2ee′+em′+e′m)+mm′).

(7.35)

The output seems almost like a ciphertext, but it still can be decrypted cor-

rectly with the expense of a new cost by adding a new term to ciphertext.

Brakerski and Vaikuntanathan made their scheme fully homomorphic using Gen-

try’s blueprint squashing and bootstrapping. They also showed their SWHE scheme

is circular secure (aka Key-Dependent message (KDM) security) with respect to lin-

ear functions of the secret key, i.e., the encryption can successfully keep secure linear

functions of its own secret key.
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After the proposed BGN-type cryptosystem based on LWE, which is additively

homomorphic and allowing only one multiplication operation in [GHV10], Braker-

ski and Vaikuntanathan proposed another SWHE scheme based on standard LWE

problems using re-linearization technique [BV14a]. Re-linearization makes the long

ciphertexts, which are the output of the homomorphic evaluation, regular size. An-

other important contribution in this work is the dimension-modulus reduction, which

does not require an SSSP assumption and squashing method used in Gentry’s orig-

inal framework.

As discussed earlier, Gentry’s bootstrapping method is a creative method to ob-

tain an FHE scheme, however, it comes with a huge cost. A leveled -FHE scheme

without using the bootstrapping technique was introduced by [BGV14]. Levelled

FHE can evaluate homomorphic operations for only a predetermined circuit depth

level. Brakerski et al. [BGV14] also showed that their scheme with bootstrapping

still provides better performance than the one without bootstrapping and also sug-

gested the batching as an optimization. To achieve batching, ”modulus switching”

technique is used iteratively to keep the noise size constant. Then, Brakerski re-

moved the necessity of modulus switching in [Bra12]. In Brakerski’s new scale

invariant FHE scheme [Bra12], contrary to the existing FHE schemes, the noise

grows linearly with the evaluation of homomorphic operations instead of exponen-

tially and the scheme is based on the hardness of GapSVP problem [Pei16]. GapSVP

problem is roughly deciding the existence of a shorter vector than the vector with

length d for a given lattice basis B. The result returns simply yes or no. Then,

Fan and Vercauteren optimized the Brakerski’s scheme by changing the based as-

sumption to RLWE problem [FV12a]. Some other modifications to [Bra12] focused

on reducing the overhead of key switching and faster evaluation of homomorphic

operations [WWL12] and using re-linearization to improve efficiency [ZXJ+14].
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Recently, by [GSW13] a significant FHE scheme was introduced claiming three

important properties: simpler, faster, and attribute-based FHE. The scheme is

simpler and faster due to the ”approximate eigenvector” method replacing the re-

linearization technique. In this method, by keeping only some parameters small, the

format of the ciphertext can be preserved under the evaluation of homomorphic op-

erations. In the previous schemes which use the bootstrapping technique, the secret

key (evaluation key) of the user is sent to the cloud to evaluate the ciphertext homo-

morphically for the bootstrapping. In contrast, [GSW13] eliminates that need and

leads to propose the first identity-based FHE scheme, which allows homomorphic

evaluation by only a target identity having the public parameters. Then, Brakerski

and Vaikuntanathan followed [GSW13] to construct an FHE scheme secure under

a polynomial LWE assumption [BV14b]. It is shown that the proposed scheme is

as secure as any other lattice-based PKE scheme. Recently, Paindavoine and Vialla

showed a way of minimizing the number of required bootstrapping based on the

linear programming techniques that can be applied to [GSW13] as well.

In addition to more recently proposed LWE-based FHE schemes in [ZXJ+14,

CWZX14, ZYZW16, WWL15b], some optimizations focused on better (faster) boot-

strapping algorithms [ASP13, ASP14], speeding homomorphic operations [GHPS12],

and a new extension to FHE for multi-identity and multi-key usage [CM15]. More

recently, a new efficient SWHE scheme based on the polynomial approximate com-

mon divisor problem is presented in [CHLR16]. The presented scheme in [CHLR16]

can handle efficiently large message spaces.

NTRU-like FHE schemes

To obtain a practical and applicable FHE scheme, one of the crucial steps is taken

by showing the construction of an FHE scheme from NTRUEncrypt, which is an
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old encryption scheme proposed by Hoffstein, Pipher, and Silvermanin in [HPS98].

Specifically, how to obtain a multi-key FHE from the NTRUEncrypt (called NTRU)

was shown by [LATV12]. NTRU encryption scheme is one of earliest attempts based

on lattice problems. Compared with RSA and GGH cryptosystems, NTRU improves

the efficiency significantly in both hardware and software implementations. How-

ever, there were security concerns for 15 years until the study done by [SS11b].

They reduced the security of the scheme to standard worst-case problems over ideal

lattices by modifying the key generation algorithm. Since the security of the scheme

is improved, efficiency, easy implementation, and standardization issues attract re-

searchers’ interest again. López-Alt et al. used the NTRU encryption scheme to

obtain a practical FHE [LATV12] with three differences. First, the set from which

the noise is sampled is changed from a deterministic set to a distribution. Second,

the modification introduced in [SS11b], which makes the scheme more secure, is used

and third, the parameters are chosen to allow fully homomorphism. Their proposed

NTRU-like encryption scheme in [LATV12] is as follows:

• KeyGen Algorithm: For chosen sampled polynomials f ′ and g from a distri-

bution χ (specifically, a discrete Gaussian distribution), it is set f = 2f ′ + 1

to get f ≡ 1 (mod 2) and f is invertible. Then, the secret key sk = f ∈ R and

public key pk := h = 2gf−1 ∈ Rq.

• Encryption Algorithm: For chosen samples s and e from the same distribution

χ, the message m is encrypted by:

c = E(m) = hs+ 2e+m, (7.36)

where the ciphertext c ∈ Rq.

• Decryption Algorithm: The ciphertext can easily be decrypted as follows:

m = D(c) = fc (mod 2), (7.37)
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where fc ∈ Rq. The correctness of the scheme can be verified using h =

2gf−1 and f ≡ 1 (mod 2). Moreover, the scheme proposed by López-Alt

et al. is a new type of FHE scheme, which is called multi-key FHE. Multi-

key FHE has the ability to evaluate on ciphertexts which are encrypted with

independent keys, i.e., each user can encrypt data with her own public key and

a third party can still perform a homomorphic evaluation on these ciphertexts.

The only interaction required between the users is to obtain a ”joint secret

key”. The homomorphically evaluated ciphertext is decrypted by using the

joint secret key, which is obtained by using all involved secret keys. The

message mi is encrypted by using public key hi = 2gifi
−1 with the formula,

ci = hisi + 2ei + mi. The multikey homomorphism properties for two party

computation is shown using joint secret key f1f2.

• Multi-key Homomorphism over Addition:

f1f2(c1 + c2) =2(f1f2e1 + f1f2e2 + f2g1s1 + f1g2s2) + f1f2(m1 +m2)

= 2eadd + f1f2(m1 +m2)

(7.38)

• Multi-key Homomorphism over Multiplication:

f1f2(c1c2) =2(2g1g2s1s2 + g1s1f2(2e2 +m2) + g2s2f1(2e1 +m1)

+ f1f2(e1m2 + e2m1 + 2e1e2)) + f1f2(m1m2)

=2emult + f1f2(m1m2)

(7.39)

Here, it is seen that multi-key homomorphic operation increases noise more

than a single key homomorphic evaluation. However, m1 + m2 and m1m2

can still be recovered correctly using the jointly obtained secret key since

f, g, s, e all are sampled from the bounded distribution χ. In other words, the

decryption still works if the each of the noise parameters eadd and emult are

smaller than |p/2|.
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As observed in all of the FHE schemes presented in detail in our work, since

in [LATV12] noise grows with homomorphic operations on encrypted data, the

proposed scheme is actually an SWHE scheme. To make it fully homomorphic,

López-Alt et al. also (like all others above) used Gentry’s bootstrapping technique.

However, to apply bootstrapping, one first needs to make the underlying SWHE

scheme bootstrappable. For this reason, first modulus reduction technique described

in [Bra12, BV14a] was used. Then, the final scheme was named a leveled-FHE be-

cause it had the ability to deal only a limited number of public keys. Although the

number of parties that can be used in homomorphic operations is limited, the com-

plexity of circuit that can be used in homomorphic operations is still independent

of the number of parties that can join the communication.

Another issue to be taken account in [LATV12] is the assumptions. Specifically,

two assumptions are used in the scheme proposed by Lopez-Alt et al. First is RLWE

problems and second is Decisional Small Polynomial Ratio (DSPR). Though RLWE

is well-studied and about being a standard problem, DSPR assumption is a non-

standard one. Hence, in [BLLN13], Bos et al. showed how to modify [LATV12] to

remove DSRP assumption. While removing DSRP assumption, the tensoring tech-

nique introduced in [Bra12] is used to restrict the noise increase during homomorphic

operations. However, the tensoring technique used to avoid DSRP assumption re-

sults in a large evaluation key and a complicated key switching procedure, which

makes the scheme impractical. A practical variant of their scheme, which reintro-

duces the DSRP assumption is also presented in the same work. However, it is

later shown that the optimizations and parameter selection that yield a significant

increase in the performance makes it vulnerable to sub-field lattice attacks [ABD16].

The attack shown by Albrecht et al. affected not only [BLLN13], but every other

NTRU-like scheme, which relies on DSRP problem and whose parameters (e.g., se-
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cret key, modulus) are chosen poorly. Finally, in [DS16], a modified NTRU-like

FHE scheme, which does not require the DSRP assumption, thereby secure against

subfield lattice attacks, is proposed. Another attractive feature of the new FHE

scheme is that it also does not require the use of evaluation key during the homo-

morphic operations. The new scheme is based on [SS11b] and it uses a Flattening

noise management technique adopted from the flattening technique of [GSW13].

Two follow-up interesting works also improved the NTRU-like FHE using differ-

ent techniques. While one of them focuses on a customized and a generic bit-sliced

implementation of NTRU-like FHE schemes [DHS16] and the other suggests the use

of GPU [DDS14]. Furthermore, in [DHS16], the AES circuit is chosen to evaluate

the homomorphic operations, which is faster than the proposed one in [GHS12].

Other improvements on hardware implementations of NTRU-like FHE schemes are

more recently published in [LW15, DÖSS15]. Another NTRU-like FHE scheme

was suggested in [RC14]. They used the bootstrapping proposed in [ASP13] and

”double-CRT” proposed in [GHS12] to modify the representation of the ciphertexts

in more efficient way.

7.3 Implementations of SWHE and FHE schemes

The ultimate goal with different HE schemes is to obtain an unbounded and practical

FHE scheme. PHE schemes and SWHE schemes proposed before Gentry’s break-

through work in 2009 were stepping stone towards that goal. Nonetheless, they are

restricted in terms of the areas that can be applied. However, the SWHE schemes

proposed after Gentry’s work are mostly the part of the FHE schemes rather than

a different scheme. Moreover, a bounded (level) FHE can also be called as SWHE

scheme. Hence, it is not possible to separate SWHE and FHE schemes for the works
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Table 7.3: ”Fully” implemented FHE schemes

Scheme Information Platform Parameters Running Times

Implemented Scheme Base Scheme Software Security parameter, λ dimension, n PK size KeyGen Enc Dec Recrypt

GH11 [GH11] Gen09 [Gen09] C/C++ 72 33768 2.25 GB 2.2 h 3 min (SWHE) 0.66 s (SWHE) 31 min

CMNT11 [CMNT11a] DGHV10 [VDGHV10] Sage 4.5.3 72 7897 802 MB 43 min 2 min 57 s 0.05 s 14 min 33 s

CNT12 (with compressed PK) [CNT12] DGHV10 [VDGHV10] Sage 4.7.2 72 7897 10.3 MB 10 min 7 min 15 s 0.05 s 11 min 34 s

CNT12 (leveled) [CNT12] DGHV10 [VDGHV10] Sage 4.7.2 72 5700 18 MB 6 min 18 s 3.4 s 0.00 s 2 h 27 min

proposed after Gentry’s work. In this section, we summarize the implementations

of the SWHE and FHE schemes, which can lead to the new works and speed up the

follow-up works, proposed after Gentry’s work.

Implementation of a cryptographic scheme is the middle step between designing

the scheme and applying it to a real life service and it provides a realistic performance

assessment of the designed scheme. Although some new proposed FHE schemes have

increased the efficiency and performance of the implementations significantly, the

overhead and cost of the FHE implementations are still too high to be applied

transparently in a real life service without disturbing the user.

”Fully” implemented FHE schemes

After solving the long term open problem of designing a fully homomorphic scheme

[Gen09], many new fully homomorphic scheme proposals were tested with implemen-

tation. In a very first attempt, Smart and Vercauteren implemented their scheme

in [SV10], which is a variant of Gentry’s original scheme. However, their key gen-

eration takes hours up to N = 211, where N is the lattice dimension and does not

generate the key pairs after N = 211. More importantly, their implementation did

not include the bootstrapping procedure. Hence, it is actually a SWHE scheme as it

was implemented. Then, Craig Gentry and Shai Halevi [GH11] succeeded to imple-

ment the FHE scheme first time by continuing the way that Smart and Vercauteren

had started. The running times for the implementation in [23] and other proposed

FHE implementations which are evaluated over random depth circuits are given in
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Table 7.3. Moreover, Gentry and Halevi in [GH11] introduced some optimizations

and simplifications on the squashing process to obtain a bootstrappable scheme.

In their implementation, they showed four security levels: toy, small, medium, and

large. They suggested that the large parameter settings are practically secure, which

have a lattice dimension of 215. However, the performance of the implementation is

very inefficient in practical terms. For the large parameter setting, a key pair was

generated at 2.2 hours and public key size was 2.25 GB. Recrypting the ciphertexts

(bootstrapping) took 31 minutes. After that, in [CMNT11a], an integer variant of

the FHE scheme introduced originally in [VDGHV10] was implemented. In this

implementation, the key generation takes 43 min, and the public key size is 802

MB. The implementation showed that the same security level can be achieved with

a much simpler scheme. (The difference comes from the different definitions of se-

curity levels). Later, Coron et al. in a different work [CNT12] improved public key

size to 10 MB, key generation to 10 minutes, and recryption procedure to 11 min

34 seconds using the similar parameter settings in [CMNT11a]. This performance

is obtained using a compression technique on the public key. In [CNT12], a lev-

eled DGHV scheme is also implemented with slightly worse performance. Yuanmi

Chen and Phong Q. Nguyen [CN12] proposed an algorithm to break the scheme

in [CNT12], which is faster than exhaustive search. This work showed that the

security level of the scheme proposed in [CNT12] is much lower than the scheme

proposed in [GH11].

FHE implementation for ”Low-depth” circuits

The second type of FHE implementations tried to implement leveled-FHE schemes

for small depth circuits with given run time for isolated and composed addition and

multiplication [NLV11, BLLN13, LN14, RC14]. The comparisons for these small-

221



Table 7.4: FHE implementations for ”Low-depth” circuits

Scheme Information Platform Parameters Running times

Implemented Scheme Base Scheme Software Enc Dec Mult Add

NLV11 [NLV11] BV11 [BV11] Magma w = 232 q=127 756 ms 57 ms 1590 ms 4 ms

YASHE (by BLLN13 [BLLN13]) LTV12 [LATV12] C/C++ t = 210 q=130 27 ms 5 ms 31 ms 0.024 ms

YASHE (by LN14a [LN14]) LTV12 [LATV12] C/C++ w = 232 q=130 16 ms 15 ms 18 ms 0.7 ms

FV (by LN14a [LN14]) BV11 [BV11] C/C++ w = 232 q=130 34 ms 16 ms 59 ms 1.4 ms

RC14 [RC14] LTV12 [LATV12] Matlab n = 210 t=1 12 ms 3.36 ms 100 ms 0.56 ms

depth FHE implementations are given at Table 7.4. Since the performance of the

state of the art was unsatisfactory, as an early attempt, a relatively simpler FHE,

which allows only a few homomorphic multiplication operations was implemented

in [NLV11]. Later, this performance was improved by Bos et al. [BLLN13] due to

the new method to evaluate the homomorphic multiplication operation. Moreover,

unlike [NLV11], in [BLLN13] the underlying scheme was implemented in C pro-

gramming language to avoid the unwelcome overhead due to the computer algebra

system. Then, a similar performances with [BLLN13] is obtained. Recently, a signif-

icant improvement is made by using double-CRT in the representation of ciphertexts

and used parallelism to accelerate the implementation in Matlab [RC14].

”Real world” complex FHE implementations

In contrast to above schemes, which are either proof of concept or small-depth

implementations, the authors in [GHS12] implemented FHE for the first time to

evaluate the circuit complex enough for a real life application. In [GHS12] Gen-

try et al. implemented a variant of BGV scheme proposed in [SV14]8, which is a

leveled FHE without bootstrapping, in order to evaluate AES circuit homomorphi-

cally. Actually, the idea of homomorphic evaluation of AES is first discussed in

[NLV11] with the following scenario. A client first sends the key of AES by en-

8Later updated in [BGV14].
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crypting with FHE, FHE(K). Then, the client uploads the data by encrypting

with AES only, AESK(m). When the cloud wants to evaluate the data homomor-

phically, it computes FHE(AESK(m)) and decrypts AES homomorphically (blind-

fold) to obtain FHE(m). After that, the cloud can compute every homomorphic

operation on the data encrypted with FHE. The comparison of such more complex

”real world” FHE implementations are presented in Table 7.5. A realization of how

to achieve SIMD (single-instruction multiple-data) operations using homomorphic

evaluation of AES is proposed by Smart and Vercauteren [SV14]. Later, some works

[CLT13, MS13, CLT14, DHS16] also improved the performances of the homomorphic

evaluation of AES circuit by applying the recent improvements and optimizations in

theoretical side. In addition to the use of AES circuit to evaluate homomorphically,

lightweight block ciphers such as Prince [DSES14], SIMON [LN14], and LowMC

[ARS+15] are also proposed. In [MS13], Mella and Susella estimated the cost of

some of the symmetric cryptographic primitives such as AES-128, SHA-256 hash

function, Salsa20 stream cipher, and KECCAK sponge function. They concluded

that AES is best suited for the homomorphic evaluation because of its low num-

ber of rounds and absence of integer operations and logical ANDs in its internals.

However, in [MS13], only AES-128 is implemented.

Publicly available FHE implementations

Although all aforementioned implementations are published in the literature, un-

fortunately, only a few of them are publicly available to researchers. Some of the

publicly available implementations are listed in Table 7.6. From publicly available

implementations, HElib [HS14b] is the most important and widely utilized one.

HElib implements the BGV scheme [BGV11] with Smart-Vercauteren ciphertext

packing techniques and some new optimizations. The design and implementation of
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Table 7.5: ”Real world” complex FHE implementations

Scheme Platform Parameters Running Times

Implemented Scheme Base scheme Circuit Reported Specs λ AND depth total evaluation time number of parallel enc relative time

GHS12 (original)(packed) [GHS12] BGV11 [BGV11] AES Intel Xeon CPU @ 2.0 GHz with 256GB RAM 80 40 48 hours 54 37 min

GHS12 (original)(byte-sliced) [GHS12] 65 hours 720 5 min

CLT13 (byte-wise) [CCK+13] DGHV10 [VDGHV10] AES Intel Core i7 @ 3.4Ghz with 32GB RAM 72 40 18.3 hours 33 33 min

CLT13 (state-wise) [CCK+13] 113 hours 531 12 min 46 s

CLT14 (state-wise) [CLT14] DGHV10 [VDGHV10] AES Intel Xeon E5-2690 @ 2.9 GHz 80 40 102 hours 1875 3 min 15 s

CLT14 (state-wise) [CLT14] 72 3 h 35 min 569 23 s

LN14a (YASHE) [LN14] LTV12 [LATV12] SIMON Intel Core i7-2600 @ 3.4 GHz9 128 34 1 h 10 min 2048 2.04 s

LN14a (FV) [LN14] Bra12 [Bra12] 3 h 27 min 2048 6.06 s

DHS14 [DHS16] LTV12 [LATV12] AES Intel Xeon @ 2.9 GHz ∼80 40 31 hours 2048 55 s

DSES14 [DSES14] LTV12 [LATV12] Prince Intel Core i7 3770K @ 3.5 Ghz with 32 GB RAM10 130 30 57 min 1024 3.3 s

ARSTZ15 [ARS+15] BGV11 [BGV11] LowMC Intel Haswell i7-4770K CPU @ 3.5 GHz with 16GB RAM 80 12 8 min 600 0.8 s

GHS12 (updated)(no bootstrapping) [GHS12] BGV11 [BGV11] AES Intel Core i5-3320M at 2.6GHz with 4GB RAM11 80 40 4 min 12 s 120 2 s

GHS12 (updated)(with bootstrapping) [GHS12] 17 min 30 s 180 5.8 s

Table 7.6: Some publicly available FHE implementations

Name Scheme Lang Documentation Libraries

HElib

[HS14b]

BGV

[BGV11]
C++

Yes

[HS13]
NTL, GMP

libScarab

[PBS11a]

SV

[SV10]
C

Yes

[PBS11b]

GMP, FLINT,

MPFR, MPIR

FHEW

[DM14]

DM14

[DM15]
C++

Yes

[DM15]
FFTW

TFHE

[CGGI17]

CGGI16

[CGGI16]
C++

Yes

[CGGI16]
FFTW

SEAL

[LCP17]

FV12

[FV12b]
C++

Yes

[CLP17]

No external

dependency

HElib are documented in [HS13] and algorithms used in HElib are documented in

[HS14a]. HElib is designed using low-level programming, which deals with the hard-

ware constraints and components of the computer without using the functions and

commands of a programming language and hence, defined as ”assembly language for

HE”. It was implemented using GPL-licensed C++ library. Since December 2014,

it supports bootstrapping [HS15] and since March 2015, it supports multi-threading.

In an important extension, homomorphic evaluation of AES was implemented on

top of HElib [GHS12] and included in the HElib source code in [HS14b].

9With hyper-threading turned off and over-clocking (‘turbo boost’) disabled.

10Only single thread is used.

11An Ubuntu 14.04 installed VM
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Unfortunately, the usage of HElib is not easy because of the sophistication needed

for its low-level implementation and parameter selection which effects both perfor-

mance and security level. Another notable open source FHE implementation is

libScarab [PBS11a]. To the best of our knowledge, libScarab [PBS11a] is the first

open-source implementation of FHE. Its parameter selection is relatively easier than

that of HElib, but it suffers from a lot of limitations. For instance, it does not im-

plement modern techniques (e.g., modulus reduction and re-linearization techniques

[BV14a]) to handle the noise level or it also does not support the SIMD techniques

introduced in [SV14]. It implements Smart-Vercauteren’s FHE scheme in [SV10]

and documentation is provided in [PBS11b].

Another major implementation is introduced by Ducas and Micciancio and called

”Fastest Homomorphic Encryption in the West” (FHEW) [DM14]. It is documented

in [DM15]. It significantly improves the time required to bootstrap the ciphertext

claiming homomorphic evaluation of a NAND gate ”in less than a second”. A NAND

gate is functionally complete. Hence, any possible boolean circuits can be built using

only NAND gates. In [DM15], the usage of ciphertext packing and SIMD techniques

provides an amortized cost. However, in FHEW such performance is achieved using

only a few hundred lines of code with the use of one additional library, FFTW

[FJ05]. Later, the homomorphic computation cost of any binary gate [DM15] is

increased by a factor of 50 by making some optimizations on the bootstrapping

algorithm. The main improvement is based on the torus representation of LWE

ciphertexts. This improved the cost of bootstrapping 10 times according to the best

known bootstrapping in [DM14]. They also further improved the noise propagation

overhead algorithms using some approximations. Finally, they also reduced the size

of bootstrapping key from 1GB to 24MB by achieving the same security level.
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More recently, another HE library called Simple Encrypted Arithmetic Library

(SEAL) [LCP17] is released by Microsoft. The goal of releasing this library is

explained as providing a well-documented HE library that can be easily used by

both crypto experts and non-experts with no crypto background like practitioners

in bioinformatics. The library does not have external dependencies like others and

it includes automatic parameter selection and noise estimator tools, which makes

it easier to use. Finally, the security estimates of two well-known LWE-based HE

libraries, HElib and SEAL, against dual lattice attacks are revised in [Alb17]. It is

shown that the parameters promising 80 bits of security actually gives an estimated

cost of 68 bits for SEAL v2.0 and 62 bits for HElib. As a final note, we give the list of

general-purpose HE libraries as follows: HEAAN implementing that supports fixed

point arithmetics [CKKS16], a GPU-accelerated library cuHE [DDS17], a general

lattice crypto library PALISADE [Roh17].

FHE hardware implementations and productions

The first known usage of FHE in a production environment is announced by Fu-

jitsu Laboratories Ltd. [Ltd13]. Their reported implementation provides statistical

calculations and biometric authentication by using FHE-based security. They im-

proved an FHE by batching the string bits of data. The practical testing of this FHE

implementation by Fujitsu is still pending as of this writing. Although the software

only implementations are considered promising to obtain a practical FHE implemen-

tation, there is still a substantial gap between the achieved and the targeted perfor-

mance. This gap led to new alternative research area in hardware implementations.

The hardware solutions to accelerate both FHE and SWHE schemes mainly focused

on three implementation platforms: Graphics Processing Unit (GPU), Application-

Specific Integrated Circuit (ASIC), and Field-Programmable Gate Array (FPGA)
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(A useful survey of hardware implementations of homomorphic schemes can be

found in [MOO+14]). Although GPU is for graphical purposes, its highly paral-

lel structure offers great promise over CPU for efficiency. Hence, it is suggested

in some studies to use GPU order to improve the efficiency of homomorphic eval-

uation [DDS14, WCH14, WHC+15, DDS15, LLCP15]. One of the major barriers

to a practical FHE is the noise growth in the homomorphic multiplication oper-

ation. This prompted researchers to find a solution that can deal with a large

number of modular multiplications. Therefore, there are some works focusing par-

ticularly on this problem using the customized ASICs [DÖS13, WHEW14, DÖS15].

In spite of the potential of GPU and ASIC solutions, most of the proposed studies

are based on the reconfigurable hardware, specifically FPGA. FPGA platforms of-

fer not only Fast Fourier Transform (FFT), but also some optimization techniques

such as number theoretic transformation (NTT) and fast modular polynomial re-

duction at hardware level. Such large and reconfigurable environment provided by

FPGAs motivates many researchers to speed up the practicality of FHE schemes

[CRPS12, WH13, CMO+13, MHM+13, CMV+15, CMO+14, MOHO14, CGRS14,

SRJV+15, PNPM15, ÖDSS15].

In conclusion, some of the SWHE implementations (leveled-FHE) [GHS12] get

closer to a tolerable performance. However, the bootstrapping techniques in FHE

schemes need to be improved and the cost of homomorphic multiplications should

be reduced to increase the performance.

7.4 Further Research Directions and Lessons Learned

Performance of any encryption scheme is evaluated with three different criteria:

security, speed, and simplicity. First, an encryption scheme must be secure so that
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an attacker can not obtain any type of information by using a reasonable amount

of resources. Second, its efficiency must not disturb the user’s comfort, i.e., it

must be transparent to the users because users prefer usability against security.

Lastly, if and only if an encryption scheme is understandable by the other area

practitioners, they will implement the scheme for their applications and productions.

If the existing FHE schemes are evaluated in terms of the three criteria, there is,

though getting closer, still a substantial room for improvement in terms of all these

criteria, especially for the speed performance.

Even though some of the nonstandard security assumptions (e.g., SSSP12 [Lee11,

HR11]) in the Gentry’s original scheme are later removed, there are still some open

security issues about the FHE schemes. First one is the circular security of FHE.

Circular security (aka KDM security), as mentioned earlier, keeps its own secret key

secure by encrypting it with the public key. All known FHE schemes use Gentry’s

blueprint bootstrapping technique to obtain an unlimited FHE scheme. So, the en-

cryption of the secret key is also sent to the cloud to bootstrap the noisy ciphertexts

and an eavesdropper can capture the encryption of secret key. Even though some

SWHE and leveled-FHE schemes are proven as semantically secure, an unbounded

FHE still has not been proven as semantically secure with respect to any function,

so it does not guarantee that an adversary can not reveal the secret key from its en-

cryption under the public key. This unfortunate situation is still open to be proven.

Moreover, although some SWHE schemes [LMSV11] are proven as indistinguishable

under non-adaptive chosen ciphertext attack (IND-CCA1), none of the unbounded

FHE schemes is IND-CCA1 secure for now. (IND-CCA2 (adaptive) is not applicable

12Indeed, Moon Sung Lee showed that it is quite probable that SSSP challenges can be
solved within two days [Lee11, HR11].
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to FHE because FHE itself requires to be malleable.) In brief, FHE still needs to

be studied extensively to prove that it is secure enough.

FHE allows an unlimited number of functions on encrypted data. However, limi-

tations on the efficiency of the FHE schemes prompts researchers to find the SWHE

schemes that can be good enough to use in real-life applications. Recently, homo-

morphic evaluation of one AES, which is a highly complex and nontrivial function,

is reduced to 2 seconds [GHS12] and researchers are now focusing to improve this

instead of trying to implement an FHE scheme, which is extremely slow for now.

The main process that increases the computational cost in FHE is the bootstrap-

ping process. An unbounded FHE scheme that allows unlimited operations without

bootstrapping is still an open problem.

Showing the existence of FHE instilled hope to solve other long waiting prob-

lems (applications) such as Functional Encryption (FE) (i.e., Identity-based en-

cryption (IBE) and Attribute-based encryption (ABE)). Functional encryption ba-

sically controls the access over data while allowing computation on it according

to the features of identity or attribute. The purpose of designing ABE or IBE

based on FHE is to take the advantage of the functionality of two worlds. How-

ever, for now, there exists a few [GSW13, CM14, CM16, WWL15a]. Another

fruitful application of FHE is multi-party computation (MPC) which allows the

computation of the function with multiple inputs from different users while keep-

ing the inputs hidden. Even though there exist a few FHE-based MPC protocols

[DPSZ12, LATV12, CLO+13, DPR16] proposing these powerful and useful tools, un-

fortunately, their performances are not yet comparable with the conventional MPC

approaches [MGBF14, CMTB16, PH14, CMTB15] because of the computational

cost of the existing FHE schemes. However, FHE does not require any interaction,

which reduces the complexity of the communication protocol significantly. However,
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there are still some gaps on how to realize those protocols. Furthermore, FHE it-

self can not perform a homomorphic evaluation on independently encrypted data,

i.e., multi-key FHE. some primitive result to deal with this issue was presented in

[LATV12]. However, the proposed scheme can only handle a bounded number of

users. When the cloud and number of connected devices are considered, the restric-

tion may not be feasible. Hence, a multi-key FHE with an unlimited number of

users is another promising direction for future applications.

7.5 Conclusion

In today’s always-on, Internet-centric world, the privacy of data plays a more sig-

nificant role than ever before. For highly sensitive systems such as online retail and

e-banking, it is crucial to protect users’ accounts and assets from malicious third

parties. Nonetheless, today’s norm is to encrypt the data and share the keys with

the service provider, cloud operator, etc. In this model, the control over the privacy

of the sensitive data is lost. The users or service providers with the key have exclu-

sive rights on the data. Untrusted providers, cloud operators can keep sensitive data

and its identifying credentials of users long after the user ends the relationship with

the services. One promising direction to preserve the privacy of the data is to utilize

homomorphic encryption (HE) schemes. HE is a special kind of encryption scheme,

which allows any third party to operate on the encrypted data without decrypting it

in advance. Indeed, the idea of HE has been around for over 30 years; however, the

first plausible and achievable Fully Homomorphic Encryption (FHE) scheme was

introduced by Craig Gentry in 2009. Since then, different FHE schemes demon-

strated that FHE still needs to be improved significantly to be practical on every

platform as they are very expensive for real-life applications. Hence, in this chapter,
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we surveyed the HE and FHE schemes. Specifically, starting from the basics of

HE, the details of the well-known Partially HE (PHE) and Somewhat HE (SWHE),

which are important pillars of achieving FHE, were presented. Then, after classi-

fying FHE schemes in the literature under four different categories, we presented

the major FHE schemes with this classification. Moreover, we articulated the im-

plementations and the new improvements in Gentry-type FHE schemes. Finally,

we discussed promising research directions as well as lessons learned for interested

researchers.
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CHAPTER 8

CURIE: POLICY-BASED PRIVACY-AWARE SECURE DATA

EXCHANGE

8.1 Introduction

Inter-organizational data sharing is crucial to the advancement of many domains

including security, health care, and finance. Previous works have shown the benefit

of data sharing within distributed, collaborative, and federated learning [DCM+12,

SCST17, APP+18]. Privacy-preserving machine learning offers data sharing among

multiple members while avoiding the risks of disclosing the sensitive data (e.g., health-

care records, personally identifiable information) [EESA+12]. For example, secure

multiparty computation enables multiple members, each with its training dataset, to

collaboratively learn a shared predictive model without revealing their datasets [MZ17].

These approaches solve the privacy concerns of members during model computation,

yet do not consider the complex relationships such as regulations, competitive ad-

vantage, data sovereignty, and jurisdiction among members on private data sharing.

Members want to be able to articulate and enforce their conflicting requirements on

data sharing.

To illustrate such complex data sharing requirements, consider health care orga-

nizations that collaborate for a joint prediction model of diagnosis of patients expe-

riencing blood clots (see Figure 8.1). Members wish to dictate their needs through

their legal and political limitations as follows: U.S.1 is able to share its complete

data for nation-wide members (U.S.2) [Ame17, Hea17], yet it is obliged to share the

data of patients deployed in NATO countries with NATO members (UK) [fMS17].

However, U.S.1 wishes to acquire all patient data from other countries. UK is able

to share and acquire complete data from NATO members, yet it desires to acquire
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U.S.1 

UK 

RU 

U.S.2 

Figure 8.1: An illustration of data exchange requirements of countries learning a
predictive model on their shared data. Arrows show the data requirements of coun-
tries.

only data of certain race groups from U.S1 to increase its data diversity. RU wishes

to share and acquire complete data from all members, yet members limit their data

share to Russian citizens who live in their countries. Such complex data sharing

requirements also commonly occur today in non-healthcare systems [BCD+09]. For

instance, National Security Agency has varying restrictions on how human intelli-

gence is shared with other countries; financial companies share data based on trust,

and competition among each other.

In this chapter, we present a policy-based data exchange approach, called Curie,

that allows secure data exchange among members that have such complex relation-

ships. Members specify their requirements on data exchange using a policy language

(CPL). The requirements defined with the use of CPL form the local data exchange

policies of members. Local policies are defined separately for data sharing and data

acquisition policies. This property allows asymmetric relations on data exchange.

For example, a member does not necessarily have to acquire the data that the other

members dictate to share. By using these two policies, members specify statements

of who to share/acquire and what to share/acquire. The statements are defined

using conditional and selection expressions. Selections allow members to filter data
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and limit the data to be exchanged, whereas conditional expressions allow mem-

bers to define logical statements. Another advanced property of CPL is predefined

data-dependent conditionals for calculating the statistical metrics between member’s

data. For instance, members can define a conditional to compute the intersection

size of data columns without disclosing their data. This allows members to define

content-dependent conditional data exchange in their policies.

Once members have defined their local policies, they negotiate a sharing agree-

ment. The guarantee provided by Curie is that all data exchanged among members

will respect the agreement. The agreement is executed in a multi-party privacy-

preserving prediction model enhanced with optional differential privacy guarantees.

We begin in the next section by defining the analysis task and outlining the security

and attacker models.

8.2 Problem Scope and Attacker Model

Problem Scope. We introduce Curie Policy Language (CPL) to express data

exchange requirements of distributed members. Unlike the programming languages

used for writing secure multiparty computation (MPC) [HKoS+10, RHH14] and

the frameworks designed for privacy-preserving machine learning (ML) [LWN+15,

O+16, BKLS18, EESA+12, MZ17], CPL is a policy language in a Backus Normal

Form (BNF) notation to express the conflicting relationships of members on data

sharing. Members can express data exchange requirements using the conditionals,

selections, and secure pairwise data-dependent statistics. Curie then enforces the

policy agreements in a shared predictive model through an MPC protocol that

ensures members comply with the policies as negotiated.
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We integrate Curie into 24 medical institutions. Without deployment of Curie,

institutions compute warfarin dosage of a patient using a model computed on

their local patient records. Curie allows institutions to construct various consor-

tia wherein each member defines a data exchange policy for other members via

CPL. This enables institutions to acquire the patient records based on regulations

as well as the records that they need to improve the accuracy of their dose pre-

dictions. Curie implements a privacy-preserving dose model through homomorphic

encryption (HE) to enforce the policy agreements of the members. We note that

a centralized party in HE cannot provide a privacy-preserving model on negotiated

data [VDJ10]. However, Curie implements a novel protocol that allows institu-

tions to perform local computations by aggregating the intermediate results of the

dose model. Additionally, Curie implements an optional differential private (DP)

mechanism that allows institutions to perform differentially-private (DP) secure

dose model. DP guarantees that no information leaks on the targeted individual

(i.e., patient) with high confidence from the released dose model.

Threat Model. We consider a semi-honest adversary model. That is, members in

a consortium runs the protocol exactly as specified, yet they try to learn the dataset

inputs of the other members as much as possible from their views of the protocol.

Additionally, we consider non-adaptive adversary wherein members cannot modify

inputs of their dataset once the protocol on shared data is initiated.

8.3 Organizational Data Exchange

Depicted in Figure 8.2, Curie includes two independent parts: policy management

and multiparty secure computation.
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Figure 8.2: Curie data exchange process in a collaborative learning setting. The
dashed boxes show data remains confidential.

Policy Management. We define a consortium that is a group made up of two or

more members–individuals, companies or governments ( a ). Members of a consor-

tium aim to compute a predictive model m over their confidential data in a secure

manner. For instance, data may be curated from medical history of patients or fi-

nancial reports of companies with the objective of building an ML model. Moreover,

each member wants to enforce a set of local constraints toward other consortium

members to control their requirements on how and with whom they share their

confidential data. These constraints define a member’s interest, trust, regulations

and data demands, and also impacts the accuracy of a model m. Thus, there is a

need for connecting data needs of members to the privacy-preserving models. In

Curie, each member of a consortium defines a local policy ( b ). The local policy of

a member dictates the requirements of data exchange as follows:

1. The member wishes to specify with whom to share and acquire data (partnership

requirement).

2. The member wishes to define what data to share and acquire (sharing and ac-

quisition requirement).
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M2	

Figure 8.3: An example consortium of three members.

In this, the member wishes to refine its sharing and acquisition requirements to

express the following:

1. The member wishes to dictate a set of conditions to restrict data sharing and

select which data to be acquired (conditional selective share and acquisition); and

2. The member wishes to dictate conditionals based on the other member’s data

(data-dependent conditionals).

The policy of members need not be-nor are likely to be-symmetric. Local policy is

defined with requirements for sharing and acquisition that is tailored to each partner

member in the consortium–thus allowing each pairwise sharing to be unique. Here,

the local policies are used to negotiate pairwise sharing within the consortium. To

illustrate how members negotiate an agreement, consider the consortium of three

members in Figure 8.3.

Each member initiates pairwise policy negotiations with other members to recon-

cile contradictions between acquisition and share policies ( c ). A member starts the

negotiation by sending a request message including the acquisition policy defined for

a member. When a member receives the acquisition policy, it reconciles the received
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acquisition policy with its share policy specified for that member. Three negotiation

outcomes are possible: the acquisition policy is entirely satisfied, partially satisfied

with the intersection of acquisition and share policies or is an empty set. A member

completes its negotiations after all of its acquisition policies for interested parties

are negotiated.

Computations on Negotiated Data. Once members negotiate their policies

( d ), Curie provides a multiparty data exchange device using secure multi-party

computation techniques enhanced with (optional) differential privacy guarantees.

This device ensures data and individual privacy. The guarantee provided by Curie

is that all computations among members will respect their policies.

To ensure data privacy, Curie includes cryptographic primitives such as Homo-

morphic Encryption (HE) and garbled circuits from the secure multi-party compu-

tation literature that allows members to perform computations on negotiated data

with no disclosed data from any single member. At the end of the secure com-

putation, all of the parties obtain a final predictive model based on their policy

negotiations. To ensure the privacy of the individuals in the dataset, which the fi-

nal model is computed on, Curie integrates Differential Privacy (DP). DP protects

against an attacker who tries to extract a particular individual’s data in the dataset

from the final computed model at the end of the secure computation protocol.

8.4 Curie Policy Description Language

We now illustrate the format and semantics of the Curie Policy Language (CPL).

Turning to the example consortium in Figure 8.3 established with three members,

each member defines its requirements for other members on a dataset having the
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columns of age, race, genotype, and weight (see Table 8.1). The criteria defined by

members are used throughout to construct their local policies.

Share and Acquisition Clauses. Curie policies are collections of clauses. The

collection of clauses for partners defines the local policy of a member. The clauses

allow each member to dictate a member specific policy for each other member.

Clauses have the following structure:

〈clause tag〉 : 〈members〉 : 〈conditionals〉 :: 〈selections〉;

Clause tags are reference names for policy entries. Share and acquire are two re-

served tags. Those clauses are comprised of three parts. The first part, members,

defines a list of members with whom to share and acquire. This can be a single

member or a comma-separated list of members. An empty member entry matches

all members. The second part, conditionals, is a list of conditions controlling when

this clause will be executed. A condition is a Boolean function which expresses

whether the share or acquire is allowed or not. For instance, a member may define a

condition where the data size is greater than a specific value. Only if all conditions

listed in conditionals are true, then this clause is executed. Last part, selections,

states what to share or acquire. It can be a list of filters on a member’s data. For

instance, a member may define a filter on a column of a dataset to limit acquisition

to a subset of the dataset. More complex selections can be assigned using member

defined sub-clauses. A sub-clause has the following structure:

〈tag〉 : 〈conditionals〉 :: 〈selections〉;

where tag is the name of sub-clause; conditionals is, as explained above, a list of

conditions stating whether this clause will be executed; selections is a list of filters

or a reference to a new sub-clause. Complex data selection can be addressed with

nested sub-clauses.
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Consortia member: M1
M2– desires to acquire complete data of users who

are older than 25
M2– shares its complete data
M3– desires to acquire Asian users such that the Jac-

card similarity of its age column and M3’s age
column is greater than 0.3

M3– shares its complete data
Consortia member: M2

M1– desires to acquire complete data
M1– limits its share to EU and NATO citizen users

if M1 is both NATO and EU member and lo-
cated in North America. Otherwise, it shares
only White users

M3– desires to acquire complete data if M3 is a
NATO member

M3– shares its complete data
Consortia member: M3

M1– desires to acquire complete data of users having
genotype ‘A/A’

M1– share complete data if intersection size of its and
M1’s genotype column is less than 10. Other-
wise, it shares data of users that weigh more
than 100 pounds

M2– desires to acquire complete data
M2– shares complete data if M2 is EU member and

its data size is greater than 1K

Table 8.1: An example of member’s data exchange requirements.

CPL allows members to define multiple clauses. For instance, a member may

share a distinct subset of data for different conditions. CPL evaluates multiple

clauses in a top-down order. When conditionals of a clause evaluate to false, it

moves to the next clause until a clause is matched or it reaches end of the policy

file.

Conditionals and Selections. We present the use of conditionals and selections

through policies with examples. Their format and semantics are detailed. Consider

an example of two members, M1 and M2, within a consortium. They define their

local policies as:
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@M1 acquire : M2 : :: s1 ;

share : M2 : :: ;

@M2 acquire : M1 : :: ;

share : M1 : c1, c2 :: fine-select ;

fine-select : c3 :: s2 ;

fine-select : :: s3 ;

where c1, c2 and c3 are conditionals, s1, s2 and s3 are selections and fine-select is a

tag defined by M2.

The acquire clause of M1 states that data is requested from M2 after it applies

s1 selection (e.g., age > 25) to its data. In contrast, its share clause allows complete

share of its data if M2 requests. On the other hand, the acquisition clause of M1

dictates requesting complete data from M2. However, M2 allows data sharing if

the acquisition clause issued by M1 holds c1 ∧ c2 conditions (e.g., is both NATO

and EU member). Then, M2 delegates selection to member-defined fine-select sub-

clauses. fine-select states that if the request satisfies the c3 condition (located in

North America) then the request is met with the data that is selected by the s2

selection (e.g., limits share of its data to NATO and EU member country citizens).

Otherwise, it shares data that is specified by selection s3 (White users).

CPL supports selections through filters. A filter contains zero or more opera-

tions over data inputs describing the share and acquisition criteria to be enforced.

Operations are defined as keywords or symbols such as <, >, =, in, like, and so on.

Selections and filters are defined in CPL as follows:

Selections are executed when conditionals evaluated to be true. Conditionals can be

consortium and dataset-specific. For instance, a member may require other members
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to be in a particular country or to be in an alliance such as NATO and to have their

dataset size greater than a particular value. Such conditionals do not require any

data exchange between members to be evaluated. However, members may want to

incorporate a relation between their data and other member’s data into their policies

as detailed next.

Data-dependent Conditionals. A member’s decision on whether to share or to

acquire data can depend on other member’s data. Simply put, one example of a data-

dependent conditional among two members could be whether the intersection size of

the two sets (e.g., a specific column of a dataset) is not too high. Considering such

knowledge, a member can make a conditional decision about share or acquisition of

that data. For instance, consider a list of private IP addresses used for blacklisting

the domains. If a member knows that the intersection size is close to zero, then

the member may dictate an acquire clause to request complete features from that

member based on IP addresses [FDCB15].

CPL defines an evaluate keyword for data-dependent conditionals through func-

tions on data. Data-dependent conditionals take the following form:

A member that uses the data-dependent conditionals defines a reference data

(data ref) required for a such computation, an algorithm (alg arg) and a threshold

(thshold arg) that is compared with the output of the computation. CPL includes

four algorithms for data-dependent conditionals (see Table 8.2). To be brief, inter-

section size measures the size of the overlap between two sets; Jaccard index is a

statistic measure of similarity between sets; Pearson correlation is a statistical mea-

sure of how much two sets are linearly dependent; and Cosine similarity is a measure
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Pairwise alg. Output Private protocol Proof

Intersection size |Di ∩ Dj | Intersection cardinality [DCGT12]

Jaccard index (|Di ∩Dj |)/(|Di ∪ Dj |) Jaccard similarity [BDCG12]

Pearson correlation (COV (Di,Dj))/(σDiσDj ) Garbled circuits [H+11]

Cosine similarity (DiDj)/(‖Di‖‖Dj‖) Garbled circuits [H+11]

Table 8.2: CPL data-dependent conditional algorithms. Two members of a consor-
tium use the conditionals to compute the pairwise statistics. The members then
use the output of the algorithm to determine whether to acquire or share data from
another party. (Di and Dj are the inputs of a dataset, and σ is std. deviation).

of similarity between two vectors. Each algorithm is based on a different assumption

about the underlying reference data. However, central to all of them is to privately

(without leaking any sensitive data) measure a relation between two members’ data

to offer an effective data exchange. We note that these algorithms are found to be

effective in capturing input relations in datasets [FDCB15, GPGMP16].

Data-dependent conditionals are implemented through private protocols (as de-

fined in Table 8.2). These protocols are implemented with the cryptographic tools

of garbled circuits and private functions. Protocols preserve the confidentiality of

data. That is, each member gets the output indicated in Table 8.2 without revealing

their sensitive data in plain text. After the private protocol terminates, the output

of the algorithm is compared with a threshold value set by the requester. If the

output is below the threshold value, the conditional is evaluated to true. Turning

to above example M3 joins the consortium. M1 and M2 extend their local policies

for M3:
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@M1 acquire : M3 : evaluate(local data, ’Jaccard’, 0.3) :: race=Asian;

share : M3 : :: ;

@M2 acquire : M3 : M3 in $NATO :: ;

share : M3 : :: ;

@M3 acquire : M1 : :: Genotype = ’A/A’ ;

share : M1 : evaluate(local data,’intersection size’, 10) :: ;

share : M1 : :: weight>150 ;

acquire : M2 : :: ;

share : M2 : M2 in $EU, size(data)> 1K :: ;

The acquire clause of M1 defines a data-dependent conditional for M3. It defines a

Jaccard measure on its local data through evaluate keyword and sets its threshold

value equal to 0.3. M3 agrees to share its local data with M1 if intersection size of

its local data is less then 10. Otherwise, it consults the next share clause defined

for M1 which states that an individual’s weight greater than 150 pounds will be

shared. All other share and acquire clauses are trivial. Members agree to share and

acquire complete data based on data size (data size > 1K), alliance membership

(e.g., NATO or EU member) and inputs (e.g., genotype).

Putting pieces together, CPL allows members independently define a data ex-

change policy with share and acquire clauses. The policies are dictated through

conditionals and selections. This allows members to dictate policies in complex and

asymmetric relationships. Defined in Section 8.3, CPL provides members to dictate

partnership, share, acquisition, and data-dependent conditionals.

Policy Negotiation and Conflicts. Data exchange between members is governed

by matching share and acquire clauses in each member’s respective policies. Both

share and acquire clauses state conditions and selections on the data exchanged.
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Policy ID Consortium Name Policy Definition Acquisition Policy Share Policy

P.1 Single Source Each member uses its local patient dataset to learn warfarin dose model. 7 7

P.2 Nation-wide Members in the same country establish a consortium based on state and country laws. 3 3

P.3 Regional Members in the same continent establish a consortium. 3 3

P.4 NATO-EU NATO and EU members establish a consortium independently based on their mutual agreements. 3 3

P.5 Global Members exchange their complete data to build the warfarin dose model. 3 3

Table 8.3: Consortia constructed among members. Acquisition and share policies
of members for each consortium are studied in Section 8.7.

Consider two example local policies with a share clause @m2 (share : m1 : c1 :: s1)

and matching acquire clause @m1 (acquire : m2 : c2 : s2). Curie’s negotiation

algorithm respects both autonomy of the data owner and the needs of the requester.

It conservatively negotiates share and acquire clauses such that it will return the

intersection of respective data sets in resulting policy assignment. The resolved

policy in this example is share : m1 : c1 ∧ c2 :: s1 ∧ s2 which states that the data

exchange from m2 to m1 is subject to both c1 and c2 conditionals and resulting

sharing has s1 and s2 selections on m2’s data. This authoritative negotiation makes

sure no member’s data is shared beyond its explicit intent, regardless how the other

members’ policies are defined. This is because negotiation fulfilling the criteria for

each clause is based on the union of logical expressions defined in two policies. Each

member runs the negotiation algorithm for members found in their member list.

After all members terminate their negotiations, the negotiated policy is enforced in

computations.

8.5 Deployment of Curie

To validate Curie in a real application, we integrated Curie into 24 medical institu-

tions. Each institution wants to compute a warfarin dose model on the distributed

dataset without disclosing the patient health-care records. Without deployment of

Curie, institutions compute warfarin dosage of a patient using a model computed

on their local patient data. Curie first enables institutions to negotiate their data
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exchange requirements through CPL. In this, Curie allows members to construct

various consortia wherein each member defines a data exchange policy for other

members. The next step is to compute a privacy-preserving dose model such that

each party does not learn any information about the patient’s records of other med-

ical institutions and respects the policy negotiated. Curie implements a secure

dose protocol through homomorphic encryption (HE) to enforce the policy agree-

ments of the members. We next present the deployment of Curie to institutions

(Section 8.5.1) and integration of policy agreements in warfarin dose model (Sec-

tion 8.5.2).

8.5.1 Deployment Setup

Warfarin- known as the brand name Coumadin is a widely prescribed (over 20

million times each year in the United States) anticoagulant medication. It is mainly

used to treat (or prevent) blood clots (thrombosis) in veins or arteries. Taking high-

dose warfarin causes thin blood which may result in intracranial and extracranial

bleeding. Taking low doses causes thick blood which may result in embolism and

stroke. Current clinical practices suggest a fixed initial dose of 5 or 10 mg/day.

Patients regularly have a blood test to check how long it takes for blood to clot

(international normalized ratio (INR)). Based on the INR, subsequent doses are ad-

justed to maintain the patient’s INR at the desired level. Therefore, it is important

to predict the proper warfarin dose for the patients.

Consortium Members. 24 medical institutions from nine countries and four

continents individually collected the largest patient data for predicting personalized

warfarin dose. Members collect 68 inputs from patients’ genotypic, demographic,

background information, yet a long study concluded that eight inputs are sufficient

for proper prescriptions [Int09].
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Warfarin Dose Prediction Model. To determine the proper personalized war-

farin dosage, a long line of work concluded with an algorithm of an ordinary linear

regression model [Int09]. The model is a function f : X → Y that aim at pre-

dicting targets of warfarin dose y ∈ Y given a set of patient inputs x ∈ X . We

represent the patient dataset of each member Di = {(xi, yi)}ni=1, and a loss function

` : Y × Y → [0,∞). The loss function penalizes deviations between true dose and

predictions. Learning is then searching for a dose model f minimizing the average

loss:

L(D, f) =
1

n

n∑
i=1

`(f(xi), yi). (8.1)

The dose model reduces to minimizing the average loss L(D, f) with respect to

the parameters of the model f . The model is linear, i.e., f(x) = α>x + β, and the

loss function is the squared loss `(f(x), y) = (f(x) − y)2. The dose model gives as

well or better results than other more complex numerical methods and outperforms

fixed-dose approach1 [Int09]. We re-implemented the algorithm in Python by direct

translation from the authors’ implementation and found that the accuracy of our

implementation has no statistically significant difference.

Consortia and Member Policies. We define consortia among medical institu-

tions that they state partnerships for data exchange. Table 8.3 summarizes the

consortia. The consortia are defined based on statute and regulations between

members, as well as regional, and national partnerships are studied based on their

countries [fMS17, Ame17, Hea17, Rep17]. For example, NATO allied medical sup-

port doctrine allows strategic relationships that are otherwise not obtainable by

1The model has been released online http://www.warfarindosing.org to help doctors
and other clinicians for predicting ideal dose of warfarin.
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Figure 8.4: Secure dose algorithm protocol: Member (Pi) starts the protocol, the
procedures and message flow among members are highlighted in boldface. At the
final phase, Pi is able to compute the dose model coefficients from the negotiated
data.

non-NATO members. Each member in a consortium exchanges data with other

members based on its CPL policy. Various acquisition and share policies of CPL

are studied via conditionals and selections in Section 8.7. We note that policy con-

struction is a subjective enterprise. Depending on the nature and constraints of

a given environment, any number of policies are appropriate. Such is the promise

of policy defined behavior; alternate interpretations leading to other application

requirements can be addressed through CPL.

8.5.2 Privacy-preserving Dose Prediction Model

The computation of local dose model of a medical institution is straightforward: a

member calculates the dose model through Equation 8.2 with the use of patient data

collected locally. To implement a privacy-preserving dose model among consortia

members of medical institutions, we define the dose prediction formula stated in

Equation 8.1 in a matrix form by minimizing with maximum likelihood estimation:
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β = (X ᵀX )−1X ᵀY , (8.2)

where X is the input matrix, Y is the dose matrix, and β is the coefficients of the

dose model.

Curie allows members to collaboratively learn a dose model without disclosing

their patient records and guarantees data sharing complies with the policy as nego-

tiated. As shown in Equation 8.4, each member translates its negotiated data into

neutral input matrices [WKT11]. Particularly, patient samples to be exchanged

by each member are computed as an input matrix X0, . . . ,Xn and dose matrix

Y0, . . . ,Yn. The transformation defines each member’s local statistics Oi = X ᵀX

and Vi = X ᵀY . Local statistics is the output of the negotiation of each member

in a consortium. The aggregation of the local statistics corresponds to a negotiated

dataset which is the exact amount that a member negotiates to obtain from other

members in a consortium. Curie constructs the dose algorithm of the negotiated

dataset as a concatenation of members’ local statistics as follows:

X ᵀX =
[
X ᵀ

1 | . . . |X ᵀ
n

][
X1| . . . |Xn

]ᵀ
=

n∑
i=1

X ᵀ
i Xi =

n∑
i=1

Vi = V (8.3)

X ᵀY =
[
X ᵀ

1 | . . . |X ᵀ
n

][
Y1| . . . |Xn

]ᵀ
=

n∑
i=1

X ᵀ
i Yi =

n∑
i=1

Oi = O (8.4)

In Equation 8.4, a member computes model coefficients using the sum of other

members local statistics. The local statistics includes m × m constant matrices

where m is the number inputs (independent of number of dataset size). Using this

observation, a party computes the coefficients of the negotiated dataset:

η(negotiated) = (X ᵀX )−1X ᵀY = O−1V (8.5)
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In Equation 8.5, while the accuracy objective of the dose model is guaranteed us-

ing the coefficients obtained from the sum of local statistics, the exchange of clear

statistics among parties may leak information about members’ data. A member

can infer knowledge about the distribution of each input of other members from

matrices of Oi and Vi [EESA+12]. Furthermore, an adversary may sniff data traffic

to control and modify exchanged messages. To solve these problems, we use homo-

morphic encryption (HE) that allows computation on ciphertexts [AAUC18]. HE

allows members to perform the computation of joint of function without requiring

additional communication complexity other than the data exchange. We note that

HE itself cannot preserve the confidentiality of data from multiple parties in central-

ized settings [VDJ10]. However, Curie implements a distributed privacy-preserving

multi-party dose model, as shown in Figure 8.4.

To illustrate, we consider an example session of n members authorized for data

exchange in a consortium. In this example, a ring topology is used for secure group

communication (i.e., Pi talks to Pi+1, and similarly Pn talks to Pi). P1 initially gener-

ates a pair of encryption keys using the homomorphic cryptosystem and broadcasts

the public key to the members in its member list. P1 then generates random Vi, Oi

and encrypts them E(Oi)Ki
and E(Vi)Ki

using its public key Ki. It starts the ses-

sion by sending them to the next member in the ring. When next member receives

the encrypted message, it adds its local Vi and Oi matrices through homomorphic

addition to the output of its policy reconciliation for P1 and passes to the next mem-

ber. Remaining members take the similar steps. Secure computation executes one

round per member in which the computation for the particular member visits other

members. This allows Curie to enforce HE on shared data of a particular member

in each round uses and does not suffer insecurities associated with centralized HE

constructions [VDJ10].
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red circles.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Consortia size

0

2

4

6

8

10

12

14

16

18

 N
eg

ot
ia

tio
n 

tim
e 

(s
)

Intersection size
Jaccard Distance
Pearson Correlation
Cosine Similarity

Figure 8.6: CPL selections and data-dependent conditional costs - Costs associ-
ated with varying members and algorithms. All consortia members agree on policy
including a different data-dependent conditional and selections over one input of
having 200 samples.

251



At the final stage of the protocol, P1 receives the sum statistics of Oi and Vi from

Pn. P1 decrypts the sum of the statistics using its private key and then subtracts

the initial random values of Vi, Oi and adds its true values used for computation

of the local dose model coefficients. The final result O and V is the coefficients of

the dose model that respects P1’s policy negotiations. Other consortium members

similarly start the protocol and compute the coefficients.

8.6 Security Analysis of the Dose Algorithm

We present security and privacy guarantees of the dose algorithm provided to all

members through the share of encrypted integrated statistics, (Oi = X ᵀX and

Vi = X ᵀY matrices). Since all data exchange among parties is encrypted through

the use of HE, the security of the algorithm against any adversary outside the

authorized parties is based on the underlying HE cryptosystem.

An adversary not involving session initiator. Assume for now that a session

initiator does not collude with other parties. Loosely speaking, since all computa-

tions are performed on the encrypted data, none of the parties learn anything about

other parties’ input.

We consider a party Pi+1 in Figure 8.4. The party Pi+1 has the public key

generated by the session initiator Ki, the encryption of local statistics of previ-

ous parties Mi = (E(Oi)K , E(Vi)K). Its input is (Vi+1,Oi+1) and its output is

Mi+1 = (E(Oi + Oi+1), E(Vi + Vi+1)). A simulator S selects random values for

its own inputs (V ′i+1,O′i+1) and encrypts them using the public key published by

the session initiator. Then, the simulator S performs the homomorphic operation

on the received message Mi and outputs M ′
i+1 = (E(Oi + O′i+1)K , E(Vi + V ′i+1)K).

Here, we assume the underlying HE is semantically secure. Therefore, the output
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of the simulator M ′
i+1 is computationally indistinguishable from output of the real

execution of the protocol Mi+1 for every input pairs. Therefore, using the definition

in [Gol09] the protocol privately computes the function in the presence of one semi-

honest corrupted party. The extension to multi-corrupted semi-honest adversaries

is straightforward as the only difference is the view of a subset of parties having

many encrypted messages. Since the semantic security of the underlying HE is hold

for any pair of these many encrypted messages, no information leaks about the

corresponding plaintexts.

Adversary involving session initiator. We consider the case when the session

initiator is corrupted. The corrupted parties including session initiator can infer

the input of an honest party if the predecessor (previous party) and successor (next

party) of an honest party are both corrupted. We consider the possible cases for

data leakage: (1) 2-party: The session initiator is corrupted, and another party is

honest. In this case, predecessor and successor of the honest party are both the

corrupted session initiator. Therefore, the input of honest party is learned by the

corrupted party, (2) 3-party : A corrupted session initiator is either predecessor or

successor; thus it can learn inputs of the one of the honest party only if another

party is corrupted, and (3) n-party (n > 3): To learn an honest party’s input, at

least two parties must be corrupted and placed in previous and next of the honest

party.

While the individual raw data of members does not leak, the risk of inappropriate

disclosures from local summary statistics exists in some extreme cases [EESA+12].

Consider the exchange of plain matrix Vi = XᵀY among two parties; a party may

use the extreme values found in Vi to identify particular patients. For instance, in

dose algorithm, taking inducers such as Rifadin and Dilantin could indicate high

dose prescriptions. If the values of Vi are high, then a party may infer a patient that
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takes enzyme inducers and the presence of high dosage warfarin intake. Similarly,

exchange of Oi = XᵀX may leak information about the number of observations and

represent the number of 0s or 1s in a column. For instance, for the former first entry

in the matrix, XᵀX, gives the total number of patients. For the latter, (XᵀX)j,j

gives the number of 1s in the column. This type information lets a party infer

knowledge, particularly when binary inputs (e.g., use of the medicine) are used.
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Figure 8.7: CPL performance on privacy-preserving and differential private protocol
- All members define an asymmetric share and acquisition policy through selections
and conditionals. The agreements of CPL policies between consortia members are
studied with the different number of consortia members, data samples, and input
size. (Std. dev. of ten runs is ± 3.6 and ± 0.3 sec. with and without homomorphic
key generation.)

8.7 Evaluation

This section details the operation of the Curie through policies. We show how

flexible data exchange policies are implemented and operated. We focus on the

following questions:

1. What are the performance trade-offs in configuring CPL?

2. Can members reliably use Curie to integrate various policies?

3. Do members improve the accuracy of dose predictions with the use of CPL?

The answers to the first two questions are addressed in Section 8.7.1, and the

last question is answered in Section 8.7.2. As detailed throughout, Curie allows 50
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members to compute the privacy-preserving model using 5K data samples with 40

inputs in less than a minute. We also show how an algorithm with flexible data

exchange policies can improve–often substantially–the accuracy of the warfarin dose

model accuracy.

Experimental Setup. The experiments were performed on a cluster of machines

with 32 GB of maximum memory and 16-core Intel Xeon CPU at 1.90 GHz, where

we use one core to get a lower bound estimate. Each member is simulated in a server

that stores its data. Secure computation protocols of Curie are implemented using

the open-source HElib library [HS14b]. We set the security parameter of HElib

as 128 bits. Multiplication level is optimized per member to increase the number

of allowed homomorphic operations without decryption failure and to reduce the

computation time.

We validate the accuracy of dose model in various consortia defined in Table 8.3

with members defining different data exchange policies. The dataset used in our

experiments contains 5700 patient records from 21 members. Dose model accuracy

of each member is validated with Mean Absolute Percentage Error (MAPE). MAPE

measures the percentage of how far predicted dosages are away from true dosage.

Lower values indicate better quality of treatment.

8.7.1 Performance Evaluation

We present the costs associated with various Curie mechanisms. We illustrate the

cost of the CPL in policy negotiations, in the use of data-dependent conditionals,

and in the dose algorithm.
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Figure 8.8: The implication of policies on model accuracy - errors are validated
in various consortia through data exchange policies. Figure 6(c-f): The local ac-
quisition policies of members comply with the sharing policy within a consortium
(i.e., members acquire complete data of the consortia members. Std. devs. of errors
are within %5, if not illustrated).

CPL Benchmarks

Our first set of experiments characterize the policy construction and negotiation

costs. Various consortia and policies are instrumented to analyze the overhead of

the number of messages and time required to compute the CPL selections and data-

dependent conditionals. All the costs not specific to the policies are excluded in

measurements (e.g., network latency). The benchmark results are summarized in

Figure 8.5 and 8.6 and discussed below.

Figure 8.5 shows the number of messages for policy construction required for

different consortia size. The number of members in warfarin study is also labeled.

For instance, NATO consortium has 13 members; ten members from U.S. and three

from UK. The experiments illustrate the upper bound results wherein each member

defines a different share and acquisition policy for other members (i.e., asymmet-

ric relations). In this, each member sends acquisition policy request to consortium

members. After a member gets the acquisition request, it reconciles with its share

policy and output of negotiation message is returned. The number of messages asso-
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ciated with varying number of selections and conditionals dictated by the members

does not require any additional messages. For instance, the acquisition request of a

member includes arguments when conditionals are defined (e.g., reference data and a

threshold value for data-dependent conditionals such as pairwise Jaccard distance),

and the result is returned with the negotiation output message. However, the use

of the selections and data-dependent conditionals brings additional processing cost

as detailed next.

Figure 8.6 shows the costs associated with the use of CPL selection and data-

dependent conditionals. All the members dictate data-dependent conditionals and

selections on a single input. The members input size for the data-dependent condi-

tional computations is set to 200 real values. This is the average number of inputs

found in members’ dataset. Since selections and conditionals reconcile contradic-

tions between acquisition and share policies, they do not require any additional

computation overhead and yield a processing time of milliseconds. However, the

time associated with varying data-dependent conditionals depend on the protocol

of associated secure pairwise algorithm. In our experiments, cosine similarity and

intersection size exhibited shorter computation time than Pearson correlation and

Jaccard distance. Overall, we found that 25 members compute the metrics less than

18 seconds. Note that the results serve as an upper bound that all members define

a set of selections and a data-dependent conditional on one input.

Dose Model Benchmarks

Our second series of experiments characterize the impact of CPL on the average

time of computing privacy-preserving dose model with varying number of members

and dataset sizes. Though the warfarin study includes eight inputs, evaluations are

repeated with the input size of 8, 16, 24, 32, and 40 through various dataset sample
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sizes for completeness. The input and sample size together represents the total

dataset shared for a member as a result of the policy agreements. Our experiments

show that 80% of computation overhead is attributed to HE key generation. The

cost of the differential privacy takes microseconds, as the members can calculate

the (optional) differential private algorithm model at the end of the secure dose

protocol. Computations are instrumented to classify the overheads incurred by key

generation, encryption, decryption, and evaluation. We next present the costs with

and without key generation to study the impact of the number of members and data

size.

Figure 8.7 (a-b) presents the computation cost with varying number of members.

Each member’s dataset includes 5000 data samples which acquired as a result of the

policy negotiations. Figure 8.7 (a) presents the cost of the total computation time

excluding HE key generation. There is a linear increase in time with the growing

number of members. This is the fundamental cost of encryption and evaluation

operations dominated by matrix encryption and addition. To profile the generation

of key cost, in Figure 8.7 (b), we conducted similar experiments. Each input size

cost increases because of the key generation overhead. The increase is quadratic as

a number of slots (plaintext elements) are set to square of input size not to lose any

data during input conversion. It is important to note that the cost is independent

of the member size because a member generates the key only once in a computation

of a consortium. We note that the time overhead of key generation is not a limiting

factor as members may generate keys before a consortium is established.

In Figure 8.7 (c-d), we show the costs associated with different data samples. The

number of members in a consortium is set to 20. Similar to the previous experiments,

the key generation dominates the computation costs. Our experiments also reported

no relationship between the cost and number of samples. That is, even though the
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Member Agreement of policy negotiations

U.S.
[
(Race=“Asian”)∨(EVALUATE(age))∨(height <160) ∨(weight <65)∨(CYP2C9 IN ( 2*/*2, 2*/*3)∨(Amiodarone=“Y”)∨(Enzyme=“Y”)

]
Brasil

[
(Race=“Asian”)∨(height <165)∨(CYP2C9 IN (2*/*2, 2*/*3)∨EVALUATE (Amiodarone)∨(Enzyme=“Y”)

]
UK

[
(Race 6=“White”)∨(age BETWEEN 20-29 AND >80)∨(height<165)∨(60<weight <100)∨EVALUATE(CYP2C9)∨(Amiodarone=“Y”), (Enzyme=“Y”)

]
Israel

[
(Race 6= “White”)∨(height <160cm)∨(weight <60)∨(CYP2C9=3*/*3)∨(Amiodarone=“Y”)∨(Enzyme Inducer =“Y”)

]
Taiwan

[
(Race=All)∨(age BETWEEN 20-29)∨(height >170)∨(weight >65)∨(CYP2C9 IN (1*/*2, 2*/*2, 2*/*3, 3*/*3)∨(VK0RC1=“G/G”)∨(Amiodarone=“Y”)∨(Enzyme=“Y”)

]
S. Korea

[
(Race=All)∨ (age BETWEEN 20-29)∨(height >165)∨(weight >60)∨(CYP2C9 IN (1*/*2, 2*/*2, 2*/*3, 3*/*3)∨(VK0RC1=“G/G”)∨(Amiodarone=“Y”)∨(Enzyme=“Y”)

]

Table 8.4: An exploration of CPL policies in the global consortium (illustrated as
a plain language): Each member defines asymmetric local policy based on its data
diversity. The agreement of share and acquisition policies are depicted as a policy
clause in a single row. The agreement result of each member for other members is
not presented for brevity.

size of the data samples increases, the overhead is amortized over the operations on

the local statistics of the computations (which is the square matrix of the input size

in the warfarin dataset); thus the time of computing dose algorithm converges to

the number of dataset inputs. This explains the similar trends observed in plots.

8.7.2 Effectiveness of Policies

We validate the performance of privacy-preserving dose model quantitatively and

qualitatively. For the warfarin study, these are translated to the following questions:

How do policies impact the accuracy of members’ warfarin dose prediction? (Sec-

tion 8.7.2), and Does policies help to prevent the adverse impacts of dose errors on

patient health? (Section 8.7.2).

Implications of CPL on Model Accuracy

In our first set of experiments, we validate how well a member prescribe warfarin dose

for its local patients and patient’s of the consortium members without using CPL.

These results are used as a baseline for comparison of varying consortia and data

exchange policies throughout. Figure 8.8 (a) sought to identify the local algorithm

errors (P.1). The errors significantly differ between countries and for the members

of the same country (depicted as M1 and M2 in the U.S.). The low results are
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due to having homogeneous data; all the inputs in these countries have similar

traits. For instance, similar age and ethnicity found in a dataset produce over-

fitted computation results for its local patients. These findings are validated with

use of local algorithms for treatment of other countries’ patients. As illustrated

in Figure 8.8 (b), the dose errors yield significantly high for particular countries’

patients. The results indicate that improvements in dose predictions of local patients

and members’ patients lay in the creation of data exchange policies to increase the

patient diversity.

The next experiments measure the impact of CPL in nation-wide (P.2), regional

(P.3), NATO-EU (P.4) and global (P.5) consortia. Each member creates a local

acquisition policy to acquire the complete data of consortia members (i.e., the acqui-

sition policy of a consortium member complies with the share policy of the requested

member). We make three major observations. First, varying partnerships yield dif-

ferent dose accuracy. For instance, members of nation-wide consortium get better

dose accuracy than their local results. This result is validated through nationwide

consortia and a single member (M1) in United States (see Figure 8.8 (c)). Second,

supporting previous findings, all regional (excluding Asia) and NATO-EU policies

decrease the error for both treatment of their patients and the other countries’ pa-

tients (see Figure 8.8 (d-e)). However, Asia consortium results in unexpected dose

errors for the treatment of other regions’ patients. This is because nation-wide,

regional, and NATO-EU policies include patient population having different char-

acteristics; thus the data obtained through policy negotiations better generalize to

the dosages. In contrast, Asia collaboration lacks large enough White and Black

groups. Third, the global consortium results in higher dose errors when evaluated

for particular countries such as Brazil and Taiwan (see Figure 8.8 (f)). To conclude,

while CPL is effective in reducing dose error of a member, the results highlight the
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need for the systematic use of CPL through selections and conditionals to obtain

better results.

In these experiments, each member dictates a different acquisition policy based

on its racial groups. Members aim at having an ideal patient population uniformity.

To do so, each member defines a local acquisition policy and negotiates it with

other members. Each member sets its share policy to conditionals of being in the

same consortium and data size greater than 200; thus, the policy of each member

is asymmetric. Table 8.4 shows the simplified notation of the policy agreements

in the global consortium. For instance, a member having a small number of white

patients defines selections to solely acquire that group and a member having large

enough patients for all genotypes sets data-dependent conditionals to obtain patient

inputs that are not similar in its data samples (e.g., acquires different genotypes).

Figure 8.9 presents a subset of results on dose errors per patient race. The errors

of the other races yield similar for each member. The results without CPL con-

ditionals and selections are plotted as a dashed line for comparison. We find that

members can improve the dose accuracy with the use of policies. We note that the

use of different data-dependent conditionals defined in evaluate does not result in

statistically significant accuracy gain.

Implications of CPL on Patient Health

We examine the impact of the dose errors found in the previous section to better

quantify the effectiveness of policies on patient health.

To identify the adverse effects of warfarin, we use a clinical study to evaluate

the clinical relevance of prediction errors [CLM17] and a medical guide to identify

the consequences of over- and under-prescriptions [FA17]. We define errors that

are inside and outside of the warfarin safety window, and the under- or over pre-
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Figure 8.9: Dose accuracy of members using CPL policies defined in Table 8.4.
Members construct a model per race after they reconcile the policies. The dashed
line is the average error found without the use of conditionals and selections in
policies.

scriptions. We consider weekly errors for each patient because using weekly values

eliminates the errors posed by the initial (daily) dose. The weekly dose is in the

safety window if an estimated dose falls within 20% of its corresponding clinically-

deduced value [Int09, K+13]. The deviations falling outside of the safety window is

an under- or over prescriptions, and cause health-related risks.

Table 8.5 presents the percentage of patients falls in safety window, over- and

-under prescriptions with varying policies of a member. We find that use of CPL

increases the number of patients in the safety window. For instance, a member

has 43.4% patient with using its local data (single source model), and the member

increases the percentage of patients in a safety window with varying consortia and

policies, for instance, it is 52.4% in the nation-wide consortium. We conclude that

CPL might be useful in preventing errors that introduce health-related risks.
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Consortium U SW O Selections Conditionals

Single Source 37.7% 43.4% 18.8% 7 7

Nation-wide 18.9% 52.3% 28.8% 3 3

NATO 19.3% 51.5% 29.2% 3 3

Regional 19% 51.3% 29.7% 3 3

Global 21.2% 46.8% 32% 3 3

Table 8.5: Impact of policies on health-related risks: Results are from a global
consortium patients using policy agreement of a member located in the U.S. The
member uses the policy defined in Table 8.4. (U: Under-prescription, SW: Safety
Window, O: Over-prescription)

8.8 Limitations and Discussion

One requirement for correctly interpreting the CPL policies is a shared schema

for solving the compatibility issues among members. For instance, members may

interpret the data columns (e.g., column names and types) differently or may not

have the information about consortium members (e.g., membership status of an

alliance). CPL implements a shared schema describing column names, their types,

and explanations of data fields as well as consortium-specific information. Members

can negotiate the schema similar to the policy negotiations and revise the schema

based on the schema of a negotiation initiator.

CPL provides a set of data-dependent statistical functions (e.g., cosine similarity)

to compute pairwise statistics among member’s local data. However, there might be

a need for other functions that help members decide their data exchange policies.

For example, data exchange among finance companies may require calculating the

similarity between data distributions. Future work will investigate the integration

of different data-dependent statistics into CPL.

Lastly, we did not focus much on the reasons of policy impacts on the prediction

success of the dose algorithm and its adverse outcomes on patient health over time.

While our evaluation results showed that members could express both complex rela-
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tions and constraints on the data exchange through CPL policies, members require

establishing true partnerships to improve the prediction model accuracy. While

this explanation matches both our intuition and the experimental results, a further

domain-specific formal analysis is needed. We plan to pursue this in future work.

8.9 Conclusions

In this chapter, we presented Curie which provides a novel policy language called

CPL to define the specifications of data exchange requirements securely for use in

collaborative learning settings. Members can assert who and what to exchange

separately for data sharing and data acquisition policies. This allows members to

efficiently dictate their policies in complex and asymmetric relationships through se-

lections, conditionals, and pairwise data-dependent statistics. We validated Curie

in an example real-world healthcare application through varying policies of con-

sortia members. A secure multi-party and (optional) differentially-private model

is implemented to illustrate the policy/performance trade-offs. Curie allowed 50

different members to efficiently compute a privacy-preserving model using 5K data

samples with 40 inputs in less than a minute. We also showed how an algorithm

with effective use of data exchange policies could improve the accuracy of the dose

prediction model.
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CHAPTER 9

ACHIEVING SECURE AND DIFFERENTIALLY PRIVATE

COMPUTATIONS IN MULTIPARTY SETTINGS

9.1 Introduction

Secure and private computation of statistical models is increasingly used in different

operational settings from healthcare [KHK+16, CAA+19] to finance [BTW12] and

security sensitive applications [FDCB15]. Given the distributed nature of these

applications, security and privacy are mostly achieved by utilizing Secure Multiparty

Computation (SMC). SMC allows distributed parties to jointly compute an agreed

function over their private inputs without revealing those inputs to other parties.

Each party learns the final result, but no other information. However, SMC has a

major privacy concern for a targeted individual as it does not guarantee that the

final result of distributed computation would not leak any information about an

individual in a sensitive dataset. Privacy of individuals and their data can be easily

violated. [EESA+12, NS08, GKS08]. Therefore, there is a need for a mechanism,

where individual parties do not see each others’ inputs and further can not infer their

data from the final constructed model. Indeed, combining SMC with Differential

Privacy (DP) could solve this privacy problem as DP introduces sufficient noise into

the final result to prevent any leakage about a single individual.

However, combining SMC with DP is not a trivial task. In an ideal case, a trusted

data collector1 can collect the data, aggregate them and add calibrated noise to the

results of the queries (predictions) (Centralized DP (CDP) in Fig. 9.1). However, a

trusted party does not exist in many real life scenarios. This technique would easily

1A data collector is either one of the parties or a third party. Every discussion here
applies to both of the types.
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Figure 9.1: Illustration of secure multiparty computation with distributed and cen-
tralized differential privacy methods.

leak the model of the sensitive data to an untrusted data collector who collects the

final model of the data. Even for scenarios with a trusted data collector, relying on

the centralized entity makes it a single point of failure for the entire data collection

mechanism.

On the other hand, another mechanism involves applying a data sanitization

technique (Distributed DP (DDP) in Fig. 9.1) directly on the local data held by

the parties. In this case, the untrusted data collector can not infer individuals’ data

since sufficient noise is injected by DP to hide the individuals’ data. However, this

mechanism requires a meticulous analysis since it may lead to a divergent or exces-

sive amount of accumulated noise due to DP at the data collector end. As such,

this process may lead to a significant accuracy loss in the final models, which may

cause catastrophic consequences in, for example, the healthcare domain. There-

fore, enabling distributed differential privacy on local data with differential privacy

guarantees on final results is a challenging problem.
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In this chapter, we are motivated to provide a solution to this problem. Specif-

ically, we propose a novel protocol for achieving Secure Multiparty Distributed

Differentially Private (SM-DDP) computations on sensitive data. The protocol

provides the guarantees of both SMC and DP. SMC is provided through Homo-

morphic Encryption (HE) [Gen09] while DP is provided via Functional Mechanism

(FM) [ZZX+12]. An important characteristic of FM is that it injects noise into the

feature matrices (i.e., coefficients of objective function), which can be computed in-

dependently by each party in a multiparty computational environment. We explore

this feature of FM and apply it to linear regression using our SM-DDP protocol, but

it can be applied to the computation of any statistical model function that allows

independent calculation from the local statistics. We show that the accumulated

noise in our protocol is still bounded and convergent by using the infinite divisibility

property of Laplacian distribution [McN02]. Finally, we evaluated SM-DDP proto-

col’s computational efficacy on linear regression using two real-world datasets. We

compare our results with the use of Centralized DP (CDP) in a multiparty setting

as in Fig. 9.1. The intuition is that the distributed setting of DP (DDP), which is

proposed in this paper, would cause a greater accuracy loss than the typical client-

server setting of SMC systems. However, we show exactly same trade-off can be

achieved using the SM-DDP protocol that is presented in Fig. 9.3. The extensive

evaluation results indicate that the proposed SM-DDP protocol yields minimal com-

putational overhead—less than a minute for 20 parties with 32 attributes and 10K

samples. The individual parties obtain better accuracy than that would be obtained

from a single party model. Finally, SM-DDP is scalable while providing security and

privacy guarantees.
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9.2 Linear Models

In this section, we start by introducing the linear models. We, then, show how to

compute linear regression in a distributed fashion.

9.2.1 Background

Assume a database D consists of n observations {xi, yi}ni=1, where xi is a vector of d

attributes (i.e., xi = (xi1, xi2, . . . , xid) and yi is a scalar response. The aim is to find

a model function f : X → Y that can predict yi ∈ Y as close as its actual value using

the attributes xi ∈ X. The type of the regression model is decided by the type of

the model function. For instance, in linear regression, the model function is simply

a straight line. Model function f takes model coefficients w = (w1, w2, . . . , wd) and

xi as inputs and outputs a prediction for the value of yi. The deviations between

predicted value and the actual response value are calculated through a loss function

` : Y × Y → R. The global value of w over the training data D is calculated by the

objective function. We denote the objective function by L and it is calculated as

follows:

L(f,D) =
n∑
i=1

`(f(xi, w), yi). (9.1)

9.2.2 Distributed Linear Regression

Regression is a statistical approach that explores the relationships between a set of

independent variables called attributes and one dependent variable called response.

In regression, the relationship between the attributes and the response is modeled

using a prediction function.
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In linear regression, L2-norm of the objective function (i.e., `(f(xi, w), yi) =

(w · xi − yi)2) that is minimized in the matrix form as follows:

w∗ = arg min
w
L(f,D) = arg min

w

m∑
i=1

(w · xi − yi)2, (9.2)

where m is the number of tuples in the database. To calculate the regression in

a distributed way, we represent the regression objective by minimizing with the

Maximum likelihood Estimation (MLE). MLE allows us to obtain the global solution

of the Equation 9.2 as follows2:

w∗ = (X>X)−1X>Y. (9.3)

We characterize the model parameter w of each party using three parameters:

Pi = X>i Xi,Vi = X>i Yi,Oi = Y>i Yi (9.4)

Each party computes its local statistics < Pi,Vi,Oi > and shares with other

parties. Then, the global values of P ,V and O are computed using the shared local

statistics as follows:

P = X>X =

[
X>i1 |...|X

>
in

]
Xi1

...

Xin

 =
n∑
k=1

X>ikXik =
n∑
k=1

Pk

V = X>Y =

[
X>i1 |...|X

>
in

]
Yi1
...

Yin

 =
n∑
k=1

X>ikYik =
n∑
k=1

Vk

2A unique solution only exists if (X>X)−1 is non-singular. In other cases, there are
techniques for solving Equation 9.2 [Myu03]; however, it is out of the scope of this paper.
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O = Y>Y =

[
Y >i1 |...|Y

>
in

]
Yi1
...

Yin

 =
n∑
k=1

Y>ikYik =
n∑
k=1

Ok,

where n is the number of parties in the collaboration. Using this, the global coeffi-

cients can be computed as follows:

w∗ = (X>X)−1X>Y = P−1V . (9.5)

In order to calculate the error of the global function, we rewrite the objective

function in Equation 9.2 in terms of the local statistics (i.e., matrix form) as follows:

m∑
i=1

(w · xi − yi)2 = (Xw −Y)>(Xw −Y)

= ||(Xw −Y)||2

= w>X>Xw − 2w>X>Y + Y>Y

= w>Pw − 2w>V +O,

(9.6)

where || · || denotes the Euclidean norm. We note that even though we do not need

O to calculate the global coefficients, it is used for computing the error of the model.

9.3 Technical Preliminaries

Preserving the privacy of the users and data is a long-studied problem in the area of

cryptography [SCR+11, DPSZ12, Dan15, CMS11, SKLR04, DKM+06]. As a result

of these long-term studies, there are several theoretically well-studied tools that can

be employed to protect the data and user privacy such as Secure Multiparty Compu-

tation (SMC) [DPSZ12] and Differential Privacy (DP) [Dwo08]. In this section, we
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introduce the essentials of the secure computation and differential privacy primitives

to understand the implementation of SM-DDP algorithms. Particularly, we intro-

duce Homomorphic Encryption (HE) to provide SMC and Functional Mechanism

(FM) to provide DP guarantees.

9.3.1 Secure Multiparty Computation

SMC allows the computation of a function with multiple inputs from different users

while keeping the users’ inputs hidden from each other. For instance, each party Pi

in a n-party environment holds input xi learns nothing but the output f(x1, ..., xn)

of a computation. In the literature, SMC schemes are mostly achieved via either

the Yao’s garbled circuits [Yao82] or Homomorphic Encryption (HE) [Gen09]. In

the following, we use HE to provide guarantees of secure computation.

Homomorphic Encryption (HE)- HE provides an ability to evaluate the func-

tions directly on the encrypted data while keeping the data confidential. The pri-

mary advantage of the HE is that it does not require any interaction between the

parties other than the data exchange. That is, there is no additional communi-

cation complexity. However, it may introduce computational overhead on large

plaintexts. Recent works improved its performance significantly by introducing new

techniques like single instruction, multiple data (SIMD) operations [SV14] or using

different mathematical assumptions like learning with errors LWE [BGV14, BV14a]

(see [AAUC18] for a recent survey about HE).

An HE scheme is primarily characterized by four operations: key generation

(KeyGen), encryption (Enc), decryption (Dec), and evaluation (Eval). KeyGen

is the operation that is used to generate a secret and public key pair for the asym-

metric version of HE or a single key for the symmetric version. KeyGen, Enc and
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m1,m2 f(m1,m2)

c1, c2 f(c1, c2)
Eval(...)

Encpk(...)

Decsk(...)

f(...)

Figure 9.2: HE operations of encryption, evaluation, and decryption (pk is the public
key, sk is the secret key, and f is the function desired to be computed).

Dec are similar to the ones used in conventional encryption schemes. However,

Eval is an HE-specific operation, which takes ciphertexts as input and outputs a

ciphertext corresponding to a functioned plaintext. Fig. 9.2 illustrates a commu-

tative diagram depicting the relationship among the four major operations. The

simplified version of the diagram shows only one homomorphic encryption with two

ciphertexts [Gen14].

9.3.2 Differential Privacy (DP)

DP is a statistical disclosure control technique ensuring that the outputs of queries

do not leak information about the individuals found in a dataset. It injects a certain

amount of noise into the replies of the queries so that while it is not possible to infer

an individual-level leak, the output of the query is still “almost” the same. In other

words, query results of a data release algorithm for two closely similar data sets give

the same answer. The formal definition of ε−differential privacy is formulated as

follows [DR14]:

Definition 1. A randomized algorithm M is ε-differentially private if for all data

sets D and D′ differing on at most one element and all S ⊆ Range(M),

Pr[M(D) ∈ S] ≤ exp(ε)× Pr[M(D′) ∈ S], (9.7)
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where Range(M) shows all possible outputs of the function (query), f .

The definition states that two adjacent sets D and D′, which differs at most one

element, act approximately the same against a query3 defined by a given mechanism

M . ε can be considered as the degree of the privacy guarantee and the amount of

information which can be learned from a result of a single query is bounded by exp(ε).

Since ε is too small, its guarantee is preserved for consecutive queries. Differential

privacy works on the release mechanism and does not modify data or the format of

the data in any way.

The parameter ε, called privacy budget, is the main parameter to tune the balance

between privacy and accuracy. Decreasing ε increases the privacy guarantees while

decreasing the accuracy. The common mechanism to control the amount of noise

that needs to be added is Laplace Mechanism (LM). In this case, the noise is drawn

from a Laplace Distribution. The probability density function of LM is as follows:

Lap(x|b) =
1

2b
exp

(
−|x|
b

)
, (9.8)

for scale b and center 0. It is shown that LM preserves ε-differential privacy [DR14].

Definition 2. Given any function f : N|X | → Rk, the mechanism is a Laplace

Mechanism M if:

M(x) = f(x) + η, (9.9)

where x ∈ X and η is a vector of independent and identically distributed random

variables drawn from Lap(∆f/ε).

In addition to the ε, sensitivity is another important parameter in DP to deter-

mine the optimum noise amount. It is defined as follows:

3The queries or functions correspond to the predictions in the statistical models.
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Definition 3. For a function f : D → Rk, sensitivity of f is

∆f = max
D,D′

‖ f(D)− f(D′) ‖ (9.10)

for all D,D′ differing in at most one element.

The sensitivity shows the maximum number of elements that can change in two

different queries.

Functional Mechanism (FM)- FM is an algorithm that is used to provide dif-

ferential privacy guarantees for a set of linear models [ZZX+12]. It is an extension

of the Laplace Mechanism. The goal of the algorithm is injecting the noise to the

polynomial coefficients of a model’s objective function. This is accomplished with

the mechanism of objective perturbation [CMS11]. The optimization of the noisy

objective function gives new model parameters that ensure the ε-privacy of each

element in a database. Algorithm 1 [ZZX+12] presents the functional mechanism.

As illustrated in Algorithm 1, FM takes a dataset D, the polynomial represen-

tation of the objective function L, and the privacy budget ε as inputs and it returns

the differentially private model coefficients w∗. It firstly injects noise drawn from
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a Laplacian distribution (Lap(∆
ε
)) into all the coefficients λφi of the polynomial

representation of the objective function and then the optimization is performed us-

ing noisy coefficients. It is shown that it satisfies ε-differential privacy [ZZX+12]

i.e., the predictions using w∗ does not leak any information about an individual in

the database data. For example, if we have a quadratic objective function in the

matrix form of w>Pw + w>V + O, where P , V , and O are the coefficients of the

polynomial representation of the objective function. FM firstly injects noise into the

coefficients, which results in w>P∗w+w>V∗+O∗. Then, the optimization problem

(i.e., w∗ = arg min
w
L(f,D)) is solved using P∗, V∗, and O∗.

9.4 Secure and Differentially-private Distributed Computa-

tions

In this section, we propose a novel protocol for secure multiparty distributed and

differentially private (SM-DDP) computations through the use of homomorphic en-

cryption (HM) and functional mechanism (FM). We evaluate its application to lin-

ear regression and discuss its extension to the logistic regression that can be used

in supervised classification.

Consider n parties P1, . . . , Pn, where each has private horizontally distributed

database D1, . . . , Dn. Each database consists of a certain number of tuples in the

format of ti = (xi, yi). The parties would like to jointly build a linear model of

the pooled database f(D), where D = ∪ni=1Di so that the security guarantees

of both SMC and DP are preserved. Before running the protocol, each party

in the collaboration agrees on the function to be computed and compute a col-

lection of local statistics Mi = (Li1 , . . . , Lit). We assume the linear model can

be computed using the local statistics generated by each party independently i.e.,
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ηglobal = f(M1, . . . ,Mi, . . . ,Mn). We define the guarantees and goals of our protocol

as follows:

• Individual privacy: No information leaks about the individuals in the private

databases held by the parties, i.e., tuples ti is not leaked.

• Data privacy: Information about the statistics of the data does not leak in

the databases held by the parties, i.e., the statistics about the data Mi is not

leaked.

• Correctness: The parties receive the correct output of the model.

We note that using SMC only would violate the individual privacy while using DP

only violates the data privacy. In our combined protocol, we achieve individual

privacy through FM and data privacy through HE and since all operations in the

protocol are deterministic, the correctness is satisfied by design. We note that we

assume there is a secure channel between parties to exchange messages.

Fig. 9.3 illustrates our protocol to be able to perform SM-DDP computations. It

is initiated by one of the parties called data collector (DC). In the setup phase, DC

generates a key pair (pki, ski) and computes its own local statistics Mi independent

from other parties. Then, in the next phase, DC applies DP by injecting (adding)

noise drawn from a random distribution that satisfies ε-differential privacy into its

local statistics. The encryption of the noisy local statistics is transmitted to the

next party Pi+1. The next party Pi+1 also computes its local statistics and injects

noise into them. The result is encrypted with pki and the function is evaluated

homomorphically with the inputs of parties Pi and Pi+1. The protocol is continuous

in the same way, where parties are located in a ring topology. At the final step, the

securely evaluated function result is used by the party Pi which decrypts it with ski.

In the end, Pi reveals the differentially private global model.
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Setup:

Compute local statistics: Mi = (𝐿𝑖1 , … , 𝐿𝑖𝑡)

Generate HE key pair key: (𝑝𝑘𝑖 , 𝑠𝑘𝑖) 

Send  𝑝𝑘𝑖 to all parties                                   

Setup:

Compute local statistics: (𝐿𝑖+11 , … , 𝐿𝑖+1𝑡) 

𝑷𝒊+𝟐

Homomorphically evaluate:

𝐸𝑝𝑘𝑖 𝑓 𝑀1
∗, . . . , 𝑀𝑖

∗, … ,𝑀𝑛
∗

← 𝐸𝑣𝑎𝑙(𝑓, 𝐶1
∗, . . . , 𝐶𝑖

∗, … , 𝐶𝑛
∗)

Global Model:

Calculate the noisy global model 

parameters:

𝜂𝑔𝑙𝑜𝑏𝑎𝑙
∗ = 𝑓 𝑀1

∗, . . . , 𝑀𝑖
∗, … ,𝑀𝑛

∗

...
From 𝑷𝒊−𝟏

...

Differential Privacy:

Noise injection into local statistics:

𝑀𝑖
∗ = 𝑀𝑖 + 𝑁𝑜𝑖𝑠𝑒

Multiparty Computation:

Encrypt noisy local statistics and transfer 

the output:

𝐶𝑖
∗ = 𝐸𝑝𝑘𝑖(𝑀𝑖

∗)

Differential Privacy:

Noise injection into local statistics:

𝑀𝑖+1
∗ = 𝑀𝑖+1 + 𝑁𝑜𝑖𝑠𝑒

Multiparty Computation:

Encrypt the local statistics:

𝐶𝑖+1
∗ = 𝐸𝑝𝑘𝑖(𝑀𝑖+1

∗ )

Evaluate homomorphically:

𝐸𝑝𝑘𝑖(𝑓 𝑀𝑖
∗, 𝑀𝑖+1

∗ ) ← 𝐸𝑣𝑎𝑙(𝑓, 𝐶𝑖
∗, 𝐶𝑖+1

∗ )

Transfer the output securely:

To 𝑷𝒊+𝟑

𝑷𝒊+𝟏𝑷𝒊 (𝑫𝑪)

𝐸𝑝𝑘𝑖(𝑓 𝑀𝑖
∗, 𝑀𝑖+1

∗ )

...
...

Figure 9.3: Secure Multiparty Distributed Differentially Private (SM-DDP) protocol
for the computation of a linear model coefficients. The parties create a ring topology
and the Data Collector (DC) initiates the protocol. The protocol can be applied to
any statistical model function that allows independent calculation of local statistics.
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9.4.1 Case Study: Linear Regression

In this subsection, we show how to compute linear regression using our protocol pro-

posed in Fig. 9.3. Particularly, we use functional mechanism shown in Algorithm

1 by splitting it into two parts: NoiseInject() and Optimize(). In NoiseInject(),

the noise drawn from Laplacian distribution (Equation 9.8) is injected into each

coefficient of the polynomial representation of the objective function. Then, in

Optimize(), the optimization problem of the objective function is solved by ap-

plying regularization and spectral trimming introduced in [ZZX+12] in order to

avoid unbounded noisy objective function. Moreover, in FM, it is assumed that√∑d
i=1 x

2
id ≤ 1. Therefore, a secure maximum computation is performed to calcu-

late ηmin and ηmax in setup phase of Algorithm 2, where ηmin (resp. ηmax) is vector

consists of global minimum (resp. maximum) of each attribute. Before applying

FM, each party normalizes its database using the global maximum and minimum

values. This guarantees that the local sensitivity of the parties is always same as

the global sensitivity as we focus on the horizontally distributed data.

Algorithm 2 illustrates the computation of linear regression algorithm using the

protocol presented in Fig. 9.3. In linear regression, the global model is calculated by

simply aggregating locally calculated noisy statistics. While aggregating the local

statistics, the noise of each party is aggregated as well. Therefore, it is necessary

to make sure the final model will not violate ε-differential privacy nor cause an

unbounded noise. Particularly, the noise is injected to each coefficient as follows:

Pi∗ = Pi + Lap
(∆

εi

)
. (9.11)

Then, when DC computes the global model, the local statistics are summed up as

follows:

P∗ =
n∑
i=1

Pi∗ =
n∑
i=1

(
Pi + Lap

(∆

εi

))
= P +

n∑
i=1

Lap
(∆

εi

)
. (9.12)

279



Moreover, V∗ and O∗ can be computed similarly. In all P∗, V∗, and O∗, the noise

term is
∑n

i=1 Lap
(

∆
εi

)
. In order to make sure that the accumulated noise is also

Laplacian distribution, we use the following theorem.

Theorem 1. Let Y , Y1, Y2... be non-degenerate and symmetric i.i.d. random

variables with variance σ2 > 0, and let νp be a geometric random variable with mean

1/p, independent of the Yi’s. Then, the following statements are equivalent (Proof

is given in [McN02]):

(i) Y is stable with respect to geometric summation, i.e., there exist constants ap > 0

and bp ∈ R, such that

ap

νp∑
i=1

(Yi + bp) = Y ∀p ∈ (0, 1) (9.13)

(ii) Y possesses the Laplace distribution with mean zero and variance ν2. Moreover,

the constants ap and bp must be of the form: ap =
√
p, bp = 0

From the theorem above, a Laplace distribution can be calculated by summing

up several Laplace distributions in a certain form. In other words, the sequence

of partial sums, ap
∑νp

i=1(Yi + bp) converges to a Laplace distribution under beta-

distributed ap. We addressed requirements of the theorem in Algorithm 2 by multi-

plying the noise distribution of local parties with a number drawn from the geometric

distribution i.e., ap
∑n

i=1 Lap
(

∆
εi

)
, where ap is a geometric random variable.

9.5 Performance Evaluation

In this section, we give the experimental results for the application of our SM-DDP

protocol to linear regression. Table 9.1 presents the notations used throughout the

experiments. We first demonstrate how we set the parameters that are introduced

in the distributed setting. Particularly, the success probability of the geometric

280



random variable p in Equation 9.13 and α introduced in Algorithm 2 is investigated.

After experimentally tuning these two parameters, we test the final protocol with

a different dataset without random sampling directly as it is collected. During

evaluation, we focus on the following questions: (i) Can we obtain a differentially

private global linear regression model from differentially private local statistics? (ii)

Does our approach support up to 100 parties? (iii) How long does it take to complete

the protocol? (iv) Does it guarantee the security and privacy of both data and

individuals? We analyzed and discussed each of these questions in Sections 9.5.1-

9.5.4.

Dataset- We used two real-world datasets to evaluate the algorithms of our pro-

tocol. Both datasets include highly sensitive data. The first dataset is Integrated

Public Use Microdata Series (IPUMS) [II17]. It contains 370K decennial census

records of people living in the US with 14 attributes, 7 of which are demographic

information and the rest are working hours per week, the number of years residing

in the current location, the number of children, the number of automobiles, and the

annual income. The attributes are used to predict the annual income of a person.

The second dataset is the warfarin dataset collected by the International Warfarin

Pharmacogenetics Consortium (IWPC) [Int09]. The dataset contains clinical and

genetic data of patients to predict the stable therapeutic dose of warfarin. Clinical

data includes demographics, background, and phenotypic attributes. Genetic data

includes genotype variants of CYP2C9 (*1, *2 and *3) and VKORC1 (one of seven

single nucleotide polymorphisms in linkage disequilibrium). 21 sites in 9 countries

and four continents contributed to the dataset. We used a subset of this dataset

wherein patient samples include no missing attributes. Overall, we used 1400 com-

plete patient samples from seven medical institutions. We used IPUMS dataset to

experimentally set the parameters of our protocol and we tested the final protocol
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Table 9.1: Abbreviations and notations used in experiments

Notation Description Range

DDP Distributed Differential Privacy -
NoDP No Differential Privacy -
CDP Centralized Differential Privacy -
ε global privacy budget {0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8}
εi local privacy budget εi = αε
α local privacy ratio i.e., α = εi/ε {1,10,100}
p success probability of the geomet-

ric random variable, ap

{0.1,0.5,0.9}

n number of parties [1,100]
L number of levels in HElib {4,6}
nslots number of slots in HElib calculated by HElib
s minimum of nslots {82, 162, 242, 322, 402}

with the IWPC dataset, where each party corresponds to a medical institution in

the dataset.

Evaluation Metrics- We applied stratified cross validation to split the dataset

into training and test sets. To evaluate the model’s prediction accuracy, we used

Mean Squared Error (MSE) as it is a commonly used metric for linear regression

analysis. It is calculated as 1
n

∑n
i=1(ŷi − yi), which gives the average of the squared

errors between actual (yi) and predicted (ŷi) values in n data samples. The lower

values of MSE shows better predictions. Finally, it is worth mentioning that all the

experiments show 100 independent runs and their average is reported in this work.

Experimental Setup- To evaluate the computational overhead, we used open-

source HE library (HElib) [], which implements BGV homomorphic cryptosys-

tem [BGV14] and we ran experiments on 16-core Intel Xeon CPU at 1.90 GHz

running Linux Server. In BGV, a prior level L should be set before initiating the

computation. In addition to the level L, HElib also has a parameter nslots which

defines a number of slots for the utilization of SIMD techniques [SV10, SV14]. HElib

allows encrypting multiple messages at one time through its SIMD features by pack-
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ing the messages into the independent slots of an array. We note that the parameter

L affects not only the number of allowed homomorphic operation but also all the

other timings and the key size. Therefore, the parameter L should be optimized

so that the minimum L is set without failure of the decryption. To do so, we first

calculated the table of a number of homomorphic operations for each level L and

we used the minimum level for each number of the party.

Furthermore, in our experiments, the data encrypted is the local statistics i.e., not

the raw data. The size of the local statistics is considered the same for all the par-

ties. The homomorphic operation computed for linear regression is the element-wise

matrix addition. To take advantage of HElib library SIMD features, we converted

matrices into arrays and the parameter of minimum number for nslots was set to the

length of the array for each statistics. This prevents data loss during the conversion.

We did not utilize any multi-threading technique during our experiments to see the

lower bound of the performance of our protocol. Thus, our results are lower bound

and can be improved with the use of any multi-threading technique.

9.5.1 Accuracy Analysis

We evaluate the accuracy-privacy trade-off of distributed evaluation of differential

privacy on linear regression. Specifically, we compare our results with the centralized

approach. In Centralized Differential Privacy (CDP), the accuracy of the regression

depends only on the global privacy budget ε. However, in Distributed Differential

Privacy (DDP), each party has its own local privacy budget εi and DDP is applied

independently by each party. We note that this is a particular property of FM.

In FM, data is first normalized and the optimum noise amount is only determined

by the number of the attributes which is same for all parties. Therefore, the size

and the range of the local statistics are same for all the parties; it does not depend
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Figure 9.4: Tuning p . Variation of error is tested for several values of p. As a result,
p = 0.1 is not stable or convergent; p = 0.5 is convergent, but error is much higher
than CDP for especially small ε values. Hence, we chose p = 0.9 as the best case.

on the number of tuples in the local database. Since all parties are identical, we

choose the same local privacy budget εi for all the parties. Finally, in our fist three

experiments (Fig. 9.4, 9.5, and 9.7), we used IPUMS dataset and split it into parties

using random sampling methods. In the last experiment, we used IWPC dataset for

accuracy evaluation. We split the dataset based on the given medical institutions

(See Fig. 9.6)

The first set of experiments was conducted to analyze the optimum value of p,

which is a parameter of geometric random variable ap given in Equation 9.13. In

theory, ap is required to obtain a Laplace distribution in the global model, thereby it

is required to be able to satisfy ε-differential private model. To present the impact of

the parameter p on the accumulated global noise, we kept the party number constant

for several values of p and various ε values (εi = ε). To do so, each party multiplies

the noise drawn from Laplace distribution with a random variable ap, which is a

geometric random variable with success probability p. We compared the error rates

of CDP, DDP, and NoDP algorithms in terms of MSE.
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Figure 9.5: Tuning εi. Variation of error is tested for several values of local privacy
budget εi for α = εi/ε. For α = 1, error is too high for small ε values. For α = 10,
error is lower than CDP and and it converging to the value as NoDP. For α = 1,
error is low, but it converges to a value higher than NoDP. Hence, we chose α = 10
as the best case.

Fig. 9.4 illustrates the error and privacy budget trade-off for various values of p.

We varied p from {0.1, 0.5, 0.9}. We found that DDP with p = 0.1 does not converge

to a value while increasing the value of ε. However, p = 0.5 and p = 0.9 converges

to the same value as NoDP as it is desired and when p is 0.9, it gives similar results

to CDP. In the sequel, we tuned p = 0.9 and used it in our experiments.

In the second set of experiments, we were interested in finding the optimal local

privacy budget εi for a predetermined global privacy budget. In other words, we

assume all parties agree on a global privacy budget according to the sensitivity of

the dataset, which was indeed calculated by the number of attributes. We denote

the ratio of local privacy budget to the global privacy budget as α, i.e., α = εi/ε. We

first tried the value of α less than 1, the result of DDP was much worse than CDP.

This is because smaller εi means more noise injected locally by each party than the

centralized approach. This noise decreases the accuracy significantly. Therefore,

we changed α from {1, 10, 100} and compared the results with CDP and NoDP
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Figure 9.6: A real test: Warfarin dataset with 7 parties with εi = nε and p = 0.9.
Exactly the same trade-off as the centralized differential privacy is obtained.

mechanisms. The results are presented in Fig. 9.5. We found that if α is the

number of parties, which is 10 in this experiment, the plot gets closer to CDP and

the error is converging to NoDP, which is the desired case. Therefore, in the rest of

experiments, we set α = n, where n is the number of parties.

So far, we tuned the parameters of our approach experimentally. Now, in our

last experiment, we evaluated the efficiency of our protocol using the dataset (IWPC

dataset) collected from multi sources. We applied DP locally on each party’s dataset

and calculated the global model and error. Our goal was to see the feasibility of our

approach in a real case and test the feasibility of our approach.

In this experiment, we set εi = nε, p = 0.9 as we found in earlier experiments.

We compared the performance of CDP, DDP, and NoDP algorithms. Fig. 9.6 shows

MSE rates for varying ε. We found that the same trade-off with CDP can be

achieved by applying DP while training the classifiers locally. We note the DDP is

also converging to the error of NoDP when ε approaches infinity as desired.
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Figure 9.7: Impact of number of parties in the collaboration for εi = nε and p = 0.9.

9.5.2 Scalability Analysis

In this set of experiments, we evaluated the scalability of our proposed protocol. We

set εi = nε, where n is the number of parties; as we found α = n is optimum and

for a different number of parties, we split the dataset into the number of parties (n)

by using random sub-sampling. Then, each party applies DP locally, but we note

that the pooled dataset is still the same.

Laplace distribution is infinitely divisible [McN02]. Therefore, the accumulated

error of global model should not be affected by the number of parties. We ran the

analysis for some users ranging from 1 to 100 and present the results in Fig. 9.7.

The results demonstrated an interesting point, which is when ε = 0.01, even though

CDP is not stable, DDP is. On the other hand, when ε is 1 or 100, the error rate

stays the same even for 100 parties. This means our protocol is scalable even for

100 parties.
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Figure 9.8: Performance evaluation of SM-DDP computations of linear regression
algorithm.

9.5.3 Computational Overhead Analysis

In this subsection, we evaluate the computational overhead of linear regression pre-

sented in Algorithm 2. We found that DP algorithms do not introduce compu-

tational overhead. Therefore, we only evaluate the computational overhead of our

SMC algorithm, which consists of three main parts: Key generation of HE, min-max,

and regression computation.

Fig. 9.8 shows the computation time for different dimension sizes. Fig. 9.8a

presents the time for secure computation of finding global min-max of each attribute.

It increases quadratically with the number of parties. However, this algorithm runs

at the setup phase, so it is performed before initiating the computations. There are

two interesting results worth to note. First, the time of secure regression computa-

tion increases linearly as a number of parties in the collaboration increases, but with

a different slope for dimension, which is illustrated in Fig. 9.8. The reason for the

linear increase is that the number of encryptions and homomorphic evaluations are

directly scaled by the number of parties in the group. Second, similar results hold

for the overall computation time (see Fig. 9.8c), but as a minor change since the key

generation time shifts the lines in the y-axis and also increases the scale. However,

similar to the secure min-max computation, the execution of the key generation

algorithm does not require all parties in the group to be online since it occurs in the

288



setup phase. On the other hand, we also note that size of the local database of each

party does not have an impact on the total computational time since parties only

share the local statistics, which is dependent on the attribute size, instead of the raw

data. As can be seen in Fig. 9.8c, the overall computation of the protocol including

both offline and online phases for 20 parties with 32 attributes and 10K samples

is less than a minute. Hence, our SM-DDP protocol yields minimal computational

overhead.

9.5.4 Security and Privacy Analysis

In this section, we discuss the security and privacy guarantees of SM-DDP protocol

given in Fig. 9.3. As all the communication among the parties is encrypted, the

security of the algorithm is simply reduced to the security of underlying HE scheme.

A leak can occur only if DC is corrupted since the data is encrypted using the public

key generated by DC. However, even in this case, DC will only obtain the noisy local

statistics, not the raw data, and at the end of the protocol, DC has only control

over the aggregated data while reconstructing the global model and it can not know

which party contributed to the result. While the protocol is running, the view of

all the other parties consists of homomorphically encrypted data. Therefore, if the

given homomorphic encryption scheme is semantically secure, the parties can not

distinguish the corresponding plaintexts. So, the computation is private even in the

presence of an honest, but curious adversary model presented in [Gol09]. Therefore,

data privacy is preserved.

On the other hand, we both showed theoretically (Section 9.4.1) and experimen-

tally (Fig. 9.6), a differentially private global model can be obtained through the

locally applied DP. Therefore, it is not possible that an untrusted data collector can
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infer information about the individuals. Furthermore, the collaboration comes with

a price as the local parties used εi instead of ε. Therefore, the local privacy guar-

antee is decreased by α (i.e., εi is increased by α), even though the global model’s

guarantee is still the same, meaning that data privacy against an untrusted DC is

still preserved and the local privacy guarantee is important only if the underlying

SMC is bypassed. Finally, since we set α as the number of parties in the collabo-

ration, each party should take this into consideration while deciding on the global

privacy budget.

9.6 Discussion

The preceding analysis showed how to achieve secure multiparty computation and

differential privacy in distributed settings focusing on linear regression on horizon-

tally distributed data. That is, parties do not see each others’ inputs and further

can not infer individuals’ data from the final constructed model. A limitation of

our algorithm is that we assume parties do not collaborate to learn a target party’s

input. However, if the party that generates the key pair conspires with the parties

that are neighbors of a target in the ring topology, the noisy local statistics (ξ, κ, δ)

of the victim can be extracted. More generally, this is known as active corruption,

where the data collector is an active attacker and has control over the other cor-

rupted parties. Our protocol in Fig. 9.3 achieves only a collusion threshold of 1, but

the distributed DP algorithm that we present here can easily be adapted to work

with recent solutions in SMC such as [DPSZ12], which is secure in the presence of

an active adversary corrupting up to n−1 of the n parties. To extend our work with

these more secure SMC schemes, it suffices to use the noisy output of the functional
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mechanism instead of using the local statistics directly as input to the underlying

SMC algorithm.

In our evaluation, we used HElib, an implementation of the fully homomorphic

operation, to compute generic results. It supports both addition and multiplica-

tion; however, while computing the linear regression coefficients, we only used the

addition operation. The performance of secure computation can be improved by

using other libraries such as Paillier cryptosystem [Pai99a], which is only additively

homomorphic cryptosystem.

Finally, our algorithms can be easily extended to other algorithms such as logistic

regression in a supervised classification setting. In logistic regression, each party

independently computes a score vector ui and information matrix Ii. Instead of

injecting noise to the local statistics as in linear regression, noise can be injected

into ui and Ii vectors. However, the optimization of objective function differs in

logistic regression as it requires several iterations. Fortunately, there exist some

techniques that let implementing the iterations for computing the secure multi-site

logistic regression [EESA+12]. Combining this secure multi-site logistic regression

algorithm with FM would solve this issue. We defer the detailed application of this

method to future work.

9.7 Conclusion

In this chapter, we proposed a novel Secure Multiparty Distributed Differentially

Private (SM-DDP) protocol to achieve private computations in a multiparty envi-

ronment as an application in linear regression. Using homomorphic encryption and

functional mechanism, we first presented a protocol to provide the guarantees of se-

cure multiparty computation and differential privacy. Then, we built the algorithms
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that would allow distributed parties to compute a global model while preserving the

privacy of their data and individuals found in the dataset. Any statistical model

function that can be independently calculated by sharing the local statistics of the

parties can be computed through this protocol. Finally, we evaluated the perfor-

mance of the proposed protocol on two datasets, namely, warfarin dose and budget

predictions. Our findings show that a party can achieve individual-level privacy via

our proposed protocol for distributed differential privacy, which is independently

applied by each party in a distributed fashion. Moreover, the experiment results

demonstrated that the proposed SM-DDP protocol is both feasible and scalable

that is its computational overhead is minimal and overall computation time is sub-

linear with the number of parties. Indeed, SM-DDP protocol provides security and

privacy guarantees while being feasible and scalable.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusions

In this dissertation, we introduced several privacy-aware security solutions. We

split them under three categories: 1) Alternative Complementary Authentication

Methods 2) Smart Home User Privacy, and 3) Secure Data Exchange Methods.

Among alternative authentication methods, in WACA, we used the motion sensors

of wrist-worn wearables, such as to capture the typing behavior of computer users.

Captured sensor data is used to design a CA system. This system has an advantage

of capturing user behavior seamlessly, but also it may have more challenges as the

smartwatches are still not mature enough to be used in a real-life application. Be-

sides, we tested WACA against more powerful active attacks such as imitation and

statistical attacks. Our experiments showed that the active attacker has the same

success rate as the zero-effort attackers, which are used as a base for biometric-based

studies. Moreover, the literature lacks a biometric-based continuous authentication

protocol. In PACA, we designed a privacy-aware continuous authentication proto-

col using the noise-tolerant secure template matching method called NTT-Sec-R.

This method allows template comparison of noisy biometric data by transforming

the feature vectors in an irreversible way. This provides privacy guarantees without

relying on any trusted party or any long-term keys. Furthermore, for the security

and privacy analysis, we tested our protocol against eight different attacks, which

are known in biometric-based authentication systems. In PINTA, we used a hybrid

behavioral profile of the user as a second factor in the authentication system. Since

these features may include sensitive information, we utilize Fuzzy Hashing and Ho-

momorphic Encryption to provide the authentication in a privacy-preserving. Our
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approach has only shown a slight reduction in the performance compared to the

traditional MAF techniques.

For the smart home user privacy, in Peek-a-boo, we discovered a multi-stage pri-

vacy attack, wherein every stage attacker reveals information related to the devices

and the user activities at a smart home using the machine learning-based methods.

The advantage of this method can work even on encrypted traffic as only the meta-

data of the network traffic is used. However, it has the limitation that the attacker

should be within the radio frequency range to capture the pairwise network traffic.

Finally, we designed a policy-based privacy-aware secure data exchange ap-

proach. For this, we first investigated the state-of-the art HE schemes. Then,

we defined a policy language called Curie Policy Language (CPL). CPL allows each

party in a group to define their requirements on the data to be exchanged. Moreover,

we introduced a method for achieving secure and differentially private computation

at the same time in multiparty settings. Our method allows distributed parties to

make computations while the parties learn nothing about each other’s data, but

the final result. For this, we combined Homomorphic Encryption and Differential

Privacy. For homomorphic encryption, we used an FHE scheme [HS14b] and for

the differential privacy, we utilized a method called Functional Mechanism, which

allows the addition of noise on the local data directly.

10.2 Future Work

The studies in this dissertation aim to use the ubiquitous of IoT and smart devices

for alternative complementary authentication systems offering a better security-

usability trade-off than the existing systems while additionally protecting the privacy

of the sensitive user information.
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In WACA, we only utilized the typing behavior of the user, while it would be

interesting to see the effect of covering more activities of the user. This may offer

both better usability as it may decrease the false rejections of genuine users and

also increase security by reducing the vulnerable window of time. Moreover, an

alternative design can be a multimodal system utilizing both keystroke-dynamics

captured by keyboards and the keystroke-dynamics captured from motion sensors.

Such an approach would combine the best of traditional and modern approaches.

In PACA, we designed a privacy-aware continuous authentication protocol and also

proposed an actual system using the WACA. However, as a future work, our protocol

with other biometric-based authentication methods where the feature vectors are

fixed-size real-valued vectors can be tested. In PINTA, we used a long period of

data (30 minutes), while future works would propose methods for decreasing the

data collection time to get the same or better performance.

In Peek-a-boo, we designed a multi-stage privacy attack on smart home users.

However, the same approach can also be used for the authentication of smart home

users. Such an approach would provide an unobtrusive way of authenticating the

smart home users, maybe even in a continuous way. However, the heterogeneity

of smart home devices and variability of the authentication accuracy would be the

possible challenges that needs to be handled.

Finally, in Curie, an interesting future work would be to investigate the use

of Curie in other collaborative learning settings exploring different statistics for

data-dependent conditionals and explore its performance trade-offs by integrating it

into other off-the-shelf secure computation frameworks. And, a future work of our

differentially private secure computation study can extend the algorithms outside

the linear models and investigate the accuracy and performance trade-offs of other

algorithms. Similarly, it would also be interesting to compare the performance of
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Laplacian mechanism used in FM with other DP mechanisms such as Exponential

Mechanism [MT07] and Sample-and-aggregate [NRS07].
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Dorizzi. Cancelable iris biometrics and using error correcting codes to
reduce variability in biometric data. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 120–127.
IEEE, 2009.

[Kra05] Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman
protocol. In Annual International Cryptology Conference, pages 546–
566. Springer, 2005.

[Kra18] H. Krawczyk. The opaque asymmetric pake protocol draft-krawczyk-
cfrg-opaque-00. https://tools.ietf.org/html/draft-krawczyk-

cfrg-opaque-00, 2018. [Online; accessed 2020-3-20].

[KSC10] Stan Kurkovsky, Ewa Syta, and Bernardo Casano. Continuous rfid-
enabled authentication and its privacy implications. In 2010 IEEE
International Symposium on Technology and Society, pages 103–110.
IEEE, 2010.

[KTX07] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryp-
tosystems based on lattice problems. In Public Key Cryptography–
PKC 2007, pages 315–329. Springer, 2007.

[Kum04] M. Kumar. New remote user authentication scheme using smart
cards. Consumer Electronics, IEEE Transactions on, 50(2):597–600,
2004.
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[SS10] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryp-
tion. In Advances in Cryptology-ASIACRYPT 2010, pages 377–394.
Springer, 2010.

[SS11a] Peter Scholl and Nigel P Smart. Improved key generation for gentry’s
fully homomorphic encryption scheme. In Cryptography and Coding,
pages 10–22. Springer, 2011.
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