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ABSTRACT OF DISSERTATION

EFFICIENT ANONYMOUS BIOMETRIC MATCHING IN PRIVACY-AWARE

ENVIRONMENTS

Video surveillance is an important tool used in security and environmental monitor-
ing, however, the widespread deployment of surveillance cameras has raised serious
privacy concerns. Many privacy-enhancing schemes have been recently proposed to
automatically redact images of selected individuals in the surveillance video for pro-
tection. To identify these individuals for protection, the most reliable approach is to
use biometric signals as they are immutable and highly discriminative. If misused,
these characteristics of biometrics can seriously defeat the goal of privacy protection.
In this dissertation, an Anonymous Biometric Access Control (ABAC) procedure
is proposed based on biometric signals for privacy-aware video surveillance. The
ABAC procedure uses Secure Multi-party Computational (SMC) based protocols to
verify membership of an incoming individual without knowing his/her true identi-
ty. To make SMC-based protocols scalable to large biometric databases, I introduce
the k-Anonymous Quantization (kAQ) framework to provide an effective and secure
tradeoff of privacy and complexity. kAQ limits systems knowledge of the incoming
individual to k maximally dissimilar candidates in the database, where k is a design
parameter that controls the amount of complexity-privacy tradeoff. The relationship
between biometric similarity and privacy is experimentally validated using a twin iris
database. The effectiveness of the entire system is demonstrated based on a public
iris biometric database.

To provide the protected subjects with full access to their privacy information in
video surveillance system, I develop a novel privacy information management system
that allows subjects to access their information via the same biometric signals used
for ABAC. The system is composed of two encrypted-domain protocols: the priva-
cy information encryption protocol encrypts the original video records using the iris
pattern acquired during ABAC procedure; the privacy information retrieval proto-
col allows the video records to be anonymously retrieved through a GC-based iris
pattern matching process. Experimental results on a public iris biometric database
demonstrate the validity of my framework.

KEYWORDS: Biometric Matching, Privacy, Authentication, Anonymity, Access Con-
trol
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Chapter 1

Introduction

In recent years, surveillance cameras have been widely used for preventing theft,

collecting population data, and combating terrorism. Advances in pattern recognition

algorithms such as searchable surveillance and automatic event/human recognition

have turned the once labor-intensive processes into powerful automated systems that

can quickly and accurately identify visual objects and events. From the public outcry

on the use of face recognition in public events [1] to the report by the American Civil

Liberties Union (ACLU) on the surveillance systems’ assault on public’s privacy [2],

it is unsurprising that the general public is increasingly wary about the possibility of

privacy invasion with video surveillance systems.

To mitigate the public’s concern and to facilitate continued development of surveil-

lance technologies, it is imperative to make privacy protection a priority in current

and future video surveillance systems. Most of the research effort for privacy pro-

tection in surveillance systems has been devoted to visually obfuscate the images of

individuals for protection. They range from the use of black boxes or large pixels

in [3, 4], scrambling in [5] to complete object removal in [6, 7]. Some examples are

shown in Figure 1.1.

Most of the obfuscation schemes apply a blanket protection to every individual
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Figure 1.1: Different visual obfuscation techniques: (a) black silhouette; (b)
scrambling; (c) complete removal; (d) original information. Graphics adapted from

original in [8].

in the scene. For such a strategy to work, the obfuscated video must reveal some

attributes such as a body with a blurred face or a moving blob otherwise the video

would be useless for surveillance. Total anonymity cannot be achieved due to the

release of partial information of visual objects. This type of privacy protection is not

defensible in any rigorous sense of security. It is only adequate for public places such

as airports or banks where there is no reasonable expectation of privacy.

There are many situations in shared environment where a group of “trusted” in-

dividuals have certain expectation of privacy. For example, privacy of students in

school is protected under the Family Educational Rights and Privacy Act (FERPA)

of 1974 in the United States. Similarly, patients in a clinic or hospital enjoy the same

protection as guaranteed by the Health Insurance Portability and Accountability Act

(HIPPA) of 1996. Even in commercial entities such as department stores or apart-

ment buildings, patrons will likely to stay away from vendors who abuse surveillance

cameras in monitoring every move the patron makes. In order to provide privacy

protection for these applications, it is imperative to have a reliable mechanism to

identify whether an individual belongs to this group. While members of this group

2



will enjoy total anonymity in the surveillance system, other transient visitors must

be monitored at all time.

To identify the subjects for privacy protection, as shown in Figure 1.2, there are

two general approaches: one is to use special markers such as yellow hard-hats [9],

visual tags [7], or RFID [6]; the other relies on biometric signals such as faces [10],

skin tones [3], or irises [11]. Unfortunately, both approaches have their shortcomings.

(a) Yellow hat [9] (b) Visual tag [7] (c) RFID [12]
x‘

(d) Iris scan [13]

Figure 1.2: Existing subject identification approaches

The first approach requires the protected subjects to carry a special marker. If

the marker is accidentally dropped, the subjects will lose privacy protection from

the system. If the marker is maliciously embezzled by unauthorized individuals, the

system will protect the potential intruders and the security of the environment will

be severely compromised.

On the other hand, the second approach uses biometric signals which excel in

authenticating the subject’s identity as biometric signals are based on “who you are”

rather than “what you have”. While the use of biometrics enhances system security

and alleviates users from carrying identity cards or remembering passwords, it creates

a conundrum for privacy advocates as the knowledge of the identity makes it much
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harder to keep users anonymous. A curious system operator or a parasitic hacker

can infer the identity of a user based on his/her biometric probe. Furthermore, as

biometrics is immutable from systems to systems, it can be used by attackers to

cross-correlate disparate databases and cause damages far beyond the coverage of

any protection schemes for individual database systems. The use of biometric signals

provides a direct link between the imagery to the true identity of an individual without

even using any sophisticated pattern recognition algorithms. If the security of the

system is compromised, this extra information may create greater privacy concerns

that it purports to protect. It is thus important to sever this link between the

biometric signal and the imagery. To take advantage of the superior performance of

biometric technologies, it is imperative to strengthen the security of the surveillance

systems to protect the anonymity of the subjects.

1.1 Problem Statement

In this dissertation, I study two problems related to biometric matching and privacy-

aware video surveillance. The first problem is how one can reliably identify trusted

individuals for privacy protection without revealing sensitive biometric data. I call

this problem the Anonymous Biometric Access Control (ABAC) problem. The sec-

ond problem focuses on various technical issues to incorporate ABAC in the next

generation privacy aware video surveillance system that allows each trusted individu-

al to control how his/her imageries can be accessed. We call this problem the Privacy

Information Management (PIM) problem.

The are three main challenges in developing solutions for the ABAC and PIM
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problems. To simplify the description, I adopt the tradition from cryptography and

refer the biometric reader as Alice and the server as Bob. First, to cope with the

variability of the input probe, any biometric access system needs to perform a signal

matching process between the probe and all the records in the database. The challenge

here lies in making the process private so that Bob can confirm the membership

status of Alice without knowing any additional information about Alice’s probe. It

is imperative to prevent Bob from extracting any knowledge about Alice’s probe and

its similarity distances with any records in Bob’s database. On the other hand, Bob

must be able to compare the distances to a similarity threshold and prevent Alice from

cheating her membership status. This problem is an instance of secure multiparty

computation, a subfield of cryptography in which multiple parties use the private

data to achieve a common computation goal [14].

Second, we consider the complexity challenge posed by scaling the biometric

matching process to large databases through secure collaboration between Alice and

Bob, normally in encrypted form. The high complexity of cryptographic primitives is

often cited as the major obstacle of their widespread deployment in realistic system-

s [15, 16, 17, 18, 19, 20]. This is particularly important for biometric applications that

require matching a large number of high-dimensional feature vectors in real time. My

approach in addressing this problem is to exploit the specific nature of the biomet-

ric process and develop a rigorous tradeoff between computational complexity and

privacy.

Third, the ultimate goal of a privacy-aware surveillance system is to treat the

privacy visual information of an individual in the same manner as any other privacy
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information such as personal financial or medical information – each access of the

information must require a full consent from the corresponding user. This posts a

technical challenge because the surveillance system cannot associate the imagery with

the unknown identity of the individual as protected by the ABAC process. On the

other hand, the fact that we can anonymously match biometric signals implies that

the biometric signal itself can be used as an encryption key for the private data. This

is the approach that I have adopted in tackling the PIM problem.

1.2 Contributions of Dissertation

The research work presented in this dissertation addresses the challenges on user

anonymity with biometric signals and the high complexity associated with state-of-

the-art cryptographic solutions. Specifically,

1. To address the first challenge in making the biometric matching secure be-

tween Bob and Alice, I treat the matching process as an instance of Secure

Multi-party Computational (SMC) protocol, which guarantees the privacy of

both the biometric gallery and the probe. Though SMC has been used in solv-

ing relatively straightforward comparison problems such as Secure Millionaire

Problem [21] electronic voting [22], online auction [23], keyword search [24],

and anonymous routing [25], I am the first to apply SMC to biometric matching

[26]. In this work, I proposed a Homomorphic Encryption (HE)-based protocol

to the well-known approach by Daugman in matching iris-codes [27]. The ini-

tial work on using HE was computationally intensive. One reason is that HE
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is cumbersome in handling binary operations needed for the hamming distance

calculations in iris-code matching. Collaborating with Mauro Barni, I have

provided an alternative implementation using Garbled Circuit (GC) [28]. This

work also exploits key characteristics of iris data and results in one of the fastest

anonymous iris matching at the time. Both HE and GC are computationally

secure schemes and their security hinges on the use of large integer field which

is another significant source of complexity. Recently, I have explored the use

of information-theoretic security protocols based on Shamir’s Secret Sharing

to further reduce the complexity in making basic signal processing operations

secure [29].

2. To address the second complexity challenge posed by scalability of anonymous

biometric matching, I collaborate with Shuiming Ye to propose a novel frame-

work called k-ABAC to provide a controllable trade-off between privacy and

complexity [30]. Despite the reduction in computational and communication

complexity, computations in SMC remain highly complex and the current state-

of-the-art simply cannot scale to large databases that contain tens of thousands

biometric signals [31, 32, 33]. My k-ABAC system provides further complexity

reduction in order to scale the operations up to large databases. This is similar

to the well-known k-anonymity model [34] in that k is a controllable parameter

of anonymity. However, the two approaches are fundamentally different – the

k-anonymity model is a data disclosure protocol where Bob anonymizes the

database for public release by grouping all the data into k-member clusters. In
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a k-ABAC system, the goal is to prevent Bob from obtaining information about

the similarity relationship between his data and the query probe from Alice. In

order to minimize the knowledge revealed by any k-member cluster, k-ABAC

uses novel grouping scheme called k-Anonymous Quantization (kAQ) that opti-

mizes the dissimilarity among members in the same group. kAQ forbids similar

patterns to be in the same group which might be a result of multiple registra-

tions of the same person or from family members with similar biometric features.

The kAQ process is carried out mostly in plaintext and is computationally ef-

ficient. Using kAQ as a pre-processing step, the subsequent encrypted-domain

matching can be efficiently realized within the real-time constraint.

3. To address the third challenge in associating privacy video with the unknown

identity of the “trusted” individual in video surveillance system, I propose a

novel Privacy Information Management (PIM) system that uses biometric sig-

nals for encrypting and retrieving the privacy video [35]. There have been

many recent works in enhancing privacy protection in surveillance system-

s [6, 3, 4, 36, 37, 10, 38]. Many of them share the common theme of iden-

tifying sensitive information and applying image processing schemes for obfus-

cating that sensitive information. But the security flaw overlooked in most of

these systems is that they fail to consider the security impact of modifying the

surveillance videos. While sophisticated privacy policy has been studied in the

literature [39], the privacy visual information of an individual should be ideally

treated in the same manner as any other personal information such as passport
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or credit card numbers. That is, every access of such information must require

a full consent from the corresponding individual. To satisfy this goal, PIM pro-

vides selective and anonymous access to the preserved privacy information in

video surveillance systems using iris biometrics. In PIM, the iris pattern will

be combined with a user specified passcode to encrypt and retrieve the privacy

video.

1.3 Overview of My Solution

In this dissertation, a Identity and Information Management system is built under a

privacy-protected video surveillance camera network. The two security goals of the

system are to protect private information at each component as well as to offer visual

privacy protection and original video access to only those individuals authenticated by

iris matching. The collaboration assumes a semi-honest security model in which every

component faithfully follows the protocol but attempts to infer as much information

as possible about others based on the information exchanged.

The Identity and Information Management system consists of two parts: Anony-

mous Biometric Access Contril (ABAC) and Privacy Information Management (PIM).

Their execution is distributed throughout every hardware component of the system.

The structure of the ABAC system is shown in Figure 1.3. The two main processing

units in ABAC are the server and the biometric reader. The server has a biometric

database of M biometric signals DB = {x1, . . . ,xM}, where xi = (xi
1, . . . , x

i
n)

T is

the biometric signal of member i. The biometric reader is used to capture biometric

probes for carrying out the matching process. The reader also has a keypad for the

9



user to enter a passcode which is used in combination with the biometric probe to

encrypt the privacy video associate with this individual.

There are two main processing components in ABAC: the preprocessing step and

the matching step. While the matching step is executed for every probe captured

by Alice, the preprocessing step is executed only once by Bob to compute a publicly-

available quantization table based on a process called k-Anonymous Quantization

(kAQ). The purpose of the public table is that, based on a joint secure-index selection

of the table entry between Alice and Bob, Bob can significantly reduce the scope of

the similarity search from the entire database DB to approximately k candidates.

The k-Anonymous Quantization guarantees that (1) if there is an entry in Bob’s

database that matches Alice’s probe, this entry must be among these candidates,

(2) all the candidates are maximally dissimilar so as to provide the least amount

information about Alice’s probe, and (3) the public table discloses no information

about Bob’s database. The details of the k-Anonymous Quantization and the secure-

index selection will be discussed in Section 5.1.

After computing the proper quantization cell index from the public table, Bob

identifies all the candidates and then engages with Alice in a joint secret matching

process to determine if Alice’s probe resembles any one of the candidates. This pro-

cess is conducted under the ABAC framework described in Section 4.2. We assume

that there is an open network between Bob and Alice that will guarantee message

integrity. Since only encrypted content are exchanged, there is no need for any protec-

tion against eavesdroppers. For each session, Alice will be responsible for generating

the private and public keys for the encryption and sharing the public key with Bob.

10



Figure 1.3: Anonymous Biometric Access Control

In other words, a different set of keys will be used for each different user. Further-

more this protocol demands comparable computational capabilities from both parties.

Thus it is imperative to use the preprocessing step to reduce the computational com-

plexity of this matching step. As the secret matching utilizes all the fundamental

processing blocks of ABAC to implement anonymous subject identification system,

we will first explain these building blocks in the following section.

Once a match is ascertained by the server, all the cameras in the camera network

will be alerted to protect the imagery of the incoming individual and preserve the

original video for later retrieval. The preservation and retrieval of privacy imagery are

governed by the PIM component. First, the reader at the entrance needs to preserve

the biometric signal in an anonymous fashion so that it can be used to encrypt the

raw surveillance video associated with this individual. To accomplish this goal, a

new pair of private-public keys are generated by the reader for each entry as shown
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in Figure 1.4a. The public key is distributed to the camera network while the private

key is encrypted using both the biometric signal and a personal passcode known only

by the user. The encrypted private key is stored alongside with the encrypted video

at the server. Details of this Privacy Information Encryption Protocol are given in

Section 6.3.1.

(a) Key Generation and Distribution (b) Private Information Retrieval

Figure 1.4: Privacy Information Management

Second, the camera network is responsible for preserving the visual imageries of

the protected individual throughout the entire surveillance area. As shown in Figure

1.4b, the preserved imageries are AES-encrypted using a random key which in turn

is encrypted by the public key from the reader. The image processing component of

the network is described in the next section. Third, as shown in the rest of Figure

1.4b, when there is a request to retrieve the original imageries, the requester must

demonstrate his/her identity by presenting the time-and-day of entry, the correct

biometric signal, and the passcode at an authenticated reader. A GC-based matching

protocol is then executed between the reader and the server to recover the private
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key which is needed to unlock the private video at that time period. Details of this

Privacy Information Retrieval protocol can be found in Section 6.3.2.

1.4 Dissertation Organization

This dissertation is organized as follows: After introducing the basic concept of

Anonymous Biometric Access Control (ABAC), and key cryptographic primitives

used in my implementations in Chapter 2, I review previous techniques for preserv-

ing the privacy of biometric data while maintaining their usability in various scenarios

in Chapter 3. In Chapter 4, an implementation of an ABAC system on iris biomet-

rics under semi-honest security model is provided based on Homomorphic Encryption

(HE) and Garbled Circuits (GC), and the possibility of using Information Theoretic

SMC (IT-SMC) protocols, mainly with Shamir’s Secret Sharing (SSS), is explored.

In Chapter 5, inspired by the k-anonymity model, a simple approach is proposed

to tradeoff complexity with privacy by quickly narrowing Alice’s query into a smal-

l group of k candidates and then performing the full cryptographic search only on

this small group. An application based on anonymous biometric matching in video

surveillance network is implemented in Chapter 6. Finally, I conclude the dissertation

and discuss future work in Chapter 7.
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Chapter 2

Background

In this chapter, I first introduce the basic concept of Anonymous Biometric Access

Control (ABAC), and then I provide an overview of the key cryptographic primitives

and the optimization strategies used in our implementations of the anonymous sub-

ject identification system (Section 4.2) and privacy information management system

(Section 6.3).

ABAC is implemented based on Secure Multi-party Computation (SMC) proto-

cols, which are worked as follows: there are n parties P1, P2, . . . , Pn on a network,

each party Pi has a private input xi for i = 1, 2, . . . , n. All parties want to compute

a join function f(x1, x2, . . . , xn) where Pi will not learn anything about other parties

input beyond what can be inferred from her own private input and the final result of

f(x1, x2, . . . , xn) [14]. The two popular models in SMC are computationally-secure

SMC (CS-SMC) and Information Theoretic SMC (IT-SMC) which will be covered in

Section 2.2 and 2.3.

2.1 Anonymous Biometric Access Control (ABAC)

The Anonymous Biometric Access Control (ABAC) protocol is a SMC based protocol

that supports anonymous matching of biometric signals between the biometric reader
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at the entrance and the iris-database server. Following the tradition in describing any

SMC protocols in Chapter 1, we refer the biometric reader as Alice and the server as

Bob. Functionally, ABAC has the following guarantees:

1. The protocol returns a decision bit to Bob on whether the biometric signal of

the incoming subject matches any entries in Bob’s database;

2. No identity information of the subject is provided to Bob;

3. No database information is provided to Alice;

4. The communication between Bob and Alice is conducted over an open network.

The first and second guarantees define the anonymous subject identification pro-

cess – Bob can reliably authenticate the privacy protection status of an incoming

individual using biometric signals without knowing the actual identity. As the reader

is installed outside the surveillance area, it is prone to outsider’s attacks and thus

should not possess any sensitive biometric signals as indicated in the third guarantee.

To allow many readers to be used at all the entrances, the fourth guarantee implies

that sensitive information is encrypted and can be transmitted via an open network

without worrying about eavesdropper.

2.1.1 Biometric Signal Space and Distance Function

I model any biometric signal x = (x1, . . . , xn)
T as a n-dimensional vector from a fea-

ture space F n where F is a finite field. We also assume the existence of a commutative

distance function d : F n × F n → ℜ+ ∪ {0} that measures the dissimilarity between
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two biometric signals. In order for the distance to be computable using the operators

in the field, we assume that F to be a subfield of ℜ so that the components of the

constituent vectors will be treated as real numbers in the distance computation. The

most commonly used distance is the Euclidean distance:

d(x,y)2 :=‖ x− y ‖22=
n∑

i=1

(xi − yi)
2 (2.1)

For the iris patterns used in our experiments, F is the binary field Z2 = {0, 1} and

d(·, ·) is a modified hamming distance defined below [27]:

dH(x,y)
2 :=

‖(x⊗ y) ∩maskx ∩masky‖
2
2

‖maskx ∩masky‖
2
2

(2.2)

where ⊗ denotes the XOR operation and ∩ denote the bitwise AND. maskx and

masky are the corresponding mask binary vectors that mask the unusable portion

of the irises due to occlusion by eyelids and eyelash, specular reflections, boundary

artifacts of lenses, or poor signal-to-noise ratio.

The special distance function and the high dimension of many feature spaces make

them less amenable to statistical analysis. There exist mapping functions that can

project the feature space F n into a lower dimensional space ℜm such that the original

distance can be approximated by the distance, usually Euclidean, in ℜm. The most

well-known technique is Principal Component Analysis (PCA) which is optimal if the

original distance is Euclidean [40]. For general distances, mapping functions can be

derived by two different approaches – the first approach is Multi-dimensional Scaling

(MDS) in which an optimal mapping is derived based on minimizing the differences

between the two distances over a finite dataset [41]. The second approach is based
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on distance relationship with random sets of points and include techniques such as

Fastmap [42], Lipshcitz Embedding [43] and Local Sensitivity Hashing [44]. In our

system, we use both PCA and Fastmap for their low computational complexity and

good performance. Here we provide a brief review of the Fastmap procedure and will

discuss its secure implementation in Section 5.1.4. Fastmap is an iterative procedure

in which each step selects two random pivot objects xA and xB and computes the

projection x′ for any data point x as follows:

x′ :=
d(x,xA)

2 + d(xA,xB)
2 − d(x,xB)

2

2d(xA,xB)
(2.3)

The projection in (2.3) requires only distance relationships. A new distance is then

computed by taking into account the existing projection:

d′(x,y)2 := d(x,y)2 − (x′ − y′)2 (2.4)

where x′ and y′ are the projections of x and y respectively. The same procedure can

now be repeated using the new distance d′(·, ·). It has been demonstrated in [42]

that using pivot objects that are far apart, the Euclidean distance in the projected

space produces a reasonable approximation of the original distance of many different

feature spaces.

2.1.2 User Anonymity & Biometric Access Control

Using a dissimilarity metric, we can now define the function of a biometric access

control system. It is a computational process that involves two parties: a biometric

server (Bob) and a biometric reader (Alice). Bob is assumed to have a database of

M biometric signals DB = {x1, . . . ,xM}, where xi = (xi
1, . . . , x

i
n)

T is the biometric
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signal of member i. The reader or Alice is present outside each entrance of the

surveillance area. She captures the iris pattern q of every individual entering the

area. Once q is captured, Alice engages Bob in a specially designed Secure Multi-

party Computational (SMC) protocol to determine if the incoming subject is an

authorized individual. If so, Bob will activate the privacy protection mechanism and

obfuscate the appearance of this subject after he/she enters the area. Armed with

these notations, I first provide a functional definition of biometric access control.

DEFINITION 1 A Biometric Access Control (BAC) system is a computational pro-

tocol between two parties, Bob with a biometric database DB and Alice with a probe q,

such that at the end of the protocol, Alice and Bob can jointly compute the following

value:

yBAC :=





1 if d(q,xi)
2 < ǫ for some xi ∈ DB

0 otherwise.
(2.5)

The use of distance square is to provide a consistent dimensionality for ǫ used in

our implementation. Adding user anonymity to a BAC system results in the following

definition:

DEFINITION 2 An Anonymous BAC (ABAC) system is a BAC system on DB and

q with the following properties at the end of the protocol:

1. Except for the value yBAC, Bob has negligible knowledge about q, d(q,x), and

the comparison results between d(q,x)2 and ǫ for all x ∈ DB.

2. Except for the value yBAC, Alice has negligible knowledge about ǫ, x, d(q,x),

and the comparison results between d(q,x)2 and ǫ for all x ∈ DB.
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Like any other computationally secure protocols, “negligible knowledge” used in the

above definition should be interpreted as, given the available information to a party,

the distribution of all possible values of the private input from the other party is

computationally indistinguishable from the uniformly random distribution [45]. The

first property in Definition 2 defines the concept of user anonymity, i.e. Bob knows

nothing about Alice except whether her probe matches one or more biometric signals

in DB. As it has been demonstrated that even the distance values d(q,xi) are

sufficient for an attacker to recreate DB [46], the second property is designed to

disclose the least amount of information to Alice.

2.1.3 Security Model on Adversarial Behaviors

It is impossible to design a secure system without considering the possible adversarial

behaviors from both parties. Adversarial behaviors are broadly classified into two

types: semi-honest and malicious. A dishonest party is called semi-honest if he follows

the protocol faithfully but attempts to find out about others’ private data through

the communication. A malicious party, on the other hand, will change private inputs

or even disrupt the protocol by premature termination. Making the proposed system

robust against a wide range of malicious behaviors is beyond the scope of this paper.

Here, we assume Bob to be semi-honest but allow certain malicious behaviors from

Alice – we assume that Alice will engage in malicious behaviors only if those behaviors

can increase her chance of gaining access, that is turning yBAC into 1, from using a

purely random probe. This is a restricted model because, for example, Alice will

not prematurely terminate before Bob reaches the final step in computing yBAC .
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Also, Alice will not randomly modify any private input unless such modification will

increase her chance of success.

2.2 Computationally-Secure SMC (CS-SMC)

The secure computation of a joint function under Computationally-Secure SMC (CS-

SMC) model, is also called secure two-party computation or Secure Function Eval-

uation (SFE), which only involves two partes. The secrets under this model are

protected by encoding them based on a complicated mathematical function. It is

impossible to compute the inverse of the mathematical function in polynomial time

without any additional primitive [14].

One approach to protect the privacy of both the biometric server and the probe

owner in our proposed system is to treat the matching process as an instance of

SFE which guarantees the privacy of both the biometric gallery and the probe. The

two prevailing approaches of implementing SFE are to use Homomorphic Encryption

(HE) [47] and Garbled Circuits (GC) [48]. HE is an asymmetric public-key cipher

that allows certain arithmetic operations such as addition to be directly performed on

the encrypted data. GC provides a generic implementation of any binary function by

having one party prepared an encrypted boolean circuit, and another party obliviously

evaluated the circuit without access to intermediate values. Moreover, Oblivious

Transfer (OT) as an important step for input exchanging in GC, is also introduced.
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2.2.1 Homomorphic Encryption (HE)

An encryption system Enc(x) is homomorphic with respect to an operation f1(·, ·) in

the plaintext domain if there exists another operator f2(·, ·) in the ciphertext domain

such that:

Enc(f1(x, y)) = f2(Enc(x), Enc(y)). (2.6)

In our system, we choose the Paillier encryption system as it is homomorphic over a

large additive plaitext group and thus providing a wide dynamic range for computa-

tion. Given a plaintext number x ∈ ZN , the Paillier encryption process is given as

follows:

Encpk(x) =
[
(1 +N)x · rN mod N2

]
(2.7)

where N is a product of two equal-length secret primes and r is a random number in

ZN to ensure semantic security. The public key pk consists of only N . The decryption

function Decsk(c) with c ∈ ZN2 and the secret key sk being the Euler-phi function

φ(N) is defined by the following two steps:

1. Compute m̂ =
[(cφ(N) mod N2)−1]

N
over the integer field;

2. Decsk(c) = m̂ · φ(N)−1 mod N

The Paillier system is secure under the decisional composite residuosity assumption

and we refer interested readers to [49, ch.11] for details. Paillier is homomorphic

over addition in ZN and the corresponding function is multiplication over the cipher-

text field ZN2. We can also carry out multiplication with a known plaintext in the
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encrypted domain. These properties are summarized below:

Encpk(x+ y) = Encpk(x) · Encpk(y) (2.8)

Encpk(xy) = Encpk(x)
y (2.9)

Multiplication with a number to which only the ciphertext is known can also be ac-

complished with a simple communication protocol. Assume that Bob wants to com-

pute Encpk(xy) based on the ciphertexts Encpk(x) and Encpk(y). Alice has the secret

key sk but Bob wants to keep x, y and xy hidden from Alice. MULT(Encpk(x), Encpk(y))

(Protocol 1) is a secure protocol that can accomplish this task. It is secure because

Alice can gain no knowledge about x and y from the uniformly random x−r and y−s

where r and s are two random numbers generated by Bob, and Bob is never exposed

to any plaintext related to x and y. The complexities of MULT(Encpk(x), Encpk(y))

are three encryptions and seven encrypted-domain operations (multiplication and ex-

ponentiation) on Bob side, as well as two decryptions and one encryption on Alice

side. The communication costs are three encrypted numbers. The homomorphic

properties and this protocol will be used extensively throughout this manuscript.

2.2.2 Parallel Oblivious Transfer (OT)

A parallel 1-out-2 Oblivious Transfer for ℓ strings having bitlength t is a two-party

protocol where S inputs ℓ pairs of t-bit strings Si = 〈s0i , s
1
i 〉 for i = 1, . . . , ℓ with

s0i , s
1
i ∈ {0, 1}ℓ and C inputs ℓ choice bits bi ∈ {0, 1}. At the end of the protocol, C

learns sbii , but nothing about s1−bi
i whereas S learns nothing about bi. We use the

OT protocol as a black-box primitive in our constructions. It can be instantiated
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Protocol 1 Private Multiplication MULT(Encpk(x), Encpk(y))

Require: Bob: Encpk(x), Encpk(y); Alice: sk
Ensure: Bob computes Encpk(xy)

1. Bob sends Encpk(x− r) = Encpk(x) ·Encpk(−r) and Encpk(y− s) = Encpk(y) ·
Encpk(−s) to Alice where r and s are uniformly random numbers generated by
Bob.

2. Alice decrypts Encpk(x− r) and Encpk(y− s), computes Encpk [(x− r)(y − s)]
and send it to Bob.

3. Bob computes Encpk(xy) in the encrypted domain as follows:

Encpk(xy) = Encpk [(x− r)(y − s) + xs + yr − rs]

= Encpk [(x− r)(y − s)] ·Encpk(x)
s · Encpk(y)

r · Encpk(−rs)

efficiently with different protocols [17, 50, 51]. In this paper we consider the protocol

described in [17], which - when implemented over a suitably chosen elliptic curve -

has asymptotic communication complexity 6ℓt and is secure against malicious C and

semi-honest S in the random oracle model. Extensions of [52] can be used to reduce

the number of computationally expensive public-key operations to ≈ 6t2 + 4ℓt and

is used when ℓ > 3t. Moreover OT can be precomputed [53], performing an offline

OT on random values that is later used in the online OT phase to obtain the correct

result from the actual input values with asymptotic complexity 2ℓt bits.

2.2.3 Garbled Circuit (GC)

Yao’s Garbled Circuit approach [48, 54], excellently presented in [55], is the most

efficient method for secure evaluation of a boolean circuit C in the two party setting.

We summarize the main ideas in the following. First, the circuit constructor

(server S), creates a garbled circuit C̃: for each wire Wi of the circuit, he randomly
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chooses a complementary garbled value W̃i = 〈w̃0
i , w̃

1
i 〉 consisting of two secrets, w̃0

i

and w̃1
i , where w̃j

i is the garbled value of Wi’s value j. (Note: w̃j
i does not reveal j.)

Further, for each gate Gi, S creates and sends to the evaluator (client C) a garbled

table T̃i with the following property: given a set of garbled values of Gi’s inputs, T̃i

allows to recover the garbled value of the corresponding Gi’s output, and nothing else.

Then garbled values corresponding to C’s inputs xj are (obliviously) transferred to C

with a parallel oblivious transfer protocol: S inputs complementary garbled values

W̃j into the protocol; C inputs xj and obtains w̃
xj

j as outputs. Now, C can evaluate

the garbled circuit C̃ to obtain the garbled output simply by evaluating the garbled

circuit gate by gate, using the garbled tables T̃i. Correctness of GC follows from the

method of construction of the garbled tables T̃i.

Here is an example of using GC to evaluate an AND circuit with two 1-bit inputs.

Table 2.1 lists all possible results with the input variables. Then S constructs garbled

circuit C̃ which includes all garbled values, while w̃0
S & w̃1

S are for S itself and w̃0
C &

w̃1
C are for C; and the garbled table T̃ as shown in Table 2.2. Suppose TSS has the

secret value 0 while C has secret value 1, the evaluation of GC is worked as follows: 1)

S sends the output column of Table 2.2 to C in a random permuted order. 2) S sends

w̃0
S directly to C. Since all wire values are generated randomly and independent, C

cannot know if w̃0
S corresponds to 0 or 1. 3) w̃1

C is sent to C via Oblivious Transfer

(OT) I introduced in Section 2.2.2, in this way, S cannot know which secret value

that C selects. 4) C uses the two wire values (w̃0
S , w̃

1
C) he received to decrypted all

output values in Table 2.2 and only the second row can be correctly decrypted.

High-Speed evaluation of GC [56] is feasible by using a cryptographic hash function
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Table 2.1: Truth Table of AND Circuit (0:False; 1:True)

Input output
Row # S C C

1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Table 2.2: Garbled Table of AND Circuit

Input output
Row # S C C

1 w̃0
S w̃0

C Encw̃0
S
,w̃0

C
(0)

2 w̃0
S w̃1

C Encw̃0
S
,w̃1

C
(0)

3 w̃1
S w̃0

C Encw̃1
S
,w̃0

C
(0)

4 w̃1
S w̃1

C Encw̃1
S
,w̃1

C
(1)

H(·) (chosen from the SHA-2 family). The creation of the garbled table associated

to a d-input gate requires 2d invocations of H(·). A point-and-permute technique can

be used to speed up the implementation of the GC protocol [56]: the garbled values

w̃i = 〈ki, πi〉 consist of a symmetric key ki ∈ {0, 1}t and πi ∈ {0, 1} is a random

permutation bit. The permutation bit πi is used to select the right table entry for

decryption with the key ki, hence only one invocation of H() for each table is needed

during evaluation. The free-XOR gates technique introduced in [57], can be used

to further improve the performance of the GC technique, so that XOR gates need

not be created nor their corresponding garbled tables transmitted and evaluation is

performed by a simple XOR operation. The output of the GC is converted to plain

values by using a two rows conversion table for each output bit.
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2.3 Information Theoretic SMC (IT-SMC)

In CS-SMC, private information is first encrypted or transformed before transmitting

to other parties. The security is based on the computational burden of performing

the inverse transformation such as factorization of large primes or performing discrete

logarithm. To ensure even a short-term protection against adversaries, a large security

parameter needs to be used which results in a hundred to a thousand-fold increase in

data size, which is the weakness of CS-SMC and need to be improved in my proposed

system. On the contrary, in Information Theoretic SMC (IT-SMC), no matter how

computationally powerful the adversary is, an adversary will learn nothing about the

secret numbers of the honest parties. The idea is that while the adversary may control

a number of parties who receives messages from other honest senders, these messages

provide no useful information about the secret numbers of the senders [14].

If only two parties are involved in the proposed algorithm, CS-SMC is a better

choice since IT-SMC needs at least three parties. However, the proliferation of cloud-

based distributed computing make possible the joint computation of secure function

evaluation with the untrusted third party. The third party are only assisting the

computations without any private information to be protected.

IT-SMC protocols protect privacy in such a way that the information exchanged

in the protocol provides no additional information, measured in entropy, about the

private data. A major disadvantage of IT-SMC, however, is the need to maintain

multiple non-colluding computing parties [58]. Here I will introduce one of main

primitives of IT-SMC: Shamir’s Secret Share (SSS) [59].
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2.3.1 Shamir’s Secret Share (SSS)

Let x be a number in a finite field Fm. Let n be the number of parties and t, called

threshold, be a positive integer between 1 and n. A (t, n) secret-sharing scheme of a

secret number x produces n shares [x]m,t
i , i = 1, 2, . . . , n such that any group of t or

more shares can be used to reconstruct x. Any group of less than t shares, however,

provide no information about x. The Shamir’s Secret Sharing scheme hides the secret

as the constant term of a random (t− 1)th polynomial and generates the ith share by

evaluating the polynomial at a public constant ki:

[x]m,t
i ,

t−1∑

j=1

αjk
j
i + x mod m (2.10)

where αj ’s are uniformly random numbers selected by the secret owner. The fact

that αj’s are uniformly random in a finite field implies that the shares must also be

uniformly random, thereby providing no information about x. Given at least t shares,

the secret number x can be reconstructed with Lagrange interpolation1:

x =
∑

i∈K

γi[x]
m
i mod m (2.11)

where γi ,
∏

1≤j≤n,j 6=i

−kj
ki−kj

and K is any subset of {1, . . . , n} with at least t elements.

Let x, y ∈ Fm be secret numbers and a, b ∈ Fm be constants. The following

properties of Shamir’s scheme are well known [60]:

(P1) [x+ a mod m]mi = [x]mi + a mod m

(P2) [ax mod m]mi = a[x]mi mod m

1To simplify the notations, the superscript t in [x]m,t

i shall be omitted if it is not affected by the
operations.
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(P3) [x+ y mod m]
m,max(s,t)
i = [x]m,s

i + [y]m,t
i mod m

(P4) [xy mod m]
m,(s+t)−1
i = [x]m,s

i [y]m,t
i mod m

(P5) Assume x, y ∈ {0, 1} and ⊕ denotes xor.

[x⊕ y]
m,(s+t)−1
i = [x]m,s

i + [y]m,t
i − 2[x]m,s

i [y]m,t
i mod m

(P6) [x]m,t
i =

∑n

j=1 γj[[x]
m,(s+t)−1
j ]m,t

i mod m

P1 through P5 form the foundation of computation in secret shares – they show

that performing certain operations on each share of secret numbers is equivalent to

applying those operations first on the secret numbers and then creating the shares.

These operations include addition and multiplication with constants, with other se-

cret numbers, and exclusive-or on secret bits. These operations are universal in the

sense that any computation on a digital computer can be composed by successive

applications of these fundamental operations. Since the original shares do not reveal

any information about the secret numbers, no successive operations on the shares can

gain further knowledge. At the end of the operations, the secret owner can collect

enough number of shares to reveal the result.

Multiplication and exclusive-or operations (P4 and P5) produce results in a shar-

ing scheme with a higher threshold (s+t)−1, where s and t are the original threshold

of the two secret operands. Repeated applications of such operations will eventually

arrive at a threshold larger than the number of parties n and the final result cannot

be reconstructed even if all the shares are available. One intuitive method to solve

this problem is to increase the number of parties n to guarantee that n is larger than
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all threshold values in all following computation. Suppose there are η multiplication

and exclusive-or operations in all computations and 2 shares of secret numbers can

recover the secret at the beginning, η + 2 parties will be needed and η + 1 operands

are broken into η + 2 shares and sent to the corresponding parties if the final secret

result is recovered without the communication between computing agents. Therefore,

the communication complexity is

D = (η + 2)(η + 1) logm+ (η + 2) logm = (η + 2)2 logm (2.12)

where η + 2 parties send one share out for recovering the final result.

Another solution is to renormalize the threshold using P6 so that n is independent

of the number of multiplication and exclusive-or operations: each party further breaks

its share into separate shares and sends each regenerated share to its corresponding

party. The final share at each party is computed by a weighted summation of these

newly received shares from other parties. Since each party receives only one share

from any other party, no secret information is leaked. There are however hidden com-

munication cost associated with some of these operations. This threshold reduction

requires n(n− 1) logm bits to be exchanged among the n parties. Suppose there are

only 3 parties, which is the least number of computing parties needed for recovering

one production, and η multiplication or exclusive-or operations are computed, the

threshold must be reduced to 3 finally. Since the original threshold is 2, each time

multiplication or exclusive-or is computed, the threshold is increased by 1 and need

to be reduced using P6 with 6 logm bits to be exchanged and there are η−1 threshold

reductions in total and the communication complexity of this solution is
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D′ = 6(η − 1) logm+ 3(η + 1) logm+ 3 logm = 9η logm (2.13)

Compare D′ with D, the first solution has less communication complexity when

η ≤ 4.

To highlight the communication, I use the notation

(P6’) Pj : [[expr(x)]j ]
m
i −→ Pi : [x]

m
i for i 6= j

The expr operator in P6’ can include a composition of different operations that may

result in one or more steps of renormalization.

An obvious omission from the above properties is division between two secret

numbers. To compute xy−1 mod m, y−1 must exists in Fm. We denote the inverse

operation as follows:

(P7) INVERSE ([y]mi all i) −→ Pi : ([y
−1]mi )

INVERSE can be implemented by repeated multiplications according to the Carmichael’s

theorem [61]: y−1 = yλ(m)−1 mod m, where λ(m) is the (reduced) totient function.

Notice that with this equation, the inverse of 0 is defined and is equal to 0. For prime

m, λ(m) = m − 1. For large λ(m) − 1, the inverse operation is expensive as every

multiplication requires a renormalization step. To reduce the number of multiplica-

tions, we can first express λ(m)− 1 as a sum of powers of two, say λ(m)− 1 = 1011

base 2 which implies yλ(m)−1 = y4y2y. We can then recursively compute [y2]t,mi and

[y4]t,mi before multiplying them together to get the final answer. The communication

complexity will be O(log λ(m)) rather than O(λ(m)) in the sequential multiplication.

30



Chapter 3

Related work

The main contributions of my dissertation are the introduction of the ABAC con-

cept and a practical design of such a system using iris biometrics. The previous

techniques for preserving the privacy of biometric data while maintaining their us-

ability in various scenarios are introduced in Section 3.1. The main hurdle in apply-

ing computationally-secure SMC protocols to ABAC and the possible cryptographic

primitives are presented in Section 3.2. Finally, earlier works in managing the privacy

information in privacy-aware environments and the approaches to combine it with the

anonymity of users’ biometric signals are exhibited in Section 3.3.

3.1 Biometric and Privacy

There are other work that deal with the privacy and security issues in biometric

systems but their focus are different from this dissertation. A privacy-protecting

technology called “Cancelable Biometrics” has been proposed in [62]. To protect the

security of the raw biometric signals, a cancelable biometric system distorts a bio-

metric signal using a specially designed non-invertible transform so that similarity

comparison can still be performed after distortion. Biometric Encryption (BE) de-

scribed in [63] possesses all the functionality of Cancelable Biometrics, and is immune
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against the substitution attack because it outputs a key which is securely bound to

a biometric. The BE templates stored in the gallery have been shown to protect

both the biometrics themselves and the keys. The stored BE template is also called

“helper data”. “Helper data” is also used in [33] to assist in aligning a probe with

the template that is available only in the transformed domain and does not reveal

any information about the fingerprint.

All the above technologies focus on the security and privacy of the biometric

signals in the gallery: instead of storing the original biometric signal, they keep only

the transformed and non-invertible feature or helper data extracted from the original

signal that do not compromise the security of the system even if they are stolen.

In these systems, the identity of the user is always recognized by the system after

the biometric matching is performed. To the best of our knowledge, there are no

other biometric access systems that can provide access control and yet keep the user

anonymous using iris patterns. Though our focus is on user anonymity, our design

is complementary to cancelable biometrics and it is conceivable to combine features

from both types of systems to achieve both data security and user anonymity.

Anonymity in biometric features like faces is considered in [64]. Face images

are obfuscated by a face de-identification algorithm in such a way that any face

recognition softwares will not be able to reliably recognize de-identified faces. The

model used in [64] is the celebrated k-anonymity model which states that any pattern

matching algorithm cannot differentiate an entry in a large dataset from at least k−1

other entries [65, 34]. The k-anonymity model is designed for data disclosure protocols

and cannot be used for biometric matching for a number of reasons. First, despite
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the goal of keeping the user anonymous, it is very important of an ABAC system to

verify that a user is indeed in the system. Face de-identification techniques provide

no guarantee that only faces in the original database will match the de-identified

ones. As such, an imposter may gain access by sending an image that is close to an

de-identified face. Second, de-identification techniques group similar faces together

to facilitate the public disclosure of the data. This is detrimental to anonymity as

face clusters may reveal important identity traits like skin color, facial structure, etc.

3.2 Complexity Reduction in SMC

Another key difference between anonymity in data disclosure and biometric match-

ing is the need for secure collaboration between two parties – the biometric server

and the user. The formal study of such a problem is Secure Multi-party Compu-

tation (SMC). SMC is one of the most active research areas in cryptography and

has wide applications in electronic voting, online bidding, keyword search and anony-

mous routing. Moreover, many of the basic components in a BAC system can be made

secure under this paradigm. They include inner product [66, 67], polynomial evalua-

tion [68, 69, 20], thresholding [70, 71, 48], median [16], matrix computation [72, 73],

logical manipulation [74], k-means clustering [75, 76], decision tree [77, 78, 79] and

other classifiers [80, 81, 69, 82] etc. A recent tutorial in SMC for signal processing

community can be found in [83].

The main hurdle in applying computationally-secure SMC protocols to biometric

matching is their high computational complexity. For example, the classical solution
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to the thresholding problem1, or comparing two private numbers a and b, is to use

Oblivious Transfer (OT) [21]. OT is a SMC protocol for joint table lookup. The

privacy of the function is guaranteed by having the entire table encrypted by a pre-

computed set of public keys and transmitted to the other party. The privacy of the

selection of the table entry is protected based on obfuscating the correct public key

among the dummy ones. Even with recent advances in reducing the computational

and communication complexity [15, 16, 17, 18, 19, 20], the large table size, the inten-

sive encryption and decryption operations render OT difficult for pixel or sample-level

signal processing operations.

A faster but less general approach is to use Homomorphic Encryption (HE) which

preserves certain operations in the encrypted domain [47]. Recently, the homomorphic

encryption scheme proposed by IBM and Stanford researcher C. Gentry has generated

a great deal of excitement in using HE for encrypted domain processing [84]. He

proposed using Ideal Lattices to develop a homomorphic encryption system that can

preserve both addition and multiplication operations. This solves an open problem

on whether there exists a semantically-secure homomorphic encryption system that

can preserve both addition and multiplication. On the other hand, his construction

is based on protecting the simplest boolean circuit and its generalization to realistic

application is questionable. In an interview, Gentry estimates that performing a

Google search with encrypted keywords would increase the amount of computing

time by about a trillion [85] and even this claim is already challenged by others to be

too conservative [86].

1This problem is commonly referred to as the Secure Millionaire Problem in SMC literature.
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More practical homomorphic encryptions such as Paillier cryptosystem can only

support addition between two encrypted numbers, but do so over a much larger ad-

ditive plaintext group, thus providing a wide dynamic range for computation [87].

Furthermore, as illustrated in Section 2.2.1, multiplication between encrypted num-

bers can be accomplished by randomization and interaction between parties. Recent-

ly, Paillier encryption is being applied in a number of fundamental signal processing

building blocks [88] including basic classifiers [81] and Discrete Cosine Transform [89]

in encrypted domain. Nevertheless, the public-key encryption and decryption pro-

cesses in any homomorphic encryption still pose a formidable complexity hurdle to

overcome. For example, the fastest thresholding result takes around 5 seconds to

compare two 32-bit numbers using a modified Paillier encryption system with a key

size of 1024 bits [70]. One of the goals of this dissertation to utilize homomorphic

encryption to construct a realistic biometric matching system that can tradeoff com-

putation complexity with user anonymity in a provably secure fashion.

Another prevailing approach of implementing SMC protocol is to use Garbled

Circuits (GC) [48]. GC provides a generic implementation of any binary function by

having one party prepared an encrypted boolean circuit, and another party oblivi-

ously evaluated the circuit without access to intermediate values. While HE is very

efficient for large integer fields, iris matching consists of mostly binary operations

and is conceptually more suitable for GC. Blanton et al. proposed a hybrid approach

of GC and HE for iriscode and achieved a more efficient implementation [31] than

using HE alone. Recent research efforts have significantly improved the efficiency

of GC [57, 90]. GC is likely to become a more efficient alternative than HE as GC
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theory relies almost exclusively on symmetric encryption and HE on asymmetric en-

cryption. Furthermore, GC is characterized by shorter security parameters, which

become more pronounced when we pass from short term to medium term and long

term security [91]. As such, it is attractive to develop the iriscode matching by using

only GC. In this dissertation, I demonstrate a computationally efficient GC-based

iriscode matching algorithm. A novel contribution is the adoption of a simplified

masking technique for iriscode which significantly reduces the complexity of the cir-

cuit.

3.3 Privacy Information Management (PIM) in Video Surveillance Net-

work

To tackle the problem in managing privacy information, earlier work like [92] in-

troduces a framework which advocates the presence of a trusted middleware agent,

referred to as Discreet Box in [92]. The Discreet Box acts as a three way mediator

between the law, the users and the service providers. This centralized unit acts as

a communication point between various parties and enforces the privacy regulation-

s. Fidaleo et al. describe a secure sharing scheme in which the surveillance data is

stored in a centralized server core [93] . A Privacy buffer zone, adjoining the cen-

tral core, manages the access to this secure area by filtering appropriate personally

identifiable information thereby protecting the data. Both approaches adopt a cen-

tralized management of privacy information making them vulnerable to concerted

attacks. Cheung et al. propose a new management system within which the users

and the client agents can anonymously exchange data, credential, and authorization
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information [94]. This approach is reminiscent to a Data Right Management (DR-

M) system where the content owner can control the access of his/her content after

proper payment is received. A trusted mediator agent is still required to ensure that

the user and the client agents can anonymously exchange data request, credential

and authorization. Furthermore, anonymous access control is not implemented in

the system and the mediator can associate the encrypted videos with the identity of

an individual. The PIM system proposed in this dissertation has the advantage that

no trusted mediator is required.

As alluded in Chapter 1, one approach to combine anonymity in biometric access

control and privacy data management is to encrypt the privacy information using

the biometric signal itself. Methods that use biometric to protect sensitive data are

referred to as biometric cryptosystems [95]. They have been applied in a number of

practical biometric systems [96, 97, 33, 98] in which a random key is protected by a

biometric signal to produce a privacy template [96, 97] or helper data [33, 98]. Such a

privacy template or helper data can only be decrypted by another biometric sample

from the same individual. The purpose of their proposed protocols is to protect the

security of the biometric system against the attack to central server by replacing the

raw biometric samples with these templates. For our application, we use biometric

cryptosystems to protect the AES keys that encrypt the privacy imagery. In [96], a

key-binding iris template scheme is proposed that relies on error correction coding

(ECC) coding to cope with small variations between different iris patterns from the

same individual. A concatenated-coding scheme is adopted to correct two types of

errors: random errors brought by CCD camera pixel noise and iris distortion are
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corrected by Hadamard code while burst error introduced by undetected eyelash-

es and specular reflections are corrected by Reed-Solomon code. While ECC-based

techniques are efficient, its nature of bit error correction dictates the use of ham-

ming distance in measuring similarity between biometric signals and limits the choice

threshold tolerance in the matching process. The proposed approach in my disser-

tation uses a general GC-based SMC protocol which is capable of arbitrary complex

matching protocols and arbitrary choice of error tolerance.
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Chapter 4

SMC-based Anonymous Biometric Matching

In this chapter, I propose an implementation of an ABAC system on iris biometrics

that is robust under semi-honest security model with the secure collaboration between

two parties. The procedure is based on two popular computationally-secure SMC

(CS-SMC) protocols, namely Homomorphic Encryption (HE) and Garbled Circuits

(GC). Moreover, I explore the possibility of using Information Theoretic SMC (IT-

SMC) protocols, mainly with Shamir’s Secret Sharing (SSS) as the building blocks

of ABAC.

4.1 Homomorphic Encryption based ABAC

In this section, I describe the implementation of an ABAC system on iris features

using homomorphic encryption. The system consists of three main steps: distance

computation, bit extraction and secure comparison. Except for the first step of dis-

tance computation which is specific towards iris comparison, the remaining two steps

and the overall protocol are general enough for other types of biometric features and

similarity search. I shall follow a bottom-up approach by first describing individual

components and demonstrating their safety before assembling them together as an

ABAC system.
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4.1.1 Hamming Distance

The modified Hamming distance dH(x,y) described in Equation (2.2) is used to

measure the dissimilarity between iris patterns x and y which are both 9600 bits

long [99]. As the division in Equation (2.2) may introduce floating point numbers, we

focus on the following distance and roll the denominator into the similarity threshold

during the later stage of comparison.

d̂H(x,y)
2 :=‖ (x⊗ y) ∩maskx ∩masky ‖22 (4.1)

DIST (Protocol 2) provides a secure computation of the modified Hamming distances

between Alice’s probe q and Bob’s DB. Alice needs to provide the encryption of

individual bits q = (q1, q2, . . . , qn)
T and their negation to Bob. Even though Bob

can compute the negation in the encryption domain by performing Encpk(¬qi) =

Encpk(1− qi) = Encpk(1) ·Encpk(qi)
−1, it is computationally more efficient for Alice

to compute them in plaintext as demonstrated in Section 4.4.1. In step 1a, Bob

computes the XOR between each bit of the query and the corresponding bit in each

record xi. d̂H(q,xi) can then be computed by summing all the XOR results in the

encrypted domain. Bob cannot derive any information about Alice’s probe as the

operations are all performed in the encrypted domain. Alice does not participate

in this protocol at all. The complexity of DIST includes O(Nn) encrypted-domain

operations where N is the size of DB and n is the number of bits for each feature

vector.
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Protocol 2 Secure computation of distances DIST(DB,Encpk(qj), Encpk(¬qj) )

Require: Bob: xi for i = 1, . . . , N , Encpk(qj) and Encpk(¬qj) for j = 1, . . . , n

Ensure: Bob computes Encpk

[
d̂H(q,xi)

2
]
for i = 1, . . . , N .

1. For i = 1, . . . , N , Bob repeats the following two steps:

a) For k = 1, . . . , n, compute

Encpk(qk ⊗ xi
k) =

{
Encpk(qk) if xi

k = 0,
Encpk(¬qk) otherwise

b) Compute

Encpk

[
d̂H(q,xi)

2
]

= Encpk




∑

k:[maskq∩maskxi ]i=1

qk ⊗ xi
k




=
∏

k:[maskq∩maskxi ]i=1

Encpk(qk ⊗ xi
k)

4.1.2 Bit Extraction

The next step is to compare the calculated encrypted distance with a plaintext thresh-

old. As comparison cannot be expressed in terms of summation and multiplication

of the two numbers, we need to first extract individual bits from the encrypted dis-

tance. EXTRACT(Encpk(x)) (Protocol 3) is a secure protocol between Bob and

Alice to extract individual encrypted bits Encpk(xk) for k = 1, . . . , l from Encpk(x)

where x is a l-bit number. The idea is for Bob to ask Alice’s assistance in decrypting

the numbers and extracting the bits. To protect Alice from knowing anything about

x, Bob sends Encpk(x + r) to Alice who then extracts and encrypts individual bits

Encpk [(x+ r)k]. Except for the least significant bit (LSB), Bob cannot undo the

randomization in Encpk [(x+ r)k] by carrying out an XOR operation with the bits
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Protocol 3 Bit Extraction EXTRACT(Encpk(x))

Require: Bob: Encpk(x) where x is a l-bit number; Alice sk.
Ensure: Bob computes Encpk(xk) for k = 1, . . . , l with k = 1 being the LSB.

1. Bob creates a temporary variable Encpk(y) := Encpk(x).

2. For k = 1, . . . , l, the following steps are repeated

a) Bob generates a random number r and sends Encpk(y + r) to Alice.

b) Alice decrypts y+r, extracts the kth bit (y+r)k and sends Encpk [(y + r)k]
back to Bob.

c) Bob computes Encpk(xk) := Encpk [(y + r)k ⊗ rk].

d) Bob updates Encpk(y) := Encpk(y − xk2
k−1) = Encpk(y) · Encpk(xk)

−2k−1

of r due to the carry bits. To rectify this problem, step 2d in EXTRACT zeros out

the lower order bits after they have been extracted and stores the intermediate result

in y, thus guaranteing the absence of any carry bits from the lower order bits during

the randomization. Alice cannot learn any information about y because the bit to be

extracted, (y+ r)k, is uniformly distributed between 0 and 1. Plaintexts obtained by

Alice in different iterations are also uncorrelated as a different random number is used

by Bob in each iteration. Even though Alice wants to make x as small as possible

to pass the comparison test, there is no advantage of replacing her replies to Bob

with any other value. Bob is not able to obtain any information about x either as all

operations are performed in the encrypted domain. Based on the security model in-

troduced in Section 2.1.3, this protocol is secure. The complexities of EXTRACT are

l encryptions and O(l) encrypted-domain operation for Bob, as well as l decryptions

and l encryptions for Alice. The communication costs are 2l encrypted numbers.
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4.1.3 Threshold Comparison

Based on the encrypted bit representations of the distances, we can carry out the

actual threshold comparison. COMPARE(Encpk(xk), yk for k = 1, . . . , l) (Protocol

4) is based on the secure comparison protocol developed in [100]. Step 2a accumulates

the differences between the two numbers starting from the most significant bits. The

state variable w = 0 at the kth step implies that the bits at order k and higher

between x and y match perfectly with each other. Step 2b then computes Encpk(ck)

where ck = 0 if and only if w = 0, xk = 0 and yk = 1. This implies that x < y.

In other words, x < y is true if and only if there exists ck = 0. In the last step, we

invoke the secure multiplication as described in Protocol 1 to combine all ck together

into c which is the desired output. Bob gains no knowledge in this protocol as he

never handles any plaintext data. The only step that Alice involves in is in the

secure multiplication. The adversarial intention of Alice is to make c zero so as to

pass the comparison test. However, the randomization step in Protocol 1 provides no

additional knowledge nor advantage for Alice to change her input. Thus, this protocol

is secure. The complexities of COMPARE are 3l encryptions and O(l) encrypted-

domain operations on Bob side, as well as 2l decryptions and l encryptions on Alice

side. The communication costs are 3l encrypted numbers.

4.1.4 Overall Algorithm

Protocol 5 defines the overall ABAC system. Steps 1 and 2 show that Alice first

sends Bob her public key and the encrypted bits of her probe. Steps 3 and 4 use
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Protocol 4 Secure comparison COMPARE(Encpk(xk), yk for k = 1, . . . , l)

Require Bob: Encpk(xk), Encpk(yk) and yk for k = 1, . . . , l; Alice: sk
Ensure Bob computes Encpk(c) such that c = 0 if x < y.

1. Bob sets Encpk(c) := Encpk(1), Encpk(w) := Encpk(0).

2. For k = l, . . . , 1 starting from the MSB, Bob and Alice compute

a) Encpk(w) := Encpk [w + (xk ⊗ yk)] = Encpk(w) · Encpk(xk ⊗ yk)

b) Encpk(ck) := Encpk (xk − yk + 1 + w) = Encpk(xk) · Encpk(yk)
−1 ·

Encpk(1) ·Encpk(w)

c) Encpk(c) := MULT (Encpk(c), Encpk(ck)).

Protocol 5 ABAC(DB,q)

Require: Bob: xi, i = 1, . . . , N and ǫ; Alice: q
Ensure : Bob computes y = 1 if d̂H(q,xi)

2 < ǫ for some i and 0 otherwise

1. Alice sends pk to Bob.

2. Alice computes Encpk(qj) and Encpk(¬qj) for j = 1, . . . , n and sends them to
Bob.

3. Bob executes DIST(DB,Encpk(qj), Encpk(¬qj) for j = 1, . . . , n) to obtain

Encpk

[
d̂H(q,xi)

2
]
for i = 1, . . . , N .

4. For i = 1, . . . , N , Bob and Alice execute EXTRACT
(
Encpk

[
d̂H(q,xi)

2
])

to

obtain the binary representations Encpk

[
d̂H(q,xi)

2
k

]
for k = 1, . . . , ⌈log2 n⌉.

5. Bob sets Encpk(u) := Encpk(1).

6. For i = 1, . . . ,M , Bob and Alice computes

a) Encpk(c) := COMPARE(Encpk

[
d̂H(q,xi)

2
k

]
, (ǫ‖maskq ∩maskxi

‖22)k for

k = 1, . . . , ⌈log2 n⌉)

b) Encpk(u) := MULT (Encpk(u), Encpk(c))

7. Bob generates a random number r, computes HASHpkH (r) and sends Alice
Encpk(u+ r).

8. Alice decrypts Encpk(u + r), computes HASHpkH (u + r) and sends it back to
Bob.

9. Bob sets y = 1 if HASHpkH (r) = HASHpkH (u+ r) and 0 otherwise.
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secure distance computation DIST (Protocol 2) and secure bit extraction EXTRACT

(Protocol 3) to compute the encrypted bit representations of all the distances. Steps

4 and 5 then use secure comparison COMPARE (Protocol 4) and accumulate the

results into Encpk(u) where u = 0 if and only if d̂H(q,xi)
2 < ǫ · ‖maskq ∩maskxi

‖22

for some i. To determine if Alice’s probe produces a match, Bob cannot simply send

Alice Encpk(u) for decryption as she will simply returns a zero to gain access. Instead,

Bob adds a random share r and sends Encpk(u+r) to Alice. The decrypted value u+r

cannot be sent directly to Bob for him to compute u. Unless u = 0, the actual value

of u should not be disclosed to Bob in plaintext as it may disclose some information

about the distance computations. Instead, we assume the existence of a Collision-

Resistant Hash Function HASH to which Bob and Alice share the same key pkH [49,

ch.4]. Alice and Bob compute HASHpkH (u + r) and HASHpkH(r) respectively. As

the hash function is collision resistant, their equality implies that u = 0 and Bob can

verify that Alice’s probe matches one of the entries in DB without knowing the actual

value of the probe. Since Alice knows nothing about r, she cannot cheat by sending

a fake hash value. The complexities of Protocol 5 are O(N log2 n) encryptions and

O(Nn) encrypted-domain operations for Bob, as well as O(N log2 n) encryptions and

decryptions for Alice. The communication costs are O(N log2 n) encrypted numbers.

4.2 Garbled Circuits based ABAC

While HE is very efficient for large integer fields, iriscode matching consists of mostly

binary operations and is conceptually more suitable for GC. Recent research efforts

have significantly improve the efficiency of GC [57, 90]. Moreover, GC is likely to
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become a more efficient alternative than HE as GC theory relies almost exclusively on

symmetric encryption and HE on asymmetric encryption. The former is characterized

by shorter security parameters, which become more pronounced when we pass from

short term to medium term and long term security [91]. As such, it is attractive to

develop the iriscode matching by using only GC. In this section, I demonstrate a com-

putationally efficient GC-based iriscode matching algorithm. The main innovations

compared to the prior art include:

1. an iris masking technique that simplifies the operations on the encrypted data

without sacrificing the recognition rate;

2. the adoption of a matching protocol based only on garbled circuits which offers

longer term security over existing solutions based on homomorphic encryption

or hybrid techniques.

3. The computational and communication complexity of the on-line phase of the

proposed protocol is extremely low, thus opening the way to its exploitation in

practical applications.

4.2.1 GC-based Iriscode Matching

In our proposed system, the biometric server, Bob, has an iris gallery which stores

the iris features {X1, . . . , XN} of N members. The user, Alice, provides a probe

q = (q1, . . . , qn) and evaluates the GC which produces a match if there exists at least

an i ∈ {1, . . . , N} such that d(q,Xi) < ǫ for a similarity threshold ǫ. d(q,Xi) is

a modified Hamming Distance (HD) defined in Equation (2.2) without the use of
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distance square.

d(q,Xi) :=
D(q,Xi)

M(q,Xi)
=

‖ (q ⊗Xi) ∩maskq ∩maskXi
‖

‖ maskq ∩maskXi
‖

(4.2)

Our GC implementation has Bob first constructed a circuit that compares the

input probe with the entire database and outputs the decision bit. The circuit is

then sent to Alice for evaluation. Alice uses 1-out-of-2 OT to input her probe and

computes the output of the circuit without learning any intermediate values. The

final garbled bit is sent back to Bob for decryption. Under the semi-honest adversary

model, our protocols guarantee that only Bob can know the final decision bit. The

biometric probe is protected from Bob and Bob’s biometric database is kept secret

from Alice under any polynomial-time attacks.

Figure 4.1(a) shows the circuit for private iris-code matching between the probe q

and the entry Xi in the database. It uses the basic garbled circuits (XOR, AND, and

MULtiplication), a COUNT circuit to compute the number of ones in its input [101],

and a COMPARE circuit to check if the first input is lower than the second input [102].

Given the fact that division in (4.2) is a complicated circuit [103] and multiplication

involves fewer gates than division [104], I roll the denominator M(q,Xi) of (4.2)

into the similarity threshold ǫ and test whether D(q,Xi) < ǫ · M(q,Xi). Since all

computation should be computed over integers and ǫ is a decimal number in the range

[0, 1], we pre-multiply ǫ by 2m and round it to an integer in the range [0, 2m] before

taking part in the multiplication circuit with M(q,Xi). Also, D(q,Xi) is left shifted

by m bits so the real COMPARE checks the result of D(q,Xi)·2
m < (ǫ·2m)·M(q,Xi).

In order to highlight the overall structure of the circuit, I hide the scale-up processing
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and use D(q,Xi) and ǫ instead of D(q,Xi) · 2
m and ǫ · 2m in Figure 4.1(a).

(a) Sub-circuit: D(q,Xi) < ǫM(q,Xi)

(b) Whole Circuit

Figure 4.1: Circuit design for private iriscode matching

The output of the sub-circuit D(q,Xi) < ǫ ·M(q,Xi) cannot be made available to

Bob in plaintext, otherwise, Bob will know the exact entry that matches the probe

and reveal Alice’s identity. In Figure 4.1(b), we use OR gates to connect the outputs

of all COMPARE sub-circuits D(q,Xi) < ǫ · M(q,Xi) for i ∈ {1, . . . , N} together.

In the end, only the final output of all OR gates will be decoded and shared by two

parties.

As described in Section 2.2.3, XOR gates can be evaluated without communica-

tion between two parties. Thus, only non-XOR gates are counted in our complexity

analysis. In the sub-circuit shown in Figure 4.1(a), a substantial number of gates are

devoted to incorporate individual masks in the calculation – there are n AND gates

used to compare the two masks and n AND gates for the actual masking, where n

is the bit-length of the iriscode. A COUNT circuit is used to aggregate the number
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of non-zero common mask bits and a MUL circuit to combine the result with the

similarity threshold. As such, any effort to minimize or even eliminate the variability

among masks, without sacrificing the precision, can significantly reduce the complex-

ity of the circuit. We explore the feasibility of such an approach in the next two

sections.

4.2.2 Simplification of Iris Masks

Each iriscode consists of two parts: iris feature and mask. While the iris feature

is confidential data, it is unclear if the mask itself contains enough sensitive infor-

mation for identification. Prior schemes such as [26] make the assumption without

justification that masks do not disclose identify information and are treated as public

information. While such an approach can significantly reduce complexity as alluded

in Section 4.2.1, there are other studies such as [105] that show eyelashes positions,

which make up a significant portion of the mask, have inherent correlation and can

be used to infer important ethnic information about an individual. To the best of our

knowledge, the privacy leakage through iris masks has not been statistically quantified

in any previous studies. Using a publicly-available iriscode database CASIA, which

contains multiple iriscodes for more than 290 individuals, we statistically measure

the difference between the hamming distances of iris masks for the same individu-

als and for different individuals. Details of the experimental results are provided in

Section 4.4.2. Based on our experiments, we conclude that iris masks from the same

individual demonstrate correlations that are not present across different individuals,

and as such, iris masks should be considered as private information at the server and
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not shared with the external biometric reader.

4.2.3 Common Mask for All Irises

Since the information of masks cannot be shared, we exploit a different approach to

simplify the usage of masks. A typical mask contains information about eyelashes,

eyelids, specular reflections, or other noise. We want to test the hypothesis that the

positions of the noises are relatively fixed so that a common iris mask can be designed

to replace the individual masks without much loss in precision. The common mask

is created by ORing all the available masks in the database. Our experiments in

Section 4.4.3 show that using the common mask on CASIA only results in less than

1% drop in recognition performance when compared with using individual masks.

While it is our ongoing work to see if such a conclusion can be scaled up to a much

larger database, we present here the design of a significantly simplified circuit which

assumes that a common mask is used and publicly available.

The simplified GC sub-circuit for D(q,Xi) < ǫM(q,Xi) is shown in Figure 4.2.

We use MASK to denote the common mask and the blue-line block to highlight the

gates that can be pre-computed. MASK FILTER is a circuit that selects the parts

of the iriscodes for matching according to MASK. The use of a common mask results

in a speedup factor of 8.7 as demonstrated by our experiments whose details can be

found in Section 4.4.
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Figure 4.2: Simplified GC sub-circuit for D(q,Xi) < ǫM(q,Xi)

4.3 Secure Multi-party Computation (# of parties ≥ 3)

In the above sections, I have proposed two computationally-secure SMC based pro-

tocols for ABAC. In these two kinds of protocols, no matter HE or GC, only two

parties are involved. Since the emergence of cloud computing make possible trans-

ferring of the computing task to oursourced companies as a third party [106], I will

investigate if the participation of an additional unreliable computing party can make

ABAC work under secure method.

IT-SMC introduced in Section 2.3.1 is a good way to implement the secure infor-

mation exchange among more than two parties. Armed with the basic properties of

Shamirs Secret Share (SSS), which is a primitives of IT-SMC, many commonly used

signal processing operations can be implemented. In this section, I will implement

convolution, comparison, sign function, and quantization operations in Shamir’s Se-

cret Sharing scheme. First we need to clarify its semantics in the modulo field Fm.

We allow negative secret number −x to be represented by m − x in Fm. Thus, a
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comparison of x > 0 is equivalent to x mod m < ⌈m/2⌉. Second, we need to select

m to be at least twice as big as the dynamic range of any intermediate and final

values in the target signal processing algorithm. This is necessary to ensure that we

can represent both xmax − xmin and xmin − xmax in Fm where xmax and xmin are the

largest and smallest numbers.

4.3.1 Convolution

In a linear convolution operation, two parties holding a secret signal x(t) and a filter

h(t) can create n shares independently and distribute them to n parties to perform a

privacy-protected linear filtering:

[conv(x, h)]m,2t−1
i =

[∑

τ

x(t− τ)h(τ)

]m,2t−1

i

=
∑

τ

[x(t− τ)]m,t
i [h(τ)]m,t

i (4.3)

Since no accumulated multiplication is computed and the threshold of recovering

the convolution result is increased from 2 to 3, no renormalization is needed when 3

parties are involved. The notation of convolution function is as follows:

(P8) CONV (x at P1, h at P2) −→ Pi : [conv(x, h)]
m
i

4.3.2 Threshold comparison

Comparison is central to non-linear signal processing. To handle the non-linear nature

of comparison, I rely on the radix-2 representations of the numbers. I start with a

simpler version of comparison that compares two secret numbers v and w in plaintext

stored at two different parties. To simplify the description of the protocol, we assume
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a three-party computation, i.e. n = 3 and t = 2. The notation of this comparison

protocol is as follows:

(P9) COMPARE2 (v at P1, w at P2) −→ Pi : [v > w]mi

where the binary predicate v > w is 1 if true and 0 if false. The idea used for the

comparison is based on the following observation: suppose v and w are l-bit operands

for comparison, the Most Significant Bit (MSB) of 2l+v−w is 1 if and only if v ≥ w.

We define a , 2l + x − y where a is l + 1-bit. The following task is to extract the

MSB of a (denoted as al).

Protocol 6 describes the framework of the privacy-preserved comparison protocol.

The first 3 steps are easy to understand based on the above observation. It is very

easy to extend this protocol to the situation where only secret shares can be accessed

(in this situation, start Protocol 6 from step 3). Step 4 uses the truncation protocol

in [107] to cut the l bits from the left and extract MSB of the result of step 3 as the

output.

Protocol 6 COMPARE2(v, w)

Require: v at P1, w at P2

Ensure: [c]mi at party Pi for i = 1, 2, 3 where c , (v > w).

1. P1,2: v , vl−1 . . . v0 base 2, w , wl−1 . . . w0 base 2.

2. P1,2: [v]
m
i , [w]

m
i → Pi.

3. Pi: [a]
m
i , 2l + [v]mi − [w]mi

4. Pi: TRUNC([a]
m
i , l + 1, l) → [c]mi
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The truncation protocol (Protocol 7) works as follows: at step 1 which denoted

as the function PRandM(), the secret shares of two random numbers, r′′ and r′ are

generated for each party. These two random values are concatenate into one log(m)-

bit random number (denoted as r) where r′′ is the first (log(m)− l)-bit and r′ is the

last l-bit of r. Therefore, r′ = r mod 2l. The function PRandM() at step 1 can be

realized by an independent party who is isolated from any other operations excepting

generating random numbers. This party has only the function of sending data and

it cannot receive any data. Once the shares were generated, the original random

value would be destroyed immediately. Another method to implement the function

PRandM() can be found in [107] without an additional party.

At step 2 of the truncation protocol , each party calculates the share of a + r,

broadcasts it to reconstruct a + r which can be known by all parties. The task of

reconstruction can be handed over to either party (say pk) and it will send a+r mod 2l

to each party. Step 4 use function BitLT (Protocol 8) to compare if a + r mod 2l <

r mod 2l. This comparison is used to decide if a modulus 2l should be added into

a+ r mod 2l − r mod 2l to make the result fit in the modulo field F2l

At step 5, the secret shares of last l bits of a are generated. Subtract it from a

and we can get the secret share of MSB of a finally.

The first operand of BitLT() at step 2 of Protocol 7 is a number which is available

for all parties. We only need to protect the privacy of the other operand, – each

party owns only a share of the second operand. Most of bit-wise operation in BitLT()

are implemented without interaction (step 1, 3, 4, 5). The remaining steps only

need constant-round interaction. I omit the correctness of BitLT() and the interested
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Protocol 7 TRUNC([a]mi , l + 1, l)

Require: [a]mi at party Pi where a , al . . . a0.
Ensure: [al]

m
i at party Pi for i = 1, 2, 3.

1. Pi: PRandM(log(m), l) → ([r′′]mi , [r
′]mi , [r

′
l−1]

m
i , . . . , [r

′
0]
m
i )

2. Pi: output([a]
m
i + 2l[r′′]mi + [r′]mi,3) → b.

3. Pk: b
′ , b mod 2l, b′ → Pi

4. Pi: BitLT(b
′, ([r′l−1]

m
i , . . . , [r

′
0]
m
i )) → [u]mi

5. Pi: [a
′]mi , b′ − [r′]mi + 2l[u]mi

6. Pi: [al]
m
i , ([a]mi − [a′]mi )(2

−l mod m)

Protocol 8 BitLT(b′, ([r′l−1]
m
i , . . . , [r

′
0]
m
i ))

Require: b′, ([r′l−1]
m
i , . . . , [r

′
0]
m
i ) at party Pi where both b′ and r′ have length m.

Ensure: [u]mi at party Pi for i = 1, 2, 3 where u , (b′ > r′).

1. Pi: for j = 0 to l − 1, do [dj]
m
i , b′j ⊗ [r′j ]

m
i .

2. Pi: PreMulC([dl−1]
m
i + 1, . . . , [d0]

m
i + 1) → ([pl−1]

m
i , . . . , [p0]

m
i )

3. Pi: for j = 0 to l − 2, do [sj]
m
i , [pj ]

m
i − [pj+1]

m
i

4. Pi: [sk]
m
i , [pk]

m
i − 1

5. Pi: [s]
m
i ,

∑l−1
j=0[sj]

m
i (1− bj)

6. Pi: [u]
m
i , Mod2([s]mi , l)

reader can refer to [107] for detail. Also, the reader can find more information about

the following building blocks used in the above protocols. More detail about the

comparison protocols are provided in [107].

• PRandM(n, l): all parties receive their shared random values of l-bit r′ and

(n− l)-bit r′′. Also, the secret shares of each bit of r′ is generated.

• Output([a]mi ): all parties broadcast their shares and reconstruct a.
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• PreMulC([dl−1]
m
i , . . . , [d0]

m
i ): after this function, each party receives l secret

shares, – ([pl−1]
m
i , . . . , [p0]

m
i ), where pi is prefix multiplication of the input bits

such that pi =
∏l−1

j=i(dj).

• Mod2([s]mi , l): all parties get their shares of the least significant bit of l-bit s.

In the above SSS-based procedures, many secret shares are from l-bit privacy

number and these generated shares are log(m)-bit. When m is big (I choose m =

250 − 1 in Section 4.4.5), it is a waste of communication bandwidth to use log(m)-bit

secret shares to protect 1-bit privacy number. To reduce communication complexity

in this situation, the binary operands and output are represented in F5, which is the

smallest field one can use to represent a secret among three parties. Because step

6 of the function BitLT() in Protocol 8 needs to mod 2 and if the operand mod 5

before mod 2, the parity of the operand might be changed. Therefore, after each

party receive the shares in F5, the intermediate value and final output is represented

in F10, which means that the computed result will mod 10 instead of mod 5 before

step 6 of Protocol 8. Since the result of the function Mod2() will be secret shares of

either 1 or 0, which will not change if we change the module from 10 to 5, the shares

of outputs will be represented again in F5.

Also, it is needed to move the result of Mod2() back to the larger field Fm for the

following operations in Protocol 7. The following PROMOTE procedure does exactly

that:

(P10) PORMOTE([x]5i all i) −→ Pi : [y]
m
i
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where y mod m = x mod 5

The full detail of the PROMOTE protocol is in Protocol 9.

Protocol 9 PROMOTE([x]5i )

Require: [x]5i at party Pi for i = 1, 2, 3
Ensure: [y]mi at party Pi for i = 1, 2, 3 where y mod m = x mod 5.

1. P1 : a random r −→ P2.

2. P1 : u , γ1[x]
5
1 − r −→ P3.

3. P2 : v , γ2[x]
5
2 + r

4. P3 : w , γ3[x]
5
3 + u

5. P2,3 : if v or w = 0, set it to 5.

6. P2,3 : [v + w]5i −→ Pi : [y]mi

7. Pj : [[(−4)−1(y − 5)(y − 10)]j,3]
m

i
−→ Pi : [y]mi

Correctness: Steps 1 through 4 create plaintext v and w at party 2 and 3 to represent

x using equation 2.11 such that

x = γ1[x]
5
1 + γ2[x]

5
2 + γ3[x]

5
3 mod 5

= (γ2[x]
5
2 + r mod 5) + (γ3[x]

5
3 + γ1[x]

5
1 − r mod 5)

, (v mod 5 + w mod 5) mod 5 (4.4)

where party 1 splits his share into a random r and γ1[x]
5
1 − r and distributes them

to party 2 and 3 respectively. Since r is random, party 2 and 3 cannot gain any

knowledge about the original share of party 1. If x < ⌈5/2⌉ = 3, then one of the

following two statements must hold:

v mod 5 + w mod 5 < 3 (4.5)

5 ≤ v mod 5 + w mod 5 < 8 (4.6)
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After creating v and w such that v+w mod 5 = x mod 5, step 5 ensures that neither

v nor w can be 0. Note that if x = 0 mod 5, then v + w mod m can be 5 or 10. If

x = 1 mod 5, then v+w mod mmust be 6. Step 6 creates shares for y = v+w mod m.

Step 7 computes the shares for the expression (−4)−1(y− 5)(y− 10) mod m which is

0 if y = 5 or 10 mod m, and 1 if y = 6 mod m.

4.3.3 Sign Function

Since negative number is represented as m−x in Fm, to simplify the decision function

of negative number, we can make m = 2θ − 1, where θ is a suitable integer to make

m big enough for the all intermediate values and final result. Therefore, the range of

negative number is [⌈m/2⌉, m], where the MSB of all numbers are 1, and the positive

and zero is in [0, ⌈m/2⌉ − 1], where the MSB is 0. Protocol 10 describes the method

to determine the MSB of the secret number in a share scheme, which only have one

step to use Protocol TRUNC to cut off the least θ − 1 bits of operand x.

Protocol 10 SIGN([x]mi )

Require: [x]mi at party Pi for i = 1, 2, 3
Ensure: [s]mi at party Pi for i = 1, 2, 3 where s , (x < 0).

1. Pi: TRUNC([x]
m
i , θ, θ − 1) → [s]mi

The notation of sign function is as follows:

(P11) SIGN ([x]mi ) −→ Pi : [x < 0]mi
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4.3.4 Quantization

Another indispensable operation in signal processing is quantization. This is partic-

ular important when the computation is done in fixed point format because quan-

tization enables non-trivial computation to be computed in fixed size Fm. Uniform

quantization with interval size p can be represented as equation 4.7:

QUANTIZE(x) , p−1(x− (x mod p)) mod m (4.7)

The key to QUANTIZE is the modulo-p operation. We can make p = 2l so that

QUANTIZE procedure can be changed to TRUNC procedure in Protocol 7, which

will cut the least significant l bits of x. However, when x is negative, truncating the

least significant l bits might make the quantized x less than [⌈m/2⌉, m] which will

make it be a positive number. To handle the negative number x, the absolute value

of x (denoted as ‖x‖) will be computed first. After truncating the least significant l

bits of ‖x‖, the quantized ‖x‖ will be change to negative value by multiplying −1.

The protocol QUANTIZE is denoted and implemented as follows:

(P12) QUANTIZE ([x]mi ) −→ Pi : [y]
m
i

Correctness: Steps 1 computes the shares of sign of x. Step 2 get the shares of ‖x‖:

if x < 0, it is represented as m − ‖x‖ and ‖x‖ = m − x; if x ≥ 0, ‖x‖ = x. Step 2

involves the multiplication of secret shares and need to be renormalized back to the

original threshold at step 3. Step 4 truncates the least significant l bits of ‖x‖ = x.

Step 5-7 recover quantized ‖x‖, denoted as ‖f‖, into f according to the sign of x

because x and quantized x, which is f , should have the same sign: negative f is
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Protocol 11 QUANTIZE([x]mi )

Require: [x]mi at party Pi for i = 1, 2, 3; p = 2l where l < log(m).
Ensure: [y]mi at party Pi for i = 1, 2, 3 such that y = p−1(x− (x mod p)).

1. Pi: SIGN([x]mi ) → [s]mi .

2. Pi: [s(m− 2x) + x]mi → [expr(z)]mi .

3. Pj : [[expr(z)]j ]
m
i → Pi : [z]

m
i for i 6= j.

4. Pi: TRUNC([z]
m
i , log(m), l) → [d]mi

5. Pi: [−2sd]mi → [expr(f)]mi .

6. Pj : [[expr(f)]j]
m
i → Pi : [f ]

m
i for i 6= j.

7. Pi: [f + d]mi → [y]mi .

−‖f‖ and non-negative f is the same as ‖f‖. Also, there are one multiplication at

step 5, so step 6 renormalized the threshold back using P6.

4.4 Experiments

For our experiments, we use the CASIA Iris database from the Chinese Academy of

Sciences Institute of Automation (CASIA) [108], a common benchmark for evaluating

the performance of iris recognition systems. For the iris feature extraction, we use

the MATLAB code from [99] to generate both the iris feature vectors and the masks.

4.4.1 Homomorphic Encryption Processing

In this subsection, we summarize the complexity and communication costs of various

HE based encrypted-domain processes discussed in Section 4.1. Each iris feature

vector is 9600 bit long. The similarity threshold ǫ is set to be 0.35. I select 1,948

samples from CASIA based on the following criteria: the distances are smaller than

60



0.35 between any two samples from the same eye, and larger than 0.40 between

any two samples from different eyes. Furthermore, each eye contains at least six

good samples and one sample is set aside for testing. A total of 160 individuals are

included in our dataset. Our Paillier implementation is based on the Paillier Library

developed by J. Bethencourt [109]. The key length of the Paillier cipher is set to be

1024 bit which results in 2048-bit ciphertexts.

The communication cost is measured based on total amount of information ex-

changed between Bob and Alice without any overhead from the network stack. The

computation time excludes networking time and is computed based on averaging

100 trials. All of them are implemented in C language on a Linux machine with

a 2.4 GHz AMD Athlon 64 CPU and 2 GB memory. Table 4.1 summarizes the

results. Encrypted-domain addition and multiplication with plaintext are relatively

lightweight, except when the plaintext multiplier is negative (i.e. a large positive num-

ber in modular arithmetic). Multiplication between two encrypted numbers (MULT)

takes the longest and requires information exchange between Bob and Alice. Ham-

ming distance (DIST) is fast as there are no encryption or decryption. Bit extraction

(EXTRACT) takes longer and threshold comparison (COMPARE) takes the longest

due to the repeated use of negative numbers, encryption and decryption processes.

The long computation time for Query preparation is primarily due the high dimen-

sion of the iris feature. The overall computation of an ABAC system consists of a

fixed setup time of query preparation followed by the time taken for the remaining

steps scaled by the size of the database. For a database of 10,000 iris, my ABAC

system is estimated to take 41,490 seconds or 11.5 hours and 120 MBytes of network
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Table 4.1: Time and Communication Complexities of HE based Encrypted-domain
processing

Process Bob’s Time in sec. Alice’s Time in sec. Communication (Kbits)

Encryption Encpk(x) 17.3× 10−3 - -
Decryption Decsk(c) 12.8× 10−3 - -

Addition Encpk(x) · Encpk(y) 13× 10−6 - -
Multiplication Encpk(x)

y , y ≥ 0 0.143× 10−3 - -
Multiplication Encpk(x)

y , y < 0 30.1× 10−3 - -
MULT 47.9× 10−3 43.0× 10−3 3
DISTa 98× 10−3 - -

EXTRACTb 0.845 0.421 56

COMPAREb 2.06 0.602 42
Query Preparation (Step 2 in ABAC) - 290 -

Remaining steps in ABACa 3.05 1.07 98
a Average running time for each entry in DB amortized over 100 entries, with the dimension of each entry equal
to 9600.

b 14 bits operand are used as they are sufficient for the Hamming distance.

bandwidth.

4.4.2 Privacy and Similarity among Iris Masks

In this section, I demonstrate the experiment result on similarity among iris masks

which is described in Section 4.2.2. Based on the normalized hamming distance (HD),

I extract 28, 006 pairs of masks between the same individuals and 7, 050, 197 pairs

between different individuals among 3763 samples from 292 individuals. Figure 5.2(a)

shows the distribution of these two types of HDs. It can be easily found the distinct

difference between the two distributions.

To further test if the difference between hamming distances from the same and

different individuals are statistically significant, I utilize the distribution-free Wilcox-

on Rank-Sum Test between these two samples [110, Ch.15]. I take a hypothesis test

that masks from the same individual are similar to those from different individuals.

If this hypothesis is accepted, there is no identity information leaked through masks

and thus can be released to public; or else, the masks are one part of each individual’s
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Figure 4.3: Mask distance distributions

privacy information and cannot be shared with others.

In my test, the sample from the same indivuduals’ HDs are labeled as X and

the sample from different indivuduals’ HDs as Y . Let u1 and u2 be the averages of

X and Y respectively. The null hypotheses is H0 : u1 − u2 = 0 and the alternative

hypothesis is Ha : u1 − u2 6= 0. When the samples from X and from Y are pooled

into a combined sample of size m + n, these observations are sorted from smallest

(rank 1) to largest (rank m + n). Then the sum of ranks of all samples from X is

considered as our test statistic W , i.e. W =
∑m

i=1Ri where Ri is the rank for the

i-th sample of X . Due to the large sample size, the distribution of the test statistic

z = (W − µW )/σW can be approximated by a standard normal distribution if H0 is

true where

µW =
m(m+ n + 1)

2
= 9.91× 1010

σ2
W =

mn(m+ n + 1)

12
= 1.16× 1017

At the confident level of 99%, H0 is rejected if either z ≥ 2.58 or z ≤ −2.58. In our

experiments, W = 5.19 × 108 which implies that z = −288.91. The null hypothesis
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is therefore rejected.

Another illustration to demonstrate the difference between masks from the same

and different individual, – the distribution of mask overlap sizes, ‖maskx ∩masky‖,

is shown in Figure 5.2(b). It shows that masks from the same individuals have larger

overlap than from different individuals. This result can also be verified by Wilcoxon

Rank-Sum Test, which is omitted here as it is essentially the same as the test of the

HDs. Based on these two tests, I conclude that masks have inter-correlation among

each individual, and therefore, should not be shared between Alice and Bob.

4.4.3 Common Mask

Samples of masks from different individuals are shown in Figure 4.4(a). It can be

observed that there are a great deal of similarity among masks even from differen-

t individuals. Also, my earlier experiments depicted in Figure 5.2(a) indicate that

there could be up to 50% bit difference even between masks from the same individ-

ual. As such, it is conceivable to use a common mask to replace individual masks

without much loss in precision. As I have pointed out earlier, the use of a common

mask can significantly reduce the complexity of our GC circuits. To test my hypoth-

esis, I use the following method to derive the common mask: first, I pre-align all

iriscodes in Bob’s database, both features and masks, to the position which can get

the minimum Hamming distance when comparing with one randomly chosen iriscode

from the same individual. The common iris mask is set to ’1’ at all bit positions

where the percentages of the pre-aligned masks being ’1’ at those positions exceed an

empirically-determined threshold λ. The common mask obtained from the CASIA
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iris database is shown in Figure 4.4(b).

(a) Real masks from database

(b) Common mask

Figure 4.4: Real masks and common mask

Figure 4.5 shows the distribution of HDs using both real masks and the common

mask. When ǫ = 0.41, False Accept Rate (FAR) is 0.53% while False Reject Rate

is 0.54% for the distribution computed with real masks. The best FAR and FRR is

1.44% and 1.47% at ǫ = 0.43 for the distribution with the common mask, based on

setting λ to 80%. It can be seen that the accuracy in the case of common mask is

reduced by less than 1%.

4.4.4 Garbled Circuits Processing

I analyze the results using two sets of iriscodes – the length of an iriscode is n = 2048-

bit based on the system by Daugman [27] and n = 9600-bit based on an open source

iris recognition system in [99]. Since we do not have the original 2048-bit iriscode,

I generate it by subsampling the 9600-bit iriscode. The use of the generated 2048-
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(a) Real masks (b) Common mask

Figure 4.5: HD distributions

bit iriscode does not affect the computation and communication complexity of the

proposed framework.

I do not analyze the precomputation for circuit construction and circuit trans-

mission since they are executed only once. I count the precomputation for oblivious

transfer as the offline time since it needs to be done every time when our protocol is

implemented [53]. The offline time is independent of the size of biometric database

but related to the length of the iriscode, as shown in Table 4.2. Table 4.2 also lists

the total amount of non-XOR gates and runtime needed to implement the sub-circuit

to test if D(q,Xi) < ǫ · M(q,Xi), together to the total amount of data transmitted

during the online computation. The results are derived by averaging the comparisons

of 100 pairs of iriscodes in the database.

The performance of the totally GC-based private iris-code matching is quite ef-

ficient: when I adopt 80-bit security parameter, it takes 563 ms to compare two

2048-bit iris-codes with private iris features and masks. If the common mask is used,

a speedup factor of up to 8.7 or 65 ms per comparison can be achieved. This is

66



comparable to 14 ms as reported in [31] but with a pure GC implementation.

Considering that longer cyphertexts will be required to guarantee security with

the rapid development in computational capability, I also list the processing time with

the longer term security parameters (112 and 128 bits) in Table 4.2. The execution

time is increased by 11% for the individual masks and 23% for the common mask.

These are much smaller than the 62% increase for the hybrid protocol as reported

in [32]. As such, our GC-only protocol is clearly preferred in the cases when longer

term security is needed.

Table 4.2: Number of non-XOR gates, runtime (ms) and bandwidth (KB) based on
different secure parameters (bit)

n-bit # non Sec Offline Online Time Overall Band-
-XOR Para. Time Alice Bob Time width

Individual Masks

2048 8349
80 19,767 40 108 563 571.5
112 20,260 49 113 606 754.0
128 20,425 61 109 608 845.7

9600 38654
80 90,744 102 508 2530 2655.0
112 93,441 106 539 2769 3503.2
128 92,736 128 557 2816 3828.5

Common Mask

2048 2059
80 10,379 11 24 65 133.7
112 10,396 11 29 74 176.5
128 10,399 16 30 80 197.9

9600 9641
80 45,354 26 115 538 626.1
112 45,431 28 119 545 826.5
128 45,313 57 130 573 926.7

4.4.5 Comparison of Complexity and Communication Costs on HE, GC,

and SSS

In this section, I discuss the complexity and communication costs of various pri-

vate processes using three different cryptographic schemes, –HE, GC, and SSS. My
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Table 4.3: Comparison among HE, GC, and SSS (Computation (Comp.) time: us;
Communication (Comm.) bandwidth: byte)

SS HE GC
security parameters infinitely 1024 bits 80 bits

Process Comp. Comm. Comp. Comm. Comp. Comm.
Encryption 0.39 24 17,474.38 256 825.35 161
Decryption 0.12 24 33,518.59 257 21.89 81
Addition 0.12 - 30.60 - 2,025.05 320

Multiplication 0.14 - 219.79 - 22,729.64 4800
Renormalization 0.63 48 - - - -

Compare 27.81 600 2.662× 106 5.25× 103 2,235.15 320

experiments are implemented in Java language on an Intel Core2 Duo CPU E8400

@3.00GHz 3.00GHz with 8GB RAM on 64-bit windows 7 Professional. In Table 4.3,

all operands are 8-bit positive numbers. Three non-collude parties take part in the

computation of SSS and all secret shares are 64-bit long integer, while HE adopts

1024-bit security parameter and correspondingly, GC uses 80-bit security parameter.

Both HE and GC can only guarantee short-term security under such security param-

eters, which means that maximum expected security life of encrypted data is five

years [91]. Even on such short security guarantee compared to SSS’s infinity security,

HE and GC are still inferior to SSS no matter from the aspect of computation or

communication complexity. Therefore, when the third party can be found to assist

the computation of ABAC, it is a better way to use SSS as a secure primitive to

protect the privacy information of both Alice and Bob from each other.
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Chapter 5

Privacy-complexity Tradeoff in CS-SMC

In Chapter 4, I show that both the complexities and the communication costs of

ABAC depend linearly on the size of the database, making anonymous subject iden-

tification difficult to scale to large databases. Inspired by the k-anonymity model, a

simple approach is to tradeoff complexity with privacy by quickly narrowing Alice’s

query into a small group of k candidates and then performing the full cryptographic

search only on this small group. k will serve as a parameter to balance between the

complexity and the privacy needed by Alice. This is the idea behind the k-Anonymous

Quantization (kAQ) which is the main topic of this chapter.

5.1 k-Anonymous Quantization (kAQ)

The functional definition of an Anonymous BAC (ABAC) system has been given in

Section 2.1.2. In this section, parameter k is added into the definition of ABAC and

limit the execution of ABAC in a k-member group. The definition of k-Anonymous

BAC (k-ABAC) procedure is as follows:

DEFINITION 3 An k-Anonymous BAC (k-ABAC) procedure is a BAC system on

Bob’s database DB and Alice’s probe q with the following properties at the end of the

protocol:
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1. There exists a subset S ⊂ DB with |S| ≥ k such that for all x ∈ DB \ S, Bob

knows d(q,x)2 ≥ ǫ.

2. Except for the value yBAC as defined in Definition 1, Bob has negligible knowl-

edge about q and d(q,x), for all x ∈ DB, as well as the comparison results

between d(q,x)2 and ǫ for all x ∈ S.

3. Except for the value yBAC, Alice has negligible knowledge about ǫ, x, d(q,x),

and the comparison results between d(q,x)2 and ǫ for all x ∈ DB.

The definition of k-ABAC system is similar to that of ABAC except that Bob

can prematurely exclude DB \ S from the comparison. Even though Alice may be

aware of such a narrowing process, the k-ABAC has the same restriction on Alice’s

knowledge about DB as the regular ABAC. There are two challenges in designing a

k-ABAC system:

1. How do we find S so that the process will disclose as little information as

possible about q to Bob?

2. How can Alice choose S that contains the element that is close to q without

learning anything about DB?

The following sections describe my approaches to solve these problems in the

context of iris matching.
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5.1.1 Basic Formulation and Assumptions

A direct consequence of Definition 3 is that if there exists a x ∈ DB such that

d(q,x)2 < ǫ, x must be in S. In order to achieve the goal of complexity reduction,

our approach is to devise a static quantization scheme of the feature space F n and

publish it in a scrambled form so that Alice can select the right group on her own. To

explain this scheme, let us start with the definition of a ǫ-ball k-quantization. Define

Bǫ(x) or the ǫ-ball of x to be the smallest subset of F n that contains all y ∈ F n with

d(y,x)2 < ǫ. An ǫ-ball k-quantization of DB is defined below:

DEFINITION 4 An ǫ-ball k-quantization (eBkQ) ofDB is a partition Γ = {P1, . . . , PN}

of F n with the following properties:

1.
⋃N

i=1 Pi = F n and Pi ∩ Pj = φ for i 6= j.

2. For all x ∈ DB, Bǫ(x) ∩ Pj = Bǫ(x) or φ for j = 1, . . . , N .

3. |DB ∩ Pj| ≥ k for j = 1, . . . , N .

Property 1 of Definition 4 ensures that Γ is a partition while property 2 ensures that

no ǫ-ball centered at a data point straddles two cells. The last property ensures that

each cell must at least contain k elements fromDB. The importance of using an eBkQ

Γ is that if Γ is a shared knowledge between Alice and Bob, Alice can select Pj ∋ q

and communicate the cell index j to Bob. Then Bob can compute S := DB ∩ Pj

which must contain, if exists, any x where d(q,x)2 < ǫ.

While a typical vector quantization ofDB will satisfy the ǫ-ball preserving criteria,

the requirement of preserving the anonymity of q imposes a very different constraint.
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The cell Pj that contains Alice’s probe q should reveal as little information about q as

possible. Individuals in the same cell may come from the same family, have the same

skin color or from the same ethnic group – any common traits among the database

elements within Pj can be taken advantage of by Bob to find out more about Alice,

effectively lowering the privacy parameter k. To maintain k as high as possible, it is

reasonable to make all elements with each cell as dissimilar as possible. Collectively,

we want to design an eBkQ such that even the “smallest” cell is maximally dissimilar.

This leads to our definition of k-Anonymous Quantization (kAQ):

DEFINITION 5 An optimal k-anonymous quantization Γ∗ is an eBkQ of DB that

maximizes the following utility function among all possible eBkQ Γ:

min
P∈Γ

∑

x,y∈P∩DB

d(x,y)2 (5.1)

The utility function (5.1) can be interpreted as the total dissimilarity of the most

homogeneous cell P in the partition. The utility function also depends on the number

of data points in a cell – adding a new point to an existing cell will always increase

its utility. Thus finding the partition that maximizes this utility function not only

can ensure the minimal amount of dissimilarity within a cell, it also promotes equal

distribution of data points among different cells.

A key assumption behind (5.1) is that the closeness between two biometric signals

x and y may indicates certain relationship between the two associated individuals.

This argument is certainly conceivable for biometric signals such as face images as

family members certainly share similar facial features [111]. Prior experimental results

show that fingerprints and palmprints from twins have some inherent correlation and
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are more similar to each other than those from random individuals [112, 113]. It is

less clear whether the same will apply for highly discriminative iris patterns. In [11],

we have demonstrated that twins irises are more similar compared with random pairs

of unrelated individuals. The details of our experimental results on comparing the

modified hamming distances among twins and non-twins iris patterns are provided

in Section 5.2.2.

It is important to realize that these experiments do not refute the validity in using

iris patterns to distinguish twins. Indeed, the variability among irises from the same

individual are significantly smaller than those between twins and thereby support

the procedure of using a similarity distance threshold for human identification. As

demonstrated by the data in Section 5.2.2, there is significant overlap in distances

between the populations of twins and non-twins irises and it will be unreliable to

separate the two populations with a single threshold. In kAQ, we maximize the utility

function defined in (5.1) as a way to exclude any possibility of grouping twins in the

same cell. Such an one-sided application is certainly justified by the experimental

results in Section 5.2.2.

5.1.2 Neighborhoods

It is challenging to solve for the optimal kAQ for the iris matching problem due to the

high dimension, 9600 to be exact, and the uncommon distance used. Our approach is

to project this high dimensional space into a lower dimensional Euclidean space ℜm by

using Fastmap followed by PCA. The Fastmap is used to embed the native geometry

of the feature space into an Euclidean space while the PCA optimally minimizes the
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dimension of the resulting space. Even in this lower dimensional space, the structure

of a quantization, namely the boundary of individual cells, can still be difficult to

specify. To approximate the boundary with a compact representation, we first use a

simple uniform lattice quantization to partition ℜm into a rectilinear grid Ω consisting

of L bins {B1, . . . , BL}. Then a second-level structure, which we call neighborhood,

is needed to group together all the bins that can possibly contain patterns from the

same individual. In this section, we describe the design of neighborhood structure. In

Section 5.1.3, we describe a greedy algorithm that Bob runs to group neighborhoods

into an optimal kAQ structure. Finally in Section 5.1.4, we describe the encrypted-

domain processing required in jointly computing the dimension reduction procedure

and selecting the appropriate cell for a given probe.

Assuming that multiple training patterns are available for each individual, it is

natural to estimate the neighborhood structure using the training data. There are

three fundamental requirements of the design of the neighborhood structure pertinent

to the overall kAQ scheme:

1. Recognition: The neighborhood structure must provide a high recognition

rate, i.e. the error probability that any iris pattern from an individual falls

outside the trained neighborhood of the same individual must be negligible.

This guarantees that individuals in the biometric database will be appropriately

protected.

2. Overlap among neighborhoods: The second type of error, where a pattern

falls into someone else’s neighborhood, does not affect recognition – the sub-
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sequent step of encrypted-domain processing will compute the actual distance

and realize that this is not a match. On the other hand, if this pattern in-

deed corresponds to an individual in the database, this implies that there may

be an overlap between neighborhoods, or at least the coarse approximation

of the neighborhoods using the bins as illustrated in Figure 5.1. If these two

neighborhoods belong to two different cells as in Figure 5.1, the complexity of

the subsequent encrypted-domain processing essentially doubles. As such, it is

imperative to minimize the amount of overlap among neighborhoods.

3. Ease of Computation: There are two aspects to this requirement. First, it

is beneficial to have a simple computational procedure, such as a bounding box

or an ǫ-ball, to characterize a neighborhood so as to facilitate the algorithm in

determining the cell membership of each neighborhood. Second, as mentioned

in Section 1.4, the kAQ will produce a public table that maps bin indices in

each neighborhood to the corresponding cell ID. The size of this table strongly

depends on the neighborhood structure as we shall explain later.

The two most intuitive neighborhoods are bounding boxes and ǫ-balls. An ǫ-ball

of an individual contains all the bins whose centroids are within ǫ from the centroid of

the training patterns. A ball is simply defined to be the smallest ǫ-ball that contains

all the training patterns. For our target database of iris biometric patterns, we have

experimented with four different neighborhood structures:

1. ǫ-ball with a constant ǫ equal to the maximum radius of all the balls;
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Figure 5.1: Approximation of the quantization boundary (left) along the bins (right):
each dot represent a biometric signal with the broken-line circle representing the
neighborhood. There are two cells and each cell has k = 3 neighborhoods. As the

bins do not exactly coincide with the neighborhoods, there are two neighborhoods that
straddle on both cells. These “overlapping” neighborhoods cause the two cells need to

be merged together, thereby raising the complexity of subsequent steps.

2. ǫ-ball with a constant ǫ equal to the average radius of all balls plus one standard

deviation;

3. ǫ-ball with the actual radius of each ball, and

4. bounding box.

In Section 5.2.3, we experimentally demonstrate that ǫ-balls provide better perfor-

mance than bounding boxes in terms of the above criteria.

5.1.3 Greedy kAQ

We maximize the utility function (5.1) but require each cell to be composed of neigh-

borhoods, each of which contains multiple bins. This turns an optimal partitioning

problem in continuous space into a discrete knapsack problem in assigning bins to

cells through a mapping function f to optimize the utility function. We denote the

resulting approximated k-quantization as Γ̂∗. As the utility function (5.1) is based
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on individual data points, a bin straddling multiple neighborhoods may present in

multiple cells. As such, Γ̂∗ is no longer a true partition and the mapping function f is

a multi-valued function. Protocol 12 (KAQ) describes a greedy algorithm that com-

putes a sub-optimized k-anonymous quantization mapping function from the data.

Step 1 of KAQ sets the number of cells to be the maximum and the protocol will

gradually decrease it until each cell has more than k data points. The initialization

steps in 2 and 3 randomly assign a neighborhood into each cell. Step 4 identifies the

cells that have the minimum utility. Among these cells, steps 5 and 6 identify the cell

Pi∗ and the neighborhood NS∗ which together produce the maximum gain in utility.

The bins inside NS∗ are then added to Pi∗ and the whole process repeats. This

update not only provides a greedy maximization of the overall utility function but

also has the tendency to produce an even distribution of data points among different

cells. A newly updated cell will have a much lower chance of being updated again as

it has a higher utility than others. The final step checks to see if any one cell has less

than k elements and, if yes, restarts the process with fewer target number of cells.

For a fixed target number of cells, the complexity of this greedy algorithm is O(M2)

where M is the size of DB. It is important to point out that the output mapping f

only contains entries of bins that belong to at least one neighborhood.

5.1.4 Secure Index Selection

Let us first describe how Alice and Bob can jointly compute the projection of Alice’s

probe q into the lower dimensional space formed by Fastmap and PCA. The projection
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Protocol 12 Greedy k-Anonymous Quantization KAQ

Require Bob: Projection of DB into ℜm or {P (xi) for i = 1, . . . ,M}; Bin and neigh-
borhood structures in Ω;
Ensure Bob computes the multi-valued mapping f : Ω → {1, . . . , N} that defines
the cell membership of each bin.

1. Set the initial number of cells N := ⌊M/k⌋.

2. Let L := the list of neighborhoods in Ω

3. Random initialization of cells: for i = 1, . . . , N ,

a) Randomly remove a neighborhood NS from L.

b) Set f−1(i) := {bins in NS}.

4. Identify the collection of cells E with the lowest utility, i.e.

E := argmini=1,...,N

∑

x,y∈Ai∩DB

d(x,y)2

where Ai =
⋃

B∈f−1(i) B contains all the bins in cell i.

5. For each cell j in E, identify the neighborhood NS∗
j ∈ L that maximizes the

utility of cell j after adding NS∗
j to it and denote the resulting utility as u∗

j , i.e.

NS∗
j := argmaxNS∈L

∑

x,y∈(Aj∪NS)∩DB

d(x,y)2 (5.2)

u∗
j :=

∑

x,y∈(Aj∪NS∗
j )∩DB

d(x,y)2 (5.3)

6. Given j∗ = argmaxj∈Eu
∗
j , identify the neighborhood NS∗ := NS∗

j∗ and cell Pj∗

that give rise to the maximum gain of utility from step 5.

7. Set f−1(j∗) := f−1(j∗) ∪ {bins in NS∗} and remove NS∗ from L.

8. Go back to Step 4 until L is empty.

9. For i = 1, . . . , N , ensure that
∣∣∣
⋃

B∈f−1(i)B ∩DB
∣∣∣ ≥ k. If not, set N := N − 1

and go back to step 2.
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needs to be performed in encrypted domain so that Alice does not reveal anything

about her probe and Bob does not reveal any information about his database, the

Fastmap pivot points and the PCA basis vectors. Note that the need for encrypted-

domain processing does not affect the scalability of our system as the computation

complexity depends only on the dimension of the feature space but not on the size of

the database.

The Fastmap projection in Equation (2.3) involves a floating point division. The

typical approach of pre-multiplying both sides by the divisor to ensure integer-domain

computation does not work. As the Fastmap update Equation (2.4) needs to square

the projection, recursive computation into higher dimensions will lead to a blowup in

the dynamic range. To ensure all the computations are performed within in a fixed

dynamic range, Alice and Bob need to agree on a pre-defined scaling factor α and

rounding will be performed at each iteration of the Fastmap calculation. Specifically,

given the encrypted probe Encpk(q), Bob approximates the first projection q′ in

encrypted domain based on the following formula derived from Equation (2.3):

αq̃′ := round
( α

2ad

)
d̂H(q,xA)

2+round
( α

2cd

)
d̂H(xA,xB)

2−round
( α

2bd

)
d̂H(q,xB)

2

(5.4)

where a = ‖maskq ∩maskxA
‖22, b = ‖maskq ∩maskxB

‖22, c = ‖maskxA
∩maskxB

‖22

and d = dH(xA,xB). All the multipliers on the right hand side of (5.4) are known to

Bob in plaintext and the distances can be computed in the encrypted domain using

Procedure 2. Since rounding is involved, q̃′ is just an approximation of q′ as computed

with in the original Fastmap formula (2.3). Based on the computed encrypted values
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of αq′ from the probe and αx′ from a data point, the update equation (2.4) is executed

as follows:

α2d̃′H(x,q)
2 := round

(
α2

‖maskx ∩maskq‖22

)
d̂H(x,q)

2 − (αx̃′ − αq̃′)2 (5.5)

Bob again can compute the right hand side of (5.5) entirely in encryption domain,

with the square in the second term computed using Procedure 1. The value d̃′H(x,q)
2

is again approximated due to the rounding of the coefficient. Note that the left hand

side has an extra factor of α which needs to be removed so as to prevent a blowup

in the dynamic range. To accomplish that, Bob computes Encpk(α
2d̃′H(x,q)

2 + rα)

where r is a random number, and sends the result to Alice. Alice decrypts it, divides

it by α and round it to obtain round
(
αd̃′H(x,q)

2
)
+ r. Alice encrypts the result and

sends it back to Bob who will then removes the random number r.

Bob can now use the new distances to project the probe along the second pair of

pivot objects xA′ and yA′ as follows:

α2q̃” := round
( α

2d′

)
αd̃′H(q,xA′)2 + round

(
α2

2

)
− round

( α

2d′

)
αd̃′H(q,xB′)2 (5.6)

where d′ = d̃′H(xA′,xB′)2 can be computed by Bob in plaintext. The extra factor of

α on the left hand side of (5.6) can be removed with the help of Alice using a similar

approach as previously discussed. As the iteration continues, the deviation of the

rounded projection and the original projection will grow as the rounding error accu-

mulates. However, the new distance computed at each iteration absorbs the rounding

error from the previous projection. As a result, the distance in the projected space

will approach the underlying distance in a similar manner as the original projection.
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In the computation of PCA projection, we scale each basis vector with a large e-

nough multiplier not only to absorb the fractional parts of the basis vector but also the

scalar α used in Fastmap. Let the ith basis vector of PCA be pi = η(pi1, p
i
2, . . . , p

i
m1

)T

where i = 1, . . . , m2 withm2 being the target PCA dimension. The encrypted-domain

PCA projection of the Fastmap projection of q can be computed as follows:

Encpk [Ppca(Pfm(q))i] := Encpk
[
Pfm(q)

Tpi

]
= Encpk

[
m1∑

j=1

αPfm(q)j
ηpij
α

]

=

m1∏

j=1

Encpk [αPfm(q)j]
ηpij
α (5.7)

≈

m1∏

j=1

Encpk [αPfm(q)j]
round

(

ηpij
α

)

(5.8)

(5.9)

The scalar η is selected so that the loss of precision due to rounding is sufficiently

small.

The last step of the process is to quantize the projection Ppca(Pfm(q)). We only

consider the quantization step size in powers of two so that the quantization process

can be performed in the encrypted domain: first, we use the secure bit extraction

routine EXTRACT to compute the binary representation of Encpk [Ppca(Pfm(q))].

Then, we drop the lower order bits based on the chosen step-size. The resulting

bits are recombined to form the binary representation to the encrypted bin index

Encpk(B).

In order to obtain the cell index f(B), we need an additional cryptographic tool:

a homomorphic collision-resistant hash function hPKh
(·) with the following homomor-
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phic property [114, 115]:

hpkh(x+ y) = hpkh(x) · hpkh(y) (5.10)

Our implementation is based on [114]. Bob generates both the public key pkh and

the secret key for this hash function, and shares the public key with Alice. Instead of

directly publishing the mapping f(·) between the bin index and the corresponding cell

indices, Bob publishes an obfuscated mapping f ′(·) such that f(B) = f ′(hpkh(B)).

The hash function sufficiently scrambles all the bin indices so that the distribution

of Bob’s data among all the bins classified in the KAQ algorithm is disguised as

random sampling in the range of the hash function. To prevent Alice from launching

a dictionary attack on the table, the length of the bin index must be large enough.

This can be accomplished, for example, by padding random projections of the query to

make the bin index longer. The cell indices will be published without any obfuscation

– little information is leaked through them as it is shared knowledge between Alice

and Bob that there are roughly N/k distinct cell indices, each of them occurring

around k times.

The reason we need the homomorphic property (5.10) is to help Alice in computing

hpkh(B). After Bob finishes the computation of Encpk(B), he picks a random r,

computes hpkh(r) and Encpk(B − r) and sends them to Alice. Alice then decrypts

Encpk(B− r), computes hpkh(B− r) and uses the homomorphic property to compute

hpkh(B) = hpkh(B − r) · hpkh(r). After that, Alice performs a table lookup to find

f ′(hpkh(B)) = f(B). If there are multiple cell indices in f(B), Alice should not send

all of them to Bob because he may use this information to significantly reduce the
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possible choices of B as overlapped bins are rare. Instead, Alice should send one

cell index first. Then, she re-encrypts her probe and reruns the entire dimension

reduction and index selection process as if she was a different user. The same f(B)

will be computed and Alice sends Bob the second index. The whole process is repeated

until all the cell indices in f(B) are exhausted or a match occurs.

SELECT (Protocol 13) summarizes the above process on how Bob can identify

the cell to which q belongs. As for the security of Protocol 13, steps 1 through 4 are

processing in encrypted domain and thus reveal no secrets to either parties. Steps

5 and 6 allow Bob to identify the cell indices to which q belongs. As we assume

Bob to be semi-honest, Bob will not deviate from the protocol by adding any iden-

tifiable information to the public table f ′(·). Alice has no incentive to deviate from

this protocol as a wrong cell index will erase any chance of success in the subsequent

encrypted-domain matching with the elements in the cell. The complexities of Pro-

tocol 13 are O(m1m2 +m2l) on Bob side and O(m2l) on Alice side, where m1 is the

Fastmap dimension, m2 is the PCA dimension and l is the bit length of the scaled

PCA coordinates. The communication costs are O(m1 +m2l) encrypted numbers.

83



Protocol 13 Secure Cell Index Selection SELECT
Require Alice: Probe q; Bob: Fastmap pivot objects, PCA basis, and quantization
step-size in PCA space, {2qi for i = 1, . . . , m2}; Public: Scrambled Mapping f̃ , De-
terministic homomorphic cipher with unknown secret key Encpk∗,r∗(·)
Ensure Bob gets f(B) where B ∈ Ω contains q

1. Alice and Bob computes Encpk [Ppca(Pfm(q))i] for i = 1, . . . , m2.

2. Bob creates an empty list G := φ.

3. Quantization of the projection: for i = 1, . . . , m2,

a) Bob and Alice execute R := EXTRACT[Encpk (Ppca(Pfm(q))i)] to get the
encrypted binary representation of the ith dimension of the projection of
q.

b) Bob discards qi lower order encrypted bits from R and add the remaining
bits to the set G.

4. Bob recombines individual encrypted bits in G to create a single encrypted
Encpk(B).

5. Bob generates a random number r, compute and sends Alice Encpk(B− r) and
hpkh(r).

6. Alice decrypts Encpk(B−r), computes hpkh(B) = hpkh(B−r) ·hpkh(r) and uses
it look up the cell indices f(B) = f ′(hpkh(B)).

7. If f(B) has multiple cell indices, Alice will send the first one to Bob, wait for a
random amount of time, re-execute this entire procedure, and sends the second
cell index. The process is repeated until all cell indices in f(B) are exhausted
or a match occurs.

5.2 Experiments

In this section, I first list the scalable experiment results implemented on kAQ and

validate a key assumption used in the kAQ scheme that privacy is better preserved by

grouping iris patterns that are far apart from each other into the same cell. Further-

more, I study the impact of different neighborhood structures carefully to improve

the performance of kAQ.
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Table 5.1: Time and Communication Complexities of kAQ

Process Bob’s Time in sec. Alice’s Time in sec. Communication (Kbits)

SELECT* 2149.842 3.455 5522
* Fastmap dimension m1 = 100; PCA dimension m2 = 20 and l = 64.

5.2.1 Complexity of kAQ

I have mentioned in Section 4.4.1 that for a database of 10,000 iris, my ABAC sys-

tem is estimated to take 41,490 seconds or 11.5 hours and 120 MBytes of network

bandwidth. On the other hand, in a k-anonymous ABAC system, the fixed setup

time are the Query Preparation and the SELECT process as shown in Table 5.1. The

matching complexity depends only on k but not on the size of the database, except

for the rare cases in which the probe falls into an overlapped bin. Apart from these

exceptions, for the same database of 10,000 iris patterns using a k-ABAC system with

k = 50, the time required is only 650 seconds and the bandwidth is 1.3 MBytes.

5.2.2 Privacy and Biometric Similarity

To illustrate my assumption that grouping patterns close to each other in the same

kAQ cell may reveal important privacy information to the biometric server, I need to

show that individuals who are blood-related tend to have biometric patterns that are

closer to each other than unrelated individuals. In this section, we test this hypoth-

esis based on CASIA-IrisV3-Twins iris database – that is, the modified Hamming

distances among twins are smaller than those of non-twins.

There are 3183 iris images from 100 pairs of twins in CASIA-IrisV3-Twins iris

database. We extract all twins’ left iris images for comparison. The feature extraction
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Figure 5.2: Distribution of IrisCode Hamming Distances

code obtains 1118 accurate iris codes, which result in 3351 Hamming Distances (HDs)

between twins and 617631 HDs between non-twins. Figure 5.2 shows the distribution

of these two types of HDs. There is a significant amount of overlap between the two

distributions.

As HDs are between 0 and 1 and are clearly non-Gaussian, we perform the

distribution-free Wilcoxon Rank-Sum Test between these two samples to determine

if there is a statistical difference between the two distributions [110, Ch.15]. We label

the samples from twins’ HDs as X and the samples from non-twins’ HDs as Y . Let u1

and u2 be the averages of X and Y respectively, and m and n be the total number of

samples from X and from Y . To make the size of the two set of samples comparable,

3351 random samples are randomly selected from Y so that m = n = 3351. The null

hypotheses is H0 : u1 − u2 = 0 and the alternative hypothesis is Ha : u1 − u2 < 0.

When we pool the samples from X and from Y into a combined sample of size m+n,

these observations are sorted from the smallest (rank 1) to the largest (rank m+ n).
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We then consider the sum of ranks of all samples from X as our test statistic W , i.e.

W =
∑m

i=1Ri where Ri is the rank for the i-th sample of X . The test procedure is

one-tailed since, for small W value, H0 would be rejected in favor of Ha. Due to the

large sample size, the distribution of W can be approximated by Gaussian(µW , σ2
W )

if H0 is true where

µW =
m(m+ n+ 1)

2
= 11.2× 106 (5.11)

and

σ2
W =

mn(m+ n + 1)

12
= 6.27× 109 (5.12)

Our data shows that the measured W = 9.78 × 106. Thus, the P-value of the null

hypothesis in our one-sided test can be calculated as follows:

P-value = Prob(W ≤ 9.78× 106)

≈ Φ

(
W − µW

σW

)

= 6.17× 10−75

where Φ(·) is the cumulative distribution function of a standard normal random

variable. The small P-value strongly suggests the rejection of the null hypothesis

and suggests the alternative hypothesis. In other words, the HDs between twins are

indeed smaller than the HDs between non-twins. This demonstrates the validity of

the assumption used in kAQ that grouping iris patterns closer to each other in the

same cell may leak important identity information as, at the very least, twins are

more likely to be grouped together.
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5.2.3 Neighborhood Structures in kAQ

In this section, we evaluate the effectiveness of the four neighborhood structures

described in Section 5.1.1. All the binary iris patterns are first projected to a lower

dimensional Euclidean feature space via a combination of Fastmap and PCA, followed

by an uniform lattice quantization. We have tested three different dimensions for the

feature space: m = 10, 20, 40, and four different quantization levels per dimension: 2,

4 and 8 bins. While higher dimension and finer quantization provide a more accurate

characterization of the neighborhoods, they also demand a larger lookup table in the

cell selection phase. The experiments conducted in this section are geared to study

the appropriate parameters so as to provide 100% recognition rate with minimal

complexity.

We use CASIA-IrisV3-Lamp iris database in all the experiments in this section. To

ensure that the raw dataset allows perfect recognition, we remove a small number of

noisy samples to produce a revised dataset of 1948 samples – a total of 160 individuals

are included in the dataset, and all iris patterns obtained from the same individuals

are at most 0.35 hamming distance from each other and at least 0.40 to the closest

pattern from a different individual. Furthermore, each individual eye contains at least

six good samples. We withhold one random sample for testing and use the remaining

ones for building the neighborhood structure.

For each test pattern, we measure the number of neighborhoods that contain this

pattern, or the overlap number, and whether the correct neighborhood is included, or

the recognition rate. The ideal overlap number is one indicating that only the correct
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neighborhood is returned. A large overlap number implies that many neighborhoods

will be passed to the second phase of encrypted-domain processing which results in

an increase in complexity. An overlap number smaller than one indicates that the

lookup fails to return any neighborhoods and results in a reduction in recognition

rates, though a perfect recognition is not guaranteed by a large overlap number. The

average overlap numbers and average recognition rates over all the test patterns are

reported in Table 5.2.
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Table 5.2: Bins’ overlap and recognition rate (%) in different dimensions (m)

bin 2 4 8
Overlap Rec. Overlap Rec. Overlap Rec.
number rate number rate number rate

Mean Std (%) Mean Std (%) Mean Std (%)
m = 40

(1) ǫ-ball with a maximum radius 3.11 1.9 98.75 2.76 2.16 99.38 2.97 4.12 99.38
(2) ǫ-ball with a statistical radius 0.96 0.35 91.88 1.00 0.37 92.50 0.96 0.22 95.00
(3) ǫ-ball with different ǫ 0.81 0.5245 74.38 0.80 0.56 73.12 0.76 0.42 76.25
(4) bounding box 0.54 0.53 52.50 0.50 0.52 48.75 0.24 0.43 24.38

m = 20
(1) ǫ-ball with a maximum radius 18.63 6.83 99.38 25.74 16.94 100 28.48 26.76 100
(2) ǫ-ball with a statistical radius 2.91 1.79 91.25 3.31 2.78 94.38 2.12 2.21 96.88
(3) ǫ-ball with different ǫ 2.27 1.43 80.00 2.36 2.00 78.13 1.64 1.38 77.50
(4) bounding box 2.08 1.29 75.63 1.38 1.16 70.00 0.56 0.58 48.75

m = 10
(1) ǫ-ball with a maximum radius 63.98 10.25 99.38 51.48 26.82 100 76.30 36.85 100
(2) ǫ-ball with a statistical radius 18.06 5.56 92.50 18.80 12.38 93.75 9.99 10.08 96.88
(3) ǫ-ball with different ǫ 12.50 4.22 80.00 11.13 7.50 80.00 6.44 5.82 79.38
(4) bounding box 14.17 3.93 83.75 9.76 6.69 80.00 2.48 2.64 66.25
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From the results in Table 5.2, we first notice that for the same level of recognition,

the average overlap number decreases when the number of dimensions m increases.

This can be explained by the fact that a lower-dimensional feature space introduces

much distortion and cannot approximate the original hamming distance well. Since

high overlap numbers will increase search complexity in the subsequent encrypted-

domain processing, we will focus only on higher dimension of 20 and 40.

Second, for dimensions m = 20 and m = 40, the ǫ-ball with maximum radius

produces an almost perfect recognition rate but at a cost of average overlap numbers

as high as 2.76 for m = 40 and 25.74 for m = 20. Comparatively, the other three

schemes all have much smaller overlap numbers. Among them, only the ǫ-ball with

statistical radius achieve recognition rates over 90%. The worst is the bounding box

with recognition rates between 24.38% to 75.63%. It is worth noting that both of the

statistical neighborhood structures, i.e. ǫ-ball with a maximum radius and ǫ-ball with

statistical radius, have better recognition rates than the individual-customized neigh-

borhood structures including ǫ-ball with different ǫ and bounding box. Customized

neighborhoods are trained using only a small number of training samples from each

individual and thus are prone to poor classification results. The dominance of statis-

tical neighborhood structures in recognition rate becomes more pronounced with the

increase of the quantization levels per dimension. This can be explained by the fact

that finer quantization levels result in more precise characterization of the neighbor-

hood structures.

In order to achieve 100% recognition rate among the top performers, we increase

the number of test patterns to two and take the union of all the neighborhoods
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returned from both patterns. If the noise from these two patterns are independent,

the recognition rate should improve at the expense of slightly higher complexity due

to the increase number of neighborhood returned. To test this idea, we withhold an

additional sample from each individual and redo the experiments for m = 20 and

m = 40. We also adjust slightly the values of the statistical radius for the best

recognition rate with the least increase of the standard deviation. The results are

shown in Table 5.3.
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Table 5.3: Bins’ overlap and recognition rate (%) with 2 - test patterns

bin 2 4 8
Overlap Rec. Overlap Rec. Overlap Rec.
number rate number rate number rate

Mean Std (%) Mean Std (%) Mean Std (%)
m = 40

(1) ǫ-ball with a maximum radius 3.91 2.25 100 3.39 2.56 100 3.36 4.15 100
(2) ǫ-ball with a statistical radius 1.78 1.09 100 2.00 1.29 100 1.32 0.73 100
(3) ǫ-ball with different ǫ 0.88 0.49 81.25 0.89 0.47 82.50 0.86 0.35 85.62
(4) bounding box 0.76 0.48 73.75 0.71 0.47 70.62 0.42 0.49 42.50

m = 20
(1) ǫ-ball with a maximum radius 27.70 9.67 100 34.43 18.99 100 37.46 28.35 100
(2) ǫ-ball with a statistical radius 14.15 6.08 100 17.26 11.39 100 10.55 10.99 100
(3) ǫ-ball with different ǫ 2.95 1.61 86.25 2.90 2.01 86.25 2.09 1.74 86.25
(4) bounding box 2.54 1.31 86.25 1.69 1.13 81.88 0.70 0.56 61.88
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The new recognition rates among all configurations of statistical neighborhood

structures are 100% but the average overlap numbers increase significantly for 20

dimension. Since all the overlap numbers are above 10, that is at least 10 fold

increase in the complexity of encrypted domain processing, it is unreasonable to

use any schemes with in 20 dimensions. Among the two statistical schemes in 40

dimensions, ǫ ball with statistical radius have lower average overlap numbers.

As for the number of bins, there do not seem to be much difference in terms of

both average overlap numbers and recognition rates. On the other hand, the price

of using high dimensions and large bin numbers is a very large quantized feature

space with a great number of bins. As described in Section 5.1.1, the k-AQ requires

a public table that lists out all the bin indices (scrambled) within each neighborhood

and the corresponding cell ID. A direct consequence of a large space is a huge table

which will take up significant storage space and increase the lookup time. A simple

approach to measure the size of the table would be the average number of bins per

neighborhood. Another factor to consider is the scalability of the feature space – as

the dimension and the number of bins increase, the quantized feature space becomes

bigger but so does each neighborhood. An important question to ask is the total

number of neighborhoods that can be fit within the feature space without increasing

the average overlap number. The average overlap numbers measured in Tables 5.2

and 5.3 are based on our test set of 160 neighborhoods or individuals. As such,

it is impossible for us to accurately measure the average overlap number when the

database is 10 or 100 times bigger. We calculate the optimistic estimate of scalability

based on the ratio of volumes between the whole feature space and a neighborhood.
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The results are tabulated in Table 5.4.
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Table 5.4: Number of bins per neighborhood and Scalability (number of neighborhoods in space) for different structures

bin 2 4 8
# bins/nbd scalability # bins/nbd scalability # bins/nbd scalability

m = 40
(1) ǫ-ball with a maximum radius 3.78× 1011 2.92 1.80× 1012 6.73× 1011 1.63× 1020 8.14× 1015

(2) ǫ-ball with a statistical radius 2.13× 1010 51.61 1.93× 1011 6.26× 1012 1.61× 1018 8.26× 1017

m = 20
(1) ǫ-ball with a maximum radius 9.33× 105 1.12 7.44× 106 1.48× 105 4.75× 1011 2.43× 106

(2) ǫ-ball with a statistical radius 1.76× 105 5.95 1.20× 106 9.14× 105 1.15× 1010 1.00× 108
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We observe from Table 5.4 that none of configurations under 2 bins are scalable

enough to hold more than 52 neighborhoods and some are as low as 1.12. As the

number of bins increase, both the number of bins per neighborhood and the scalability

measure increase. For 20 dimensions, the scalability measures are in the range of 105

to 108 neighborhoods in the whole space. However, configurations in 20 dimensions

do not produce adequate overlap numbers and we will need to use 40 dimensions.

The number of bins per neighborhood increases significantly. For 4 bins in the ǫ-ball

with statistical radius, the scalability is 6.26×1012 which is more than adequate. The

number of bins per neighborhood is 1.93 × 1011. Each bin index can be represented

by 80 bits or 10 bytes and the cell ID is in the order of the size of the database. Thus,

16 bytes would be a reasonable size for one entry in the table, which implies that it

will take roughly 2TB to store all the bins for one individual.
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Chapter 6

Application: Privacy-protected Video Surveillance Network

In this chapter, an application based on biometric matching is implemented in video

surveillance network. Anonymous subject identification is just the beginning of pri-

vacy protection of trusted people. When these trusted individuals enter into the

monitoring environment, there are subsequent work to deal with their anonymous

identity to further protect their privacy.

This chapter is organized as follows: after introducing four problems in privacy-

protected video surveillance system in Section 6.1 and the composition of my privacy-

protected video surveillance camera network in Section 6.2, I design Privacy Informa-

tion Management (PIM) system that supports anonymous authentication of privacy

information retrieval using biometric signals in Section 6.3. The following experiment

result will show the validity of my scenario in Section 6.4.

6.1 Problems in Privacy-protected Video Surveillance System

There are four main problems needed to be addressed in developing a privacy-

protected surveillance system:

1. How to protect the sensitive visual information?

2. How to recover the protected privacy information?
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3. Who should be protected?

4. Who can recover the protected privacy information?

Most of the existing literature focus on the first two problems. The first problem is on

approaches to obfuscate visual information of an individual so that the true identity

cannot be revealed and the overall quality of the surveillance video is preserved. Many

schemes have been proposed in the literature ranging from the use of black boxes or

large pixels in [4], face replacement in [116], body replacement in [38], to complete

object removal in complete object removal in [117]. The second problem considers the

“privacy data preservation” issue – the original data must be preserved in a secure

but reversible manner as they can be used to authenticate the obfuscation process

and to provide defensible evidence in legal settings. Existing approaches include

scrambling [118, 119] and data hiding [8].

The remaining two problems on the “who’s” in privacy surveillance systems re-

ceive far less attention in the research community. The first “who” question deals

with the identification of individuals whose imageries in the surveillance video require

obfuscation, which has been solved with the use of convenient and highly discrimina-

tive biometric signals like iris patterns in the previous Chapters. In this chapter, I

will address the second “who” question – to provide selective and anonymous access

to the preserved privacy information.

The predominant approach in the literature to the second “who” question is to set

up an access policy so that different groups can access different videos – for example,

in a corporation, the security camera officer may have access to video contents of
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all visitors but not the employees; the chief privacy officer will have access to video

contents of visitors and all employees except for the executive team but the law en-

forcement, with a proper order from the court, will have access to the true original

footage. While such a static access policy is sufficient for small organizations, individ-

ual users can quickly lose control of their privacy information in a large organization

in which the membership of different access groups are highly dynamic and typically

beyond the control of individual users.

In this chapter, I advocate treating the privacy visual information of an individual

in the same manner as any other privacy information such as personal financial or

medical information – each access of the information must require a full consent from

the corresponding user. This posts a technical challenge because the surveillance

system cannot associate the imagery with the unknown identity of the individual as

protected by the ABAC process. To solve this problem, we propose a novel Privacy

Information Management (PIM) system that uses biometric signals in encrypting

the privacy video. The biometric signal acquired during the ABAC stage will be

combined with a user specified passcode in encrypting a random AES key used to

encrypt the video. The passcode is used to ensure that the system cannot determine

the true identity of the user through exhaustive search of the biometric database.

Two SMC protocols, one for encryption and one for retrieval, are developed to ensure

the privacy of both the plaintext biometric signals and privacy visual information.
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6.2 Privacy-Protected Video Surveillance Network

My privacy-protected video surveillance camera network is composed of a number of

intelligent camera systems. The intelligent camera system is responsible for segment-

ing, tracking, encrypting, and obfuscating the visual imagery corresponding to each

individual based on the privacy bit from ABAC [94]. Background subtraction and

shadow removal are first applied to extract foreground moving blobs from the video.

Objects are tracked based on the position and size of the bounding box as well as

its centroid velocity. The velocity is updated at a fixed adaption rate α using the

formula below:

vt = αvt−1 + (1− α)v̂t (6.1)

where vt−1 is the velocity state from the previous time and v̂t is the current ob-

served velocity. A blob association process is used to associate each observed blob to

the closest track within its tracking gate. A candidate track is established for each

non-associated blob and it will become a formal track after receiving observations

continuously for a few frames. A track will be deleted from the tracker if no observa-

tions are associated with the track for an extended period of time. Each individual

track provides a temporally-consistent labeling of each image object. Image objects

corresponding to protected individuals are extracted from the video, each padded

with black background to make a rectangular frame and compressed using an H.263

encoder [120]. The compressed bitstreams are encrypted along with other auxiliary

information used by the privacy information management system. The encryption

process is described more fully in Section 6.3.1.
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Figure 6.1: Privacy protected surveillance system

The empty regions left behind by the removal of objects can be obfuscated by

a myriad of different schemes ranging from black box, colored silhouette to full ob-

ject removal. Figure 6.1 shows the output of two smart cameras, alongside with a

video feed at the lower right from a separate camera showing the raw video scene.

Two of the three individuals are obfuscated using a blue box and a red silhouette

respectively. In the lower video output, one can see that occlusion occurs between

the two protected individuals. When occlusion occurs, the two objects momentarily

merge with each other into a single blob and will only reappear as two blobs when

the occlusion has passed. While motion segmentation during occlusion is a well-

studied topic in computer vision, its accuracy is still far from perfect. To prevent

privacy leakage between recorded videos for different individuals, video objects from

the occluding tracks are discarded. The obfuscation will still be performed based

on the segmentation scheme in [117] which uses the velocity of the bounding box

and texture similarity. While Figure 6.1 shows the outputs of only two cameras, our

system design is geared towards supporting a large number of cameras covering the
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entire surveillance area. It is crucial to have overlapping views between cameras so

as to maintain consistent object tracking from the biometric reader to all the exits.

In fact, our camera placement algorithm produces a network design such that every

possible object position is observed by at least two cameras [121]. The correspon-

dences between object tracks from different camera views are established based on

the “visual tagging” approach - for each blob, we use a simple ellipse fitting scheme

to identify the head. The center of the head casts an epipolar line on every other

camera view based on the previously estimated fundamental matrices among all pairs

of cameras in the network. Intersections of epipolar lines in the proximity of a head

centroid from the local camera establish the correspondences among tracks from dif-

ferent cameras [121]. Corresponding tracks in the two camera views in Figure 6.1 are

marked with the same colored obfuscation.

6.3 Privacy Information Management (PIM)

In this section, we describe the Privacy Information Management (PIM) system that

supports anonymous authentication of privacy information retrieval using biometric

signals. The setting is that the server (Bob) has a database of encrypted video

segments and a biometric reader at a remote computer representing a user (Alice)

wants to access a privacy video segment of Alice at a given time. Alice and Bob will

engage in a retrieval protocol over a public network. The security and privacy goals

of this protocol, in addition to those from the ABAC module, are listed as follows:

1. Alice should have access to all of her raw video segments.
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2. Alice does not have access to raw video segments of any other users.

3. Bob does not have access to any raw video segments and has no knowledge of

the identity of the user associated to each video segment.

4. Bob must authenticate Alice’s identity using her biometric signals but cannot

have access to the raw biometric signals.

An additional design goal is to provide efficient retrieval due to the high data

rate needed for processing and communicating video segments. A typical secure file

system with different user accounts can easily satisfy the first two goals. However, a

file system will associate each video file with an individual user, thus failing to satisfy

the third goal. Using alias for a user will not work as neither the ABAC system nor

the camera network provides any identity information about a video segment and

thus Bob cannot tell if two different segments contains the same user. The fourth

goal is different from that of the ABAC module as it is not enough to just validate

Alice’s membership status – the system also needs to grant access to the specific

videos containing Alice’s imagery. While the fourth goal requires the use of biometric

signals, the fact that Bob has the biometric database should not provide him with

any additional knowledge in ascertaining Alice’s identity from her retrieval request.

The problems in designing the PIM module are similar to those of the Private

Information Retrieval (PIR) [122], with video segments being the data records and

biometric signals being the keys. Our design is in fact an adaptation of a PIR system

to (1) allow variability in biometric signals between the time when the signal is first

captured during ABAC and when retrieval request is made, and (2) support low
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computation and communication overhead by using a surrogate data record, rather

than full video in the PIR protocols. Our proposed design consists of two protocols:

the first one is the encryption of the privacy imagery in video based on the biometric

signal obtained during the ABAC process. The second protocol is invoked during

the retrieval process where the decryption is performed using the biometric signals.

These two protocols are described below.

6.3.1 Privacy Information Encryption

The privacy information encryption protocol shown in Protocol 14 is executed after

Bob has ascertained, via the ABAC module, that the subject entering the surveillance

needs to be protected. The biometric reader (Alice) still possesses the biometric signal

in plaintext. In addition, the reader will acquire a passcode from the subject. The

length of the passcode should be in the same order as the biometric signal, which

means that it is likely to be generated via a pseudo-number generator based on a

shorter seed sequence from the user. This passcode is not stored for identification

purpose but the combination of the biometric signal and the passcode is needed for

later retrieval of the privacy information.

A new party, the camera (Charlie), will join the protocol. Charlie is responsible

for redacting pixels corresponding to the subject for privacy protection, encrypting

the raw pixels of the subject and recording both the redacted video and privacy

information to a database controlled by Bob. All three parties are assumed to be

semihonest connected through a public network with plaintext biometric signals and

videos treated as private information not to be shared with other parties.
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Protocol 14 Privacy Information Encryption

Require Alice: Biometric probe q, passcode p and a randomly generated keys
(sk, pk) for an additive homomorphic cipher; Bob: Decision bit s from ABAC; Char-
lie: video segment v containing the protected subject.
Ensure Bob stores the encrypted privacy video and auxiliary information that satisfy
the security goals.

1. Bob acknowledges the decision bit to Alice and Charlie. This protocol aborts
if the subject requires no protection.

2. Alice sends the one-time public key pk to Charlie.

3. Charlie randomly generates an AES key k and encrypts the privacy video v to
AES(v, k). AES is used as it can be efficiently implemented for high-rate video
data. Charlie encrypts the AES key k with pk to create Enc(k, pk), and sends
AES(v, k) and Enc(k, pk) to Bob.

4. Alice sends pk, sk⊗Hash(p), and q⊗Hash(sk) to Bob where p is the passcode,
q is the biometric probe, and Hash() is a non-invertible collision-resistant hash
function. The private key sk is destroyed.

5. For each video v, Bob creates a shared video surrogate data record R and a
private video surrogate data record S indexed by the time of the day and the
camera-ID:

R = {sk ⊗Hash(p), Enc(k, pk)} (6.2)

S = {pk,q⊗Hash(sk)} (6.3)

R will be shared with the requester during the retrieval process described in
Section 6.3.2. The encrypted video record AES(v, k) is joint indexed by R and
S.

Protocol 14 does not leak any private information among different parties. The

proof is as follows: Alice does not gain any information about the biometric database

or videos of other users as she only receives a single decision bit from Bob about the

result of her membership validation. Charlie receives pk from Alice which is randomly

chosen public key and thereby gains no information about Alice. Charlie does not

receive any information from Bob.

Bob receives data from both Alice and Charlie. These data include pk, sk ⊗
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Hash(p), q⊗ Hash(sk), AES(v, k) and Enc(k, pk). The biometric signal q is pro-

tected by the hash Hash(sk) of the one-time secret key sk, which is protected by the

hash Hash(p) of the passcode p. It is straightforward to see that Bob cannot gain

any information about v or k from Charlie or q, p and sk from Alice. The video v

is protected by k which in turn is protected by pk. v can only be decrypted if and

only if sk is known. sk is protected in sk ⊗Hash(p) – while this is not a one-time

pad as Hash(p) is fixed for a given user, our protocols will ensure that sk is never

available to Bob and as such Bob will never has access to Hash(p). sk, however, will

be obtained by Alice during the retrieval process as described in Section 6.3.2.

In the case when Alice’s passcode p or Hash(p) is stolen or eavesdropped by an

attacker, q ⊗ Hash(sk) is used to authenticate the requester as part of a GC used

during the retrieval stage in Section 6.3.2. The use of GC also protects q against

anyone who may have access to sk. As sk is random and sk ⊗Hash(p) provides no

information about Hash(sk), q⊗Hash(sk) provides an one-time pad encryption of

q to prevent Bob from knowing anything about the user’s identity.

6.3.2 Privacy Information Retrieval

The privacy information retrieval protocol in Protocol 15 is used when a user wants

to retrieve her private video information from the video database stored at the server.

We assume that Alice represents the biometric reader which has access to both

Alice’s biometric signal q′ and her passcode p′. Note that the biometric signal q′

can be different from that used in the encryption protocol, but their iriscode distance
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Protocol 15 Privacy Information Retrieval

Require Alice: Probe q′ and passcode p′; Bob: Encrypted Video Database and the
associated surrogate records.
Ensure Alice obtains al her private videos.

1. Alice requests Bob to send over her videos that match Alice’s query on camera
IDs and time of recording.

2. Bob identifies the resulting set as Imatch and notifies the size of this set to Alice.

3. Iterate the following steps for each pair of shared and private surrogate records
Ri and Si in Imatch for i = 1, 2, . . . , |Imatch|.

4. Bob perturbs the last field Enc(ki, pki) of Ri by replacing it with Enc(ki+ri, pk)
where ri is a random number. This can be done due to the homomorphism of
Enc(). The new shared surrogate record Ri and the corresponding encrypted
video AES(vi, ki) are sent to Alice.

5. Alice extracts ski ⊗ Hash(pi) from Ri and computes sk′ , ski ⊗ Hash(pi) ⊗
Hash(p′). Alice obtains the real private key ski if and only if p′ = pi, provided
that the hash function is collision-free.

6.

ci = δd(q′,qi⊗Hash(ski)⊗Hash(sk′))≥ǫ (6.4)

ai = (ci ∗ si)⊗ ri. (6.5)

The private inputs from Alice are q′ from the reader and Hash(sk′) from step
5. The private inputs from Bob are qi ⊗Hash(ski) in Si, the threshold ǫ from
the ABAC module (Section 4.2), ri from step 4, and a new random number
si. dH() is the modified Hamming distance using a common mask as described
in Section 4.2.3. The output ai should be un-garbled by Alice. This circuit is
designed to produce ai = ri if ski = sk′ and d(q′,qi) < ǫ.

7. Alice decrypts Enc(ki + ri, pki) from Ri by using sk′ and computes k′ = ki +
ri − ai, which is equal to ki if and only if sk′ = ski (for correct decryption) and
ai = ri.

8. Alice decrypts AES(vi, ki) by using k′

under the common mask is assumed to be within the threshold ǫ. Furthermore, we

assume the biometric reader in the retrieval process is not the same reader used in

the encryption process. As such, the retrieval reader has no access to the random

108



encryption keys generated during the encryption process.

The proof of privacy of Procedure 15 is as follows. The only usable information

Bob receives in this procedure is Alice’s query on the target time of day and camera

ID’s, which are not private information. On the other hand, Alice receives a great

deal of information from Bob. Bob must make sure that (i) Alice is who she claims

by checking both her iriscode and passcode, and (ii) Alice can only decrypt her own

videos. This can be accomplished by enforcing that Alice can only retrieve the AES

keys ki that correspond to her videos. The definition of the shared surrogate record

in (6.2) implies that ki is protected by the private key ski, which in turn is protected

by the passcode p alone. This is clearly inadequate as the live probe q′ is not used.

To incorporate q′ in the authentication process, Bob first perturbs the encrypted

AES key ki in step 4 by adding a random ri in the encrypted domain before sending

the shared record to Alice. While step 5 allows Alice to recover the private key sk′,

the random ri can only be revealed by a joint execution of the GC in step 6. Note that

the condition (6.4) in step 6 may return 0 even if sk′ 6= ski but Hash(sk′)⊗Hash(sk)

happens to negate the differences between q′ and qi. The occurrence of this situation

should be extremely unlikely, and the fact that sk′ 6= ski prevents the AES k from

being decrypted even if ri is revealed. Steps 7 and 8 completes the remaining steps

by recovering first the AES key and finally the actual video.

6.4 Experiments

In this section, we focus on the implementation details and performance analysis of

the PIM system as described in Section 6.3. The privacy information encryption
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protocol described in Protocol 14 relies on a public-key homomorphic cipher, a hash

function, and an AES cipher for protecting the original video imageries. We use the

Paillier cryptosystem for the public-key cipher because of its additively homomorphic

property over a large dynamic range for computation [87]. Our Paillier implemen-

tation is based on the Paillier Library developed by J. Bethencourt [109]. The key

length of the Paillier cipher is set to be 1024 bit which results in 2048-bit cipher-

texts. The 1024-bit security parameter guarantees short-term security for up to year

2014 [91]. A large table of pre-generated private and public keys are stored at the

reader which randomly selects a key pair for each entering individual. As we need

a hash function that can generate a hash value with the same length as the Paillier

encrypted ciphertext, we simply use a deterministic version of Paillier with a fixed

key as the hash function. For video encryption, we use a 256-bit AES system and

employ the video encryption model in [123, Ch.5] to encrypt the H.263 video bit-

stream pertinent to each individual. The encryption time of the 256-bit AES key

using the Paillier system is on average 17.47 ms. The decryption time is 33.52 ms

and the encrypted-domain addition amounts to 30.60 µs. The main computation

and storage burden of the entire protocol are dominated by the AES encryption the

private video, which varies depending on the number of protected individuals and the

time duration of each protected individual inside the surveillance perimeter. Since

the AES implementation is not our original work, we do not analyze the computa-

tion and communication complexity of video encryption. The privacy information

retrieval protocol described in Protocol 15 needs an additional GC circuit to match

the live probe from the requester with the stored data. To match the short-term secu-
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rity of Paillier, we adopt 80-bit security parameter for our GC implementation. The

result GC circuit has 2071 non-XOR gates with total runtime measured at 215ms for

comparing a pair of 2048-bit iriscode and 9655 non-XOR gates at 549ms for 9600-bit

iriscodes.
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Chapter 7

Conclusions and Future directions

In this dissertation, I have proposed Anonymous Biometric Access Control (ABAC)

and Privacy Information Management (PIM) that enable the anonymous use of bio-

metric signals in a privacy-aware video surveillance system. For ABAC, my research

focuses on the use of iris patterns to determine the privacy protection status of an

incoming individual. While HE based ABAC is intuitive, recent advancements makes

GC a more attractive choice for ABAC. In addition, one can exploit the nature of iris

code in further reduce the matching complexity. I have discovered that the complexi-

ty of the GC implementation heavily depends on the use of individual iris masks. My

experiments have demonstrated that while making the masks public as suggested by

other work can leak privacy information, using a common mask for all comparisons

can significantly reduce the complexity with negligible loss in recognition accuracy.

To further reduce the computational and communication complexities, I have pro-

posed a framework called the k-Anonymous ABAC system that tradeoffs privacy

and complexity by quantizing the search space into cells, each of which contains at

least k members. Complexity is reduced by restricting the encrypted domain search

process to a small number of cells. Privacy is measured by the dissimilarity of the

smallest cell. A greedy quantization scheme on a reduced-dimensional space called
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k-Anonymous Quantization has been devised to derive the optimal quantization that

maximizes privacy. Secure procedures have been proposed to perform the dimensional

reduction and cell lookup.

As an application of anonymous biometric matching in privacy-preserving environ-

ment, I have designed a PIM system that protects all surveillance videos with privacy

information and allows any user to anonymously access his/her own imageries. The

proposed system uses the user’s biometric signal and a secret passcode obtained dur-

ing the ABAC process to encrypt a secret key for unlocking the original video imagery.

The retrieval process is based on a combination of homomorphic encryption and GC

to authenticate the identity of the user, while guaranteeing that the user cannot gain

any information about other users, and the system knows nothing about the identity

of the user or the actual video contents.

Future work include validation of the common mask assumption with a larger

database, improved performance in SMC-based similar iris search through hierarchical

clustering of data, and a distributed implementation of the PIM system in a large

camera network. Also, using cloud-based distribution computing to anonymously

match biometric signals, especially under malicious mode with the involvement of

untrusted third computing party, could be a new direction for efficient anonymous

biometric matching in privacy-preserving environment.
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