3 research outputs found

    Provably convergent OSEM-like reconstruction algorithm for emission tomography

    No full text

    Motion Correction and Pharmacokinetic Analysis in Dynamic Positron Emission Tomography

    Get PDF
    This thesis will focus on two important aspects of dynamic Positron Emission Tomography (PET): (i) Motion-compensation , and (ii) Pharmacokinetic analysis (also called parametric imaging) of dynamic PET images. Both are required to enable fully quantitative PET imaging which is increasingly finding applications in the clinic. Motion-compensation in Dynamic Brain PET Imaging: Dynamic PET images are degraded by inter-frame and intra-frame motion artifacts that can a ffect the quantitative and qualitative analysis of acquired PET data. We propose a Generalized Inter-frame and Intra-frame Motion Correction (GIIMC) algorithm that uni fies in one framework the inter-frame motion correction capability of Multiple Acquisition Frames and the intra-frame motion correction feature of (MLEM)-type deconvolution methods. GIIMC employs a fairly simple but new approach of using time-weighted average of attenuation sinograms to reconstruct dynamic frames. Extensive validation studies show that GIIMC algorithm outperforms conventional techniques producing images with superior quality and quantitative accuracy. Parametric Myocardial Perfusion PET Imaging: We propose a novel framework of robust kinetic parameter estimation applied to absolute flow quantification in dynamic PET imaging. Kinetic parameter estimation is formulated as nonlinear least squares with spatial constraints problem where the spatial constraints are computed from a physiologically driven clustering of dynamic images, and used to reduce noise contamination. The proposed framework is shown to improve the quantitative accuracy of Myocardial Perfusion (MP) PET imaging, and in turn, has the long-term potential to enhance capabilities of MP PET in the detection, staging and management of coronary artery disease

    QUANTITATIVE NUCLEAR MEDICINE IMAGING USING ADVANCED IMAGE RECONSTRUCTION AND RADIOMICS

    Get PDF
    Our aim is to help put nuclear medicine at the forefront of quantitation on the path to the realization of personalized medicine. We propose and evaluate (Part I) advanced image reconstruction and (Part II) robust radiomics (large-scale data-oriented study of radiological images). The goal is to attain significantly improved diagnostic, prognostic and treatment-response assessment capabilities. Part I presents a new paradigm in point-spread function (PSF)-modeling, a partial volume correction method in PET imaging where resolution-degrading phenomena are modeled within the reconstruction framework. PSF-modeling improves resolution and enhances contrast, but significantly alters noise properties and induces edge-overshoots. Past efforts involve a dichotomy of PSF vs. no-PSF modeling; by contrast, we focus on a wide-spectrum of PSF models, including under- and over-estimation of the true PSF, for the potential of enhanced quantitation in standardized uptake values (SUVs). We show for the standard range of iterations employed in clinic (not excessive), edge enhancement due to overestimation actually lower SUV bias in small regions, while inter-voxel correlations suppress image roughness and enhance uniformity. An overestimated PSF yields improved contrast and limited edge-overshoot effects at lower iterations, enabling enhanced SUV quantitation. Overall, our framework provides an effective venue for quantitative task-based optimization. Part II proposes robust and reproducible radiomics methods. Radiomics workflows are complex, generating hundreds of features, which can lead to high variability and overfitting, and ultimately hampering performance. We developed and released a Standardized Environment for Radiomics Analysis (SERA) solution to enable robust radiomics analyses. We conduct studies on two unique imaging datasets – renal cell carcinoma SPECT and prostate cancer PET – identifying robust and reproducible radiomic features. In addition, we evaluate a novel hypothesis that radiomic features extracted from clinically normal (non-ischemic) myocardial perfusion SPECT (MPS) can predict coronary artery calcification (CAC; as extracted from CT). This has important implications, since CAC assessment is not commonly-performed nor reimbursed in wide community settings. SERA-derived radiomic features were utilized in a multi-step feature selection framework, followed by the application of machine learning to radiomic features. Our results show the potential to predict CAC from normal MPS, suggesting added usage and value for routine standard MPS
    corecore