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Abstract 

Our aim is to help put nuclear medicine at the forefront of quantitation on the path to realization of 

personalized medicine. We propose and evaluate (Part I) advanced image reconstruction and (Part 

II) robust radiomics (large-scale data-oriented study of radiological images). The goal is to attain 

significantly improved diagnostic, prognostic and treatment-response assessment capabilities. 

Part I presents a new paradigm in point-spread function (PSF)-modeling, a partial volume correction 

method in PET imaging where resolution-degrading phenomena are modeled within the 

reconstruction framework. PSF-modeling improves resolution and enhances contrast, but 

significantly alters noise properties and induces edge-overshoots. Past efforts involve a dichotomy 

of PSF vs. no-PSF modeling; by contrast, we focus on a wide-spectrum of PSF models, including under- 

and over-estimation of the true PSF, for the potential of enhanced quantitation in standardized 

uptake values (SUVs).  

We show for the standard range of iterations employed in clinic (not excessive), edge enhancement 

due to overestimation actually lower SUV bias in small regions, while inter-voxel correlations 

suppress image roughness and enhance uniformity. An overestimated PSF yields improved contrast 

and limited edge-overshoot effects at lower iterations, enabling enhanced SUV quantitation. Overall, 

our framework provides an effective venue for quantitative task-based optimization. 

Part II proposes robust and reproducible radiomics methods. Radiomics workflows are complex, 

generating hundreds of features, which can lead to high variability and overfitting, and ultimately 
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hampering performance. We developed and released a Standardized Environment for Radiomics 

Analysis (SERA) solution to enable robust radiomics analyses. We conduct studies on two unique 

imaging datasets – renal cell carcinoma SPECT and prostate cancer PET – identifying robust and 

reproducible radiomic features.  

In addition, we evaluate a novel hypothesis that radiomic features extracted from clinically normal 

(non-ischemic) myocardial perfusion SPECT (MPS) can predict coronary artery calcification (CAC; as 

extracted from CT). This has important implications, since CAC assessment is not commonly-

performed nor reimbursed in wide community settings. SERA-derived radiomic features were 

utilized in a multi-step feature selection framework, followed by the application of machine learning 

to radiomic features. Our results show the potential to predict CAC from normal MPS, suggesting 

added usage and value for routine standard MPS. 

 

Thesis Committee: 

Prof. Arman Rahmim 
Department of Electrical and Computer Engineering,  
Department of Radiology and Radiological Sciences (advisor, primary reader) 

Prof. Yong Du 
Department of Radiology (secondary reader) 

Prof. Jerry L. Prince 
Department of Electrical and Computer Engineering 

Prof. Jin Kang 
Department of Electrical and Computer Engineering  



iv 
 

 

Acknowledgments 

He who does not express gratitude to creatures, has not expressed gratitude to The Creator. 

-Prophet Mohammad 

Many individuals have contributed to the successful completion of my work during the Ph.D. 

program. I would like to thank my advisor, Dr. Arman Rahmim, for his consistent support and faith 

in me from the very beginning while providing me with extremely valuable guidance throughout 

these years. His decent mentorship and patience were a great motivation for my learning. He taught 

me how to be a world-class researcher that is respected by peers from both academia and industry 

across the world. Our detailed discussions and making sure that I have truly understood the topics 

investigated enabled me to develop excellent attention to details. Things I have learned from Dr. 

Rahmim are beyond those just related to my research. He was keen to educate us to be more 

productive and have goals. He was extremely humble when interacting with other people regardless 

of their education or wealth or position in society.  

I would like to thank Dr. Martin Pomper, the Director of the Division of Nuclear Medicine and 

Molecular Imaging at Johns Hopkins University, Department of Radiology, for providing funding and 

support during my Ph.D. degree. His open vision of stepping beyond typical clinical projects in the 

division has paved the way for novel research involving artificial intelligence and machine 

learning/deep learning. Also, I would like to especially thank him for his trust, motivation, and 

providing me the opportunity to be involved in writing a major research grant.  



v 
 

I have learned from many individuals from the Division of Nuclear Medicine and Molecular Imaging, 

including faculty and residents. I would like to thank Dr. Yong Du, for kindly agreeing to be in my 

dissertation committee as the reader, and for being a humble friend and providing best advice on 

many different fronts to me. I would like to thank Dr. Steven Rowe for allowing me to engage in many 

different state-of-the-art clinical research projects in nuclear medicine. Many of my radiomics 

projects were co-advised by Dr. Rowe. I would also like to thank Dr. Martin Lodge for many fruitful 

discussions during all these years. Furthermore, I would like to thank Dr. Dean Wong and the 

neuropharmacology lab, including Drs. James Brasic and Anil Mahur. I would also like to express 

gratitude to our great collaborators Drs. Som Javadi and Chahid Civelek, as well as Andrew Crabb and 

Jeff Leal from our division.  

A very special thanks to many radiology and nuclear medicine residents for their help. My special 

thanks go to Dr. Pejman Dalaie, a dear friend of mine with whom I spent a number of months 

collecting the cardiac dataset, and who was greatly dedicated to the project. He has taught me a lot 

about nuclear cardiology. Other great residents who helped us with our project and provided a better 

perspective on the clinical aspect of our research projects, include Drs. Charles Marcus, Payam Ghazi, 

Mehdi Taghipour, Esther Mena, Pouya Aghajari, Michael DiGianvittorio, Mohammad Salehi 

Sadaghiani, Rima Tulbah, Krystyna Jones, and Yafu Yin.  

Other special thanks go to Dr. Jerry Prince from my primary department, electrical and computer 

engineering. Dr. Prince is without a doubt an excellent example of a great mentor and teacher. His 

medical imaging systems course was my most favorite course and the only course that I later TA’ed. 

The course and the teaching assistantship were both very challenging, but through his smooth 

guidance became great learning experiences. Also, as one of my Ph.D. qualifying exam examiners, he 

managed to turn a two-hour-long oral exam that I thought would be extremely difficult to one of my 

best exams ever, as Dr. Prince turned it to an extremely great learning experience that I eventually 

learned something from. I would also like to thank Dr. Jin Kang for kindly agreeing to be in my 



vi 
 

dissertation proposal and defense committees. I would like to thank Drs. Jeffery Siewerdson and 

Jeffery Web Stayman for the great X-ray and CT imaging course that I learned a lot, and for kindly 

agreeing to be in my graduate board oral exam committee.  I want to thank Dr. Michael Gorin from 

the department of urology for including me in very exciting research projects on prostate cancer and 

renal cancer.  

I had the great opportunity to work besides and learn from some of the world’s top researchers in 

nuclear medicine, some of which used to be a part of Johns Hopkins but moved elsewhere. A special 

thanks to Dr. Thomas Schindler for his great guidance and extremely fretful discussions, especially 

regarding the cardiac SPECT project, that won a fellowship and a young investigator award 

recognition. I would like to thank Dr. Rathan Subramaniam for allowing me to be a part of multiple 

oncologic projects during his presence at Johns Hopkins. Many thanks to Dr. Abhinav Jha for great 

discussions. I would like to also thank Drs. Richard Wahl and Yon Zhou. Other external faculty to 

whom I owe acknowledgments include Drs. Adam Alessio, Dan Kadrmas, Mathieu Hatt, Usama 

Mawlawi, Alex Zwanenburg, and Martin Vallières.  

I wish to dedicate a paragraph to the amazing people in our Quantitative Tomography lab led by Dr. 

Rahmim, being some of the greatest and most supportive people. I would like to start by thanking Dr. 

Nicolas Karakatsanis for his excellent mentorship and great support during my earlier days at our 

lab. I also thank Dr. Hassan Mohy-ud-Din for very productive conversations. A special thanks to my 

friend Kevin H. Leung for being very contributing and dedicated to some of my projects during the 

past two years, and during our classes. I wish to thank Isaac Shiri for stepping forward and including 

me in great collaboration projects. I would like to also thank Drs. Madjid Soltani, Rongkai Yan, 

Yuanyuan Gao, as well as Sima Fotouhi, Yansong Zhu, and Ryan VanDenBurg.  

I had the unique opportunity to collaborate with amazing individuals from industry. I would like to 

acknowledge and thank the support provided by Siemens Healthineers during the first two years of 



vii 
 

my program, and then later to providing me the chance to spend time as an intern at the company. A 

very special thanks to the director of Research and Clinical Collaborations, Dr. Darrell Burckhardt, 

for providing me with the opportunity to try different areas of the research and development at 

Siemens molecular imaging (MI), and for his great mentorship. I would like to also thanks Drs. 

Michael Casey, Vladimir Pannin, Ramya Rajaram, and many others from Research and Development 

of Siemens MI. I also thank MIM software for providing us with the free research license used in many 

of our projects. Moreover, I thank the support provided to me by the society of nuclear medicine and 

molecular imaging (SNMMI), American association of physicists in medicine (AAPM), and 

international electrical and electronic engineers (IEEE) for providing me support in the forms of 

awards and fellowships.  

A very sincere and special thanks goes to my best friends, Drs. Shahabeddin Torabian and Safoora 

Seddigh, and their lovely baby Aula for their limitless support, love, and friendship. Outside of work, 

we were just like a family, or even closer. They were there for me during all these years in Baltimore 

in times of happiness, sickness, and pressure. During my overloaded first semester that I was arriving 

home after 2AM, hot dinner was ready for me. I cannot thank them enough. Also, many thanks to our 

amazing community in Baltimore with awesome people that made some of my best memories. 

Special thanks to Drs. Seyyed Alireza Mortazavi, Mehdi Taghipoor, Elaheh Bordbar, Hossein Hezaveh, 

Pegah Ghahremani, Heydar Davoodi, Mohammed G. Saleh, Mehdi Hamzei, Narges Hamzei, Reza 

Kaimasi, Sajjad Salehi, Fereshteh Alamifard, Reza Seyfabadi, Ehsan Variani, and Ehsan Hamidi, as well 

as Zeinab Vessal, Zeinab Ameri, Ebrahim RajabTabar, Haniyeh Ataei, Farshid AlamBeigi, Hamid 

Foroughi, Somayyeh Gharaee, Mr. Azami and family, and Mr. Hosseini and family. 

Last but definitely not least, my outmost appreciation goes to my beloved family, for their decades of 

uncompromising support and love. They were the main motivation behind my success from early 

days at school until today, making sure I am at the best place and school at every step of my education. 

May God reward them with health and prosperity.   



viii 
 

 

Dedication 

 

To my beloved family for their consistent and uncompromising love and support.  

  



ix 
 

 

Table of Contents 

ABSTRACT .............................................................................................................................................................................. II 

ACKNOWLEDGMENTS ........................................................................................................................................................ IV 

DEDICATION ...................................................................................................................................................................... VIII 

TABLE OF CONTENTS ......................................................................................................................................................... IX 

LIST OF FIGURES .............................................................................................................................................................. XVII 

LIST OF TABLES .................................................................................................................................................................. XV 

1. INTRODUCTION ............................................................................................................................................................ 1 

1.1. MEDICAL IMAGING IN TODAY’S MEDICINE ................................................................................................................................. 1 

1.2. NUCLEAR MEDICINE AND TOMOGRAPHIC IMAGING .................................................................................................................. 3 

1.2.1. Single photon emission ....................................................................................................................................................... 4 

1.2.1.1. Anger camera .................................................................................................................................................................................. 4 

1.2.1.2. Single Photon Emission Computed Tomography (SPECT) .......................................................................................... 7 

1.2.1.3. SPECT/CT and its applications in nuclear medicine ...................................................................................................... 7 

1.2.2. Positron Emission ................................................................................................................................................................. 8 

1.2.2.1. Positron emission tomography (PET) ............................................................................................................................... 10 

1.2.2.2. Image acquisition in PET ........................................................................................................................................................ 10 

1.2.2.3. Hybrid PET/CT and PET/MRI .............................................................................................................................................. 15 

1.2.2.4. Applications of PET imaging ................................................................................................................................................. 16 

1.2.3. Tomographic image reconstruction .......................................................................................................................... 22 

1.2.3.1. Image reconstruction basics ................................................................................................................................................. 22 



x 
 

1.2.3.2. Statistical image reconstruction .......................................................................................................................................... 24 

1.2.4. Causes of image degradation and quantitative inaccuracy in nuclear medicine .................................. 26 

1.2.4.1. Attenuation ................................................................................................................................................................................... 28 

1.2.4.2. Scattered events ......................................................................................................................................................................... 31 

1.2.4.3. Random events ........................................................................................................................................................................... 32 

1.2.4.4. Positron range effect ................................................................................................................................................................ 33 

1.2.4.5. Photon non-collinearity .......................................................................................................................................................... 35 

1.2.4.6. Detection deadtime ................................................................................................................................................................... 36 

1.2.4.7. Detector blurring ....................................................................................................................................................................... 36 

1.2.4.8. Variations in detector sensitivity ........................................................................................................................................ 39 

1.2.4.9. Decay of radioactivity .............................................................................................................................................................. 40 

1.2.4.10. Geometric correction................................................................................................................................................................ 40 

1.2.4.11. Patient motion ............................................................................................................................................................................. 41 

1.3. MEDICAL IMAGING QUANTITATION AND BIOMARKERS .......................................................................................................... 41 

1.3.1. Image quantitation ............................................................................................................................................................ 41 

1.3.2. Quantitative imaging biomarkers ............................................................................................................................... 43 

1.3.2.1. Standard Uptake Value (SUV)—an important quantitative biomarker .............................................................. 44 

1.4. TOWARDS PERSONALIZED MEDICINE WITH RADIOMICS ......................................................................................................... 45 

1.4.1. Personalized medicine in oncology ............................................................................................................................. 47 

1.4.2. Radiomics ............................................................................................................................................................................... 50 

1.4.3. Applications of Radiomics ............................................................................................................................................... 50 

1.4.3.1. Oncology ........................................................................................................................................................................................ 52 

1.4.3.2. Non-oncological applications ................................................................................................................................................ 52 

1.4.3.3. Combination of radiomics and other “-omics”............................................................................................................... 52 

1.5. OUR MOTIVATION AND OVERVIEW OF EFFORTS ..................................................................................................................... 53 

PART I: ENHANCED QUANTITATION USING ADVANCED IMAGE RECONSTRUCTION .................................... 55 

2. ADAPTIVE POINT-SPREAD FUNCTION (PSF) MODELING FOR ENHANCED QUANTITATION IN PET 

IMAGE RECONSTRUCTION ............................................................................................................................................... 56 



xi 
 

2.1. PARTIAL VOLUME EFFECT IN PET............................................................................................................................................. 56 

2.1.1. Methods for Partial Volume Effect Correction ...................................................................................................... 60 

2.1.2. PSF Modeling in PET ......................................................................................................................................................... 61 

2.1.2.1. Types of PSF modeling ............................................................................................................................................................. 61 

2.1.2.2. Pros and Cons of PSF modeling ............................................................................................................................................ 63 

2.1.3. Motivation .............................................................................................................................................................................. 64 

2.2. ADAPTIVE IMAGE-BASED PSF MODELING ................................................................................................................................ 66 

2.2.1. Introduction .......................................................................................................................................................................... 66 

2.2.1.1. Aims of the study ........................................................................................................................................................................ 66 

2.2.2. Methods ................................................................................................................................................................................... 66 

2.2.2.1. Generalized image-based PSF modeling .......................................................................................................................... 66 

2.2.2.2. Quantification task performance ................................................................................................................................... 69 

2.2.3. Results ...................................................................................................................................................................................... 70 

2.2.4. Discussion ............................................................................................................................................................................... 72 

2.3. ADAPTIVE PROJECTION-BASED PSF MODELING ....................................................................................................................... 72 

2.3.1. Introduction .......................................................................................................................................................................... 73 

2.3.2. Modeling a PET system in analytical PSF modeling ........................................................................................... 73 

2.3.3. Methods ................................................................................................................................................................................... 77 

2.3.3.1. Simulation and phantom configuration ............................................................................................................................ 77 

2.3.3.2. Image reconstruction ............................................................................................................................................................... 78 

2.3.3.3. Generalized PSF-modeling ..................................................................................................................................................... 79 

2.3.3.4. Signal and noise figures of merits for quantitative analysis .................................................................................... 82 

2.3.4. Results ...................................................................................................................................................................................... 86 

2.3.4.1. Reconstructed images .............................................................................................................................................................. 87 

2.3.4.2. Contrast recovery analysis ..................................................................................................................................................... 91 

2.3.4.3. Noise-bias performance comparison ................................................................................................................................ 94 

2.3.5. Discussion ............................................................................................................................................................................ 106 

2.3.5.1. Noise vs. bias analysis ............................................................................................................................................................ 106 

2.3.5.2. Important factors in quantitation analysis ................................................................................................................... 107 



xii 
 

2.3.5.3. Noise metrics ............................................................................................................................................................................. 109 

2.3.5.4. Comparison with past efforts ............................................................................................................................................. 111 

2.3.6. Conclusion ........................................................................................................................................................................... 112 

PART II: ENHANCED QUANTITATION USING ADVANCED IMAGE PROCESSING AND RADIOMICS .......... 114 

3. STANDARDIZED RADIOMICS IN NUCLEAR MEDICINE IMAGING ............................................................. 115 

3.1. INTRODUCTION ........................................................................................................................................................................... 115 

3.1.1. Motivation ........................................................................................................................................................................... 116 

3.1.2. Radiomics workflow ....................................................................................................................................................... 116 

3.1.3. A brief introduction to radiomic features calculations .................................................................................. 118 

3.1.3.1. Image preprocessing .............................................................................................................................................................. 118 

3.1.3.2. Radiomic features .................................................................................................................................................................... 121 

3.2. PROPERTIES OF RESPONSIBLE AND REPRODUCIBLE RADIOMICS RESEARCH .................................................................. 136 

3.2.1. Causes of variability in the radiomics workflow ................................................................................................ 137 

3.2.2. The image biomarker standardization initiative (IBSI) ................................................................................ 138 

3.2.3. Standardized Environment for Radiomics Analysis (SERA) ......................................................................... 139 

3.2.3.1. SERA configurations ............................................................................................................................................................... 139 

3.2.4. Results of our IBSI standardization effort ............................................................................................................ 140 

3.2.4.1. Observations .............................................................................................................................................................................. 141 

3.2.5. Properties of an effective radiomic feature ......................................................................................................... 141 

3.2.5.1. Repeatability .............................................................................................................................................................................. 141 

3.2.5.2. Reproducibility ......................................................................................................................................................................... 141 

3.2.5.3. Redundancy ................................................................................................................................................................................ 142 

3.2.5.4. Offers value with regards to a given clinical endpoint ............................................................................................. 142 

3.3. FEATURE SELECTION AND REPRODUCIBILITY OF RADIOMIC FEATURES IN NUCLEAR MEDICINE ................................ 142 

3.3.1. Reproducibility of Cold Uptake Radiomics in 99mTc-Sestamibi SPECT Imaging of Renal Cell 

Carcinoma ................................................................................................................................................................................................. 143 

3.3.1.1. Introduction ............................................................................................................................................................................... 143 

3.3.1.2. Methods ....................................................................................................................................................................................... 144 



xiii 
 

3.3.1.3. Results .......................................................................................................................................................................................... 145 

3.3.1.4. Discussion ................................................................................................................................................................................... 149 

3.3.2. Reproducibility of Radiomic features in 18F-DCFPyL PET Imaging of Prostate Cancer................... 150 

3.3.2.1. Introduction ............................................................................................................................................................................... 150 

3.3.2.2. Methods ....................................................................................................................................................................................... 151 

3.3.2.3. Results .......................................................................................................................................................................................... 152 

3.3.2.4. Discussion ................................................................................................................................................................................... 155 

3.3.3. Conclusion ........................................................................................................................................................................... 156 

4. RADIOMICS ANALYSIS OF CLINICAL MYOCARDIAL PERFUSION STRESS SPECT IMAGES TO IDENTIFY 

SUBCLINICAL CORONARY ARTERY DISEASE ........................................................................................................... 158 

4.1. INTRODUCTION ........................................................................................................................................................................... 158 

4.1.1. Myocardial Perfusion stress SPECT test ................................................................................................................ 158 

4.1.1.1. Basics of Myocardial Perfusion Imaging ........................................................................................................................ 158 

4.1.1.2. Applications of MP SPECT imaging .................................................................................................................................. 161 

4.1.2. Coronary artery calcification quantitation using coronary artery calcium scoring ........................ 161 

4.1.3. An overview of our framework .................................................................................................................................. 164 

4.2. RADIOMICS OF MPS TO PREDICT CORONARY ARTERY CALCIFICATION ........................................................................... 165 

4.2.1. Three Steps in Our Study .............................................................................................................................................. 166 

4.2.2. Methods ................................................................................................................................................................................ 166 

4.2.2.1. Patient collection...................................................................................................................................................................... 166 

4.2.2.2. Image segmentation ............................................................................................................................................................... 167 

4.2.2.3. Radiomics Framework ........................................................................................................................................................... 168 

4.2.2.4. Statistical Analysis ................................................................................................................................................................... 169 

4.2.3. Analyses and Results ...................................................................................................................................................... 169 

4.2.3.1. Analysis of dataset statistics ............................................................................................................................................... 169 

4.2.3.2. Feature selection ...................................................................................................................................................................... 175 

4.2.3.3. Outcome prediction ................................................................................................................................................................ 182 

4.2.4. Discussion ............................................................................................................................................................................ 192 

4.2.4.1. Challenges with the proposed idea .................................................................................................................................. 192 



xiv 
 

4.2.4.2. Radiomics intuition ................................................................................................................................................................. 194 

4.2.4.3. Our other efforts ....................................................................................................................................................................... 194 

4.2.4.4. The significance of the study ............................................................................................................................................... 195 

4.2.5. Conclusion ........................................................................................................................................................................... 195 

5. SUMMARY AND FUTURE WORK ........................................................................................................................ 197 

5.1. INTRODUCTION ........................................................................................................................................................................... 197 

5.2. CHAPTER 2: ADAPTIVE PSF MODELING ................................................................................................................................. 198 

5.2.1. Summary .............................................................................................................................................................................. 198 

5.2.2. Future work ........................................................................................................................................................................ 199 

5.3. CHAPTER 3: STANDARDIZED RADIOMICS ............................................................................................................................... 200 

5.3.1. Summary .............................................................................................................................................................................. 200 

5.3.2. Future work ........................................................................................................................................................................ 200 

5.4. CHAPTER 4: RADIOMICS OF MYOCARDIAL PERFUSION STRESS SPECT TO PREDICT CAC SCORE AS CAPTURED BY CT

 201 

5.4.1. Summary .............................................................................................................................................................................. 201 

5.4.2. Future work ........................................................................................................................................................................ 202 

REFERENCES ..................................................................................................................................................................... 204 

CURRICULUM VITAE ....................................................................................................................................................... 269 

  



xv 
 

 

List of Tables 

Table 1-1. Properties of commonly-utilized positron-emitting isotopes [76, 77] ..................................................................... 9 

Table 1-2. Table of commonly-used scintillation materials. Bismuth germanate (BGO), lutetium oxyorthosilicate 

(LSO), sodium iodide (NaI), and gadolinium oxyorthosilicate (GSO). .......................................................................................... 12 

Table 1-3. Comparison of two types of photo-detectors typically used in PET: PMTs and SiPMs [83] .......................... 13 

Table 1-4. Examples of positron-emitting radiotracers used in PET imaging, including targets and clinical 

applications. ........................................................................................................................................................................................................... 17 

Table 1-5. Definitions related to quantitative imaging and biomarkers [197, 198, 201] ................................................... 42 

Table 2-1. Ensemble Noise Values at convergence. .............................................................................................................................. 72 

Table 2-2. Kinetic parameters used in the simulation of the anthropomorphic phantom for [18F]-FDG tracer. 

References: myocardium and normal lung [408], normal liver [409], liver tumor [409] and bone [410]. ................. 79 

Table 2-3. List of scaling factors used to generate 20 PSF modeled kernel ............................................................................... 81 

Table 3-1. List of radiomic features in compliance with IBSI guidelines. For details on subtypes, refer to section 

Grey-level co-occurrence matrix (GLCM) on page 130. ................................................................................................................... 122 

Table 3-2. Different configurations of the IBSI standardization effort .................................................................................... 139 

Table 3-3. Results of our IBSI standardization effort ....................................................................................................................... 140 

Table 3-4. List of selected radiomic features categorized based on each feature class used in this study. .............. 153 

Table 4-1. Information recorded for every patient during dataset collection. ..................................................................... 167 

Table 4-2. Distribution of the race of the patients ............................................................................................................................. 171 

Table 4-3. Distribution of patients’ clinical factors ........................................................................................................................... 172 



xvi 
 

Table 4-4. The value of chi-squared distribution for each segment and feature configurations. The value of the 

chi-squared distribution with degree-of-freedom of 100 is 135.81, and values above this threshold (shown in 

bold) are considered significant under the null hypothesis. .......................................................................................................... 189 

 

 

 

  



xvii 
 

 

List of Figures 

 

Figure 1-1. Components of a typical Anger camera ............................................................................................................................... 5 

Figure 1-2. Positron annihilation. A) positron reaches thermal energy and meets an electron. B) they annihilate, 

producing two 511 keV gamma-ray photons travel 180° apart. A coincidence detection circuit can then 

determine whether they originate from a single annihilation event. ........................................................................................... 11 

Figure 1-3. ToF PET. A) a pair of photons from an annihilation is emitted and detected by opposing detectors. B) 

without ToF, there is no information regarding the whereabouts of the source along the LOR. During the 

backprojection, the event is backprojected with a uniform probability of originating anywhere along the LOR. C) 

In the presence of ToF information, some degree of localization is possible. ........................................................................... 15 

Figure 1-4. An illustration of static and dynamic PET. A) static conventional SUV imaging (70-90 minutes post-

FDG injection). Dynamic (parametric) images (0-90 minutes) of b) 𝐾𝑖, and c)𝑉, generated from a dynamic 

whole-body PET scan using Patlak plot with an image-derived input function and linear regression. Note the 

tumor uptake marked with a purple arrow on top of the liver that is notably visible in “b” but has dissolved in the 

background uptake in “a”................................................................................................................................................................................. 21 

Figure 1-5. A projection 𝑝𝑠, 𝜙 is generated from integration along all parallel LORs at an angle 𝜙. The 

projections from all angles are stacked on top of each other to generate a sinogram. ....................................................... 23 

Figure 1-6. Effect of attenuation correction in PET imaging. A) Non-attenuation-corrected (NAC) PET image, B) 

Attenuation-corrected (AC) image using C) CT image acquired with the PET/CT. D) A fused attenuation-

corrected and CT image together. ................................................................................................................................................................ 30 



xviii 
 

Figure 1-7. Example of a scattered event. One of the annihilation photons got scattered, but both are detected 

under an incorrect LOR ..................................................................................................................................................................................... 31 

Figure 1-8. Examples of single events that may contribute to random events. A) one photon never gets to the 

detectors due to photoelectric absorption or scattering. B) one photon passes through detectors without being 

detected. C) One photon does not meet detectors due to the orientation of the annihilation. The detection of the 

two single events, like in “A”, that happens within the coincidence time window, results in a random event. ......... 33 

Figure 1-9. Positron range effect. The emitted positron travels a distance and reduces its kinetic energy to 

thermal energy and annihilate upon meeting an electron. The detected LOR does not necessarily pass through 

the location where positron was emitted. ................................................................................................................................................. 34 

Figure 1-10. Photon non-collinearity effect. A slight deviation of two gamma-rays from 180° results in detecting 

the incidence from an incorrect LOR (dashed red) instead of the true LOR (dashed green). ............................................ 35 

Figure 1-11. Detector blurring effects. A) inter-crystal penetration, where the photon penetrates the adjacent 

crystal where it gets detected and causes a mispositioned LOR. B) inter-crystal scattering, where the scattering 

scintillation light gets detected on the other end of the crystal at an adjacent detector, causing a mispositioned 

LOR. ............................................................................................................................................................................................................................ 37 

Figure 1-12. The depth of interaction effect. It lowers the resolution for incidents occurs farther from the center 

of the FoV. ................................................................................................................................................................................................................ 38 

Figure 1-13. An example of a normalization sinogram for a 2D transaxial slice of a GE discovery PET scanner. .. 40 

Figure 1-14. An illustration of standard care vs. precision medicine. In the former approach, all patients undergo 

the same process/treatment, whereas in precision medicine, a subgroup of patients receive tailored care 

optimized to their clinical/molecular/genomics profile. ................................................................................................................... 46 

Figure 1-15. Imaging and ‘omics’ in various levels of biological studies .................................................................................... 47 

Figure 1-16. Heterogeneous tumors are more resilient to therapy compared to uniform tumors [239]. ................... 49 

Figure 1-17. PET images of four patients with head and neck cancer with their primary tumors delineated by a 

nuclear medicine physician (maroon line). Based on conventional quantitative imaging, all these tumors have 

almost the same SUVmax. the right three ROIs have almost the same volume, too. But does it mean that all these 

four patients have the same diagnosis and need the same therapy, or can we derive more information about the 

tumor phenotypes from these images? That’s where radiomics comes into play. .................................................................. 50 



xix 
 

Figure 1-18. The number of published articles about Radiomics shows an increase in interest ..................................... 51 

Figure 2-1. NEMA NU-2 image quality phantom. Left: an actual phantom design by a manufacturer. Six spheres 

inside the container are filled with known radioactivity. Right: a transaxial slice of the digitally-simulated NEMA 

NU-2 phantom that passes through the center of all the spheres. ................................................................................................. 58 

Figure 2-2. A 3D illustration of the partial volume effect (PVE). PVE results in spillover to nearby voxels and 

blurring. Left: 3D illustration of the true image of a 2D transaxial slice of NEMA NU-2 image quality phantom. 

Right: 3D illustration of the noise-free reconstruction of the slice on the left with OS-EM algorithm with 2 

iterations and 14 subsets. ................................................................................................................................................................................. 59 

Figure 2-3. XCAT digital anthropomorphic phantom, capable of realistically modeling the human body and 

widely used in imaging research. .................................................................................................................................................................. 67 

Figure 2-4. A transaxial slice of the XCAT phantom with a simulated lung tumor. The slice includes regions from 

lung, myocardium and blood pool. ............................................................................................................................................................... 67 

Figure 2-5. Blurring the true image using a Gaussian filter with size ℎ, which models the image degradation. ..... 68 

Figure 2-6. Poisson noise added on top of the already-blurred image to model the effect of noise. .............................. 68 

Figure 2-7. An example of a reconstructed image with ℎ = 9 and iteration 5. ....................................................................... 68 

Figure 2-8. SUVmean COV vs. SUVmean bias trade-off for iterations 1-20 ........................................................................................ 70 

Figure 2-9. SUVmax COV vs. SUVmean bias trade-off for iterations 1-20 .......................................................................................... 70 

Figure 2-10. Ensemble noise percent of added noise vs. contrast percent trade-off for iterations 1~100 .................. 71 

Figure 2-11. CRC trend for fixed iterations for different reconstruction filters. Filters with higher spread converge 

later than smaller filters. .................................................................................................................................................................................. 71 

Figure 2-12. XCAT generated phantom as reference images with liver tumor sizes of (left) 10mm, and (right) 

22mm. ........................................................................................................................................................................................................................ 77 

Figure 2-13. Isocontours of selected PSF modeled radial profiles: radial bins positions vs. radial bins. The 

intensity of contours is the probability of an incoming radial bin (LOR) from different angles (vertical axis) to a 

particular bin and its seven neighbor bins (zero for the centred bin and ±7 bins in the horizontal axis). The 

dashed line represents the LOR perpendicular to the detector element. Kernels 4, 6 and 8 are examples of 

underestimated and kernels 12, 15 and 18 are examples of overestimated PSF kernels. ................................................... 86 



xx 
 

Figure 2-14. Noise-free reconstruction images of liver tumor and background (cropped to include liver tumor 

and its background tissue) after 10 iterations and 7 subsets. Rows represent different tumor sizes. Columns 

starting from the left indicate no-PSF reconstruction, four under estimating PSF kernels (#3, #5, #7 and #9), 

true PSF, and four overestimating PSF kernels (#12, #14, #16 and #18). The intersection of white dashed lines 

indicates the center of the tumor in the true object. The center of the FOV is located at the left-hand side of the 

tumor, and hence the tumor edges in its left and right sides pointed at by A and C arrows are more pronounced 

than top and bottom indicated by B and D. ............................................................................................................................................. 88 

Figure 2-15. Noisy reconstruction images of liver tumor and background (cropped to include liver tumor) for 

iteration #10 iterations with 7 OS-EM subsets and no post-smoothing. Rows represent different tumor sizes. 

Columns starting from the left indicate no-PSF reconstruction four under estimating PSF kernels (#3, #5, #7 and 

#9), true PSF, and four overestimating PSF kernels (#12, #14, #16 and #18) ....................................................................... 91 

Figure 2-16. Averaged CRC of SUVmean and averaged CRC of SUVmax vs OS-EM iterations for six tumors over 200 

noise realizations. The dashed line highlights CRC=1. CRCmean plots have a fixed vertical axis range of [0.5, 1.3], 

and the range for CRCmax plots is fixed to [0.5, 3.5]. .............................................................................................................................. 92 

Figure 2-17. Image roughness vs. SUVmean bias for six tumors. Each point in the curves represents the results for a 

single OSEM iteration. ........................................................................................................................................................................................ 95 

Figure 2-18. SUVmean CoV vs. SUVmean bias for six tumors. Note that axes ranges are not the same for each plot in 

this figure. ................................................................................................................................................................................................................ 97 

Figure 2-19. SUVmax CoV vs. SUVmax bias for all six tumors. ............................................................................................................... 98 

Figure 2-20. Averaged max-min difference vs. SUVmean bias for each of the six tumors studied. .................................. 100 

Figure 2-21. MSE vs. PSF kernels. Each color indicates an OS-EM iteration. ......................................................................... 101 

Figure 2-22. MSE of SUVmean vs. PSF kernels. Note that each plot has a different scale. ................................................... 103 

Figure 2-23. Various quantification metrics vs. ROI diameters (in mm) at iteration 10 from different kernel sizes: 

(a) image roughness, (b) voxel variation, (c) SUVmean CoV, (d) SUVmax CoV, (e) SUVmean bias, and (f) SUVmax bias. 

Legends are the same as Figure 2-17. ...................................................................................................................................................... 104 

Figure 2-24. SUVmean bias vs. sphere diameters for iterations number (a) 5, (b) 7, (c) 11, and (d) 13. Legend is the 

same as Figure 2-17. ........................................................................................................................................................................................ 108 



xxi 
 

Figure 3-1. A typical radiomics workflow. Following image acquisition, the ROIs are segmented, then radiomics 

features are calculated from the segmented ROI. Features are narrowed down in the feature selection step. .... 117 

Figure 3-2. A 2D ROI over a prostate tumor on a PET image. The original segmented ROI has SUV values (middle 

matrix) with a certain size. The ROI is then resampled to a finer resolution and discretized with a fixed bin-size of 

𝑤𝑏 = 5 SUV. ......................................................................................................................................................................................................... 121 

Figure 3-3. A sample GLCM 2D matrix for direction (1,0) and distance 1. GLCM is calculated on the discretized 

intensity ROI. Each element of the GLCM matrix is the frequency of neighboring voxels 𝑖 and 𝑗 in the given 

direction and the given distance. For example, the GLs in this image are between 1 to 4. they are 6 co-occurrence 

of GL “1” with GL “2” in the “right” direction with distance one in the figure above as marked by green color. ... 129 

Figure 3-4. An example of GLRLM generation. The generated GLRLM is based on the (1,0) direction. Each element 

of GLRLM refers to the number of instances that a certain GL (rows) has appeared in the ROI with a certain run-

length (columns). For example, there are only 2 instances of GL “3” with run-length of “2” as marked by green 

color. ....................................................................................................................................................................................................................... 131 

Figure 3-5. The first 8 GLRLM features can be visualized by these weighting patterns for a 6 × 6 GLRLM. For 

example, short-run low GL, puts more weight towards “short run-lengths” that is towards the left side of the 

matrix, and “low GLs” that is towards the upper side of the matrix, creating a weighting pattern towards the 

upper-left side of the matrix, and calculating the feature based on this weighted-average. ......................................... 133 

Figure 3-6. An example of GLSZM. Each element 𝑖, 𝑗 represents the number of zones of connected voxels with grey 

level 𝑖 (rows) and zone size 𝑗 (columns). For instance, they are two instances of grey level 2 with size 1, as it 

marked with a black color. ........................................................................................................................................................................... 134 

Figure 3-7. Weighing patterns of the first 8 GLSZM features. A similar approach to Figure 3-5. ................................ 135 

Figure 3-8. Points of variability in a radiomics workflow aiming at radiomic feature calculation and selection.

 ................................................................................................................................................................................................................................... 138 

Figure 3-9. a) postcontrast CT image of a patient with Oncocytoma, b) 99mTc-sestamibi SPECT/CT scan of the 

patient shows high uptake, c) postcontrast CT image of clear cell RCC (CCRCC), d) 99mTc-sestamibi SPECT/CT 

scan of the same patient shows cold uptake. ........................................................................................................................................ 144 



xxii 
 

Figure 3-10. ICC type C-1 between all 363 radiomic features and segmentation: a) three segmentations (all 

except shrunk ROI) with 512 GLs, b) all four ROIs with 512 GLs, c) three segmentations (all except shrunk ROI) 

with 32 GLs, b) all four ROIs with 32 GLs. Feature classes introduced in Table 1. .............................................................. 147 

Figure 3-11. Absolute Spearman rank correlation between feature classes calculated with all eight GLs and 

GL=512. The figure shows consistent corr>0.8 for GL≥32 and all radiomic feature classes except NGTDM 2D .... 148 

Figure 3-12. Spearman correlation between tumor volume and top 20 most reproducible features with the 

highest Spearman correlation with volume, GL=512, manual segmentation. Most features exhibit a decreasing 

trend as the volume increases. Only for volumes>5cc other radiomic features may provide complementary 

information, that is due to the partial volume effect ........................................................................................................................ 149 

Figure 3-13. An example of a [18F]DCFPyL PET/CT image. “A” shows a coronal CT slice, “B” shows the 

corresponding PET slice, and “C” shows the fused PET/CT. Primary lesion in prostate gland is shown by a purple 

arrow in “B”, and three metastatic lesions in ribs are shown with orange arrows. ........................................................... 151 

Figure 3-14. Statistical distributions of SUVmax and MTV for 25 patients across 6 different segmentation methods, 

64 GLs of uniform quantization .................................................................................................................................................................. 153 

Figure 3-15. Heat map depicting the absolute value of Spearman correlation coefficients between pairs of 

textural features (left) and their log p-values (right). ..................................................................................................................... 154 

Figure 3-16. Spearman correlation of top 20 most reproducible features with the highest Spearman correlation 

based on and uniform quantization gray-levels with SUVmax (left) and MTV (right), with 64 uniform gray level 

and manual segmentation. Most features exhibit a decreasing trend as the range shortens. ....................................... 155 

Figure 3-17. ICC between all six segmentations for (left) and between only 2 user-guided segmentations (right) 

for all 92 features grouped into their feature families. ................................................................................................................... 155 

Figure 4-1. MP SPECT image of a patient with myocardial ischemia. The top and the bottom views show images 

acquired at stress and rest, respectively. The arrow shows decreased blood flow (reversibility) at the inferior wall 

in the stress image at the place of the arrow compared to the rest—a typical sign of myocardial ischemia. ....... 160 

Figure 4-2. Main coronary arteries of the heart: left main (LM) which divides into left anterior descending (LAD) 

and left circumference (LCX), and right coronary artery (RCA). Coronary artery calcification is present in LAD 

that results in reduced blood flow to this artery (pale color of the LAD). ............................................................................... 163 



xxiii 
 

Figure 4-3. Coronary artery calcification in three main arteries of a patient. The left image depicts slices of heart 

with CAC in their RCA and LAD, and the right image shows CAC in LCX. ................................................................................ 164 

Figure 4-4. Diagram of the problem addressed in this chapter: using radiomics of stress MP SPECT to predict CAC 

scores from CT. ................................................................................................................................................................................................... 165 

Figure 4-5. Three methods of segmentation used in our study. A) myocardium segment. B) 3 vascular segments of 

the heart (LAD, RCA and LCX), and C) subsets of 17 polar segments of the heart grouped into LAD, LCX and RCA.

 ................................................................................................................................................................................................................................... 168 

Figure 4-6. Distribution of patients’ A) age, B) weight, C) height and D) BMI at the time of scan grouped into 

male (orange) and female (blue) ............................................................................................................................................................... 171 

Figure 4-7. Distribution of LVEF in the dataset ................................................................................................................................... 173 

Figure 4-8. Distribution of our patients’ CAC score based on widely-used stratification criteria [486]. ................... 173 

Figure 4-9. Distribution of cardiac-related progression and patients’ death for normal patients in our dataset 174 

Figure 4-10. Heatmaps of Spearman rank correlation between A) 3D GLCM-averaged vs. 3D GLCM-merged, and 

B) 3D GLRLM-averaged vs. 3D GLRLM-merged. The diagonal of both plots have values >0.98 ................................... 178 

Figure 4-11. Spearman rank correlation between a selected feature of each segment (56 selected features) and 

the CAC of that segment. The maximum correlation observed in all plots is 0.15, which is mediocre. ...................... 183 

Figure 4-12. Spearman rank correlation p-value between a selected feature of each segment (56 selected 

features) and the CAC of that segment. ................................................................................................................................................... 184 

Figure 4-13. A simplistic flowchart of the algorithm. ....................................................................................................................... 188 

Figure 4-14. Distribution of absolute value of Pearson’s 𝜌 of the best fit out of 50 randomized trials of stepwise 

linear regression for radiomics, clinical and combined features, and for all 7 segmentations (the higher, the 

better). Adding radiomics to clinical features increases the correlation to the CAC score of the corresponding ROI.

 ................................................................................................................................................................................................................................... 190 

Figure 4-15. Distribution of p-values (log-scale) of the best fit out of 50 randomized trials of stepwise linear 

regression for radiomics, clinical and combined features, and for all 7 segmentations (the lower, the better). 

Adding radiomics to clinical features is seen to enhance the regression significance across all segmentations. . 191 

Figure 4-16. A normal MP stress SPECT with apical thinning. ..................................................................................................... 193 



xxiv 
 

Figure 4-17. A normal MP SPECT with severe calcification. This scan is reported as normal due to relatively 

uniform uptake with no reversibility and/or fixed defect, but the CAC CT scan shows an extraordinary CAC score 

of 2239. The promise of our proposed research is to be able to provide assistance in finding such cases with 

elevated CAC score. ........................................................................................................................................................................................... 194 

 

 

 

 



1 
 

 

1. Introduction 

Nuclear medicine imaging technology, coupled with image generation techniques, has dramatically 

improved compared to a few decades ago. At the same time, the apparent complexity and/or limited 

accuracy of quantitation methods remain bottlenecks that motivate developmental research. Our aim 

in this dissertation is to help put nuclear medicine at the forefront of quantitation on our path to the 

realization of personalized medicine. Our work proposes, implements and evaluates advanced image 

reconstruction as well as image processing techniques in nuclear medicine imaging, aiming to attain 

significantly improved diagnostic, prognostic, and treatment response assessment capabilities. 

1.1. Medical Imaging in Today’s Medicine 

Clinical practice has commonly consisted of diagnostic, prognostic, and treatment-related tasks [1]. 

Medical imaging has been a staple of clinical diagnosis workflow across many different specialties for 

decades and has substituted the need for some invasive procedures, particularly explorative 

surgeries.  

At the same time, applications of medical imaging have also gone beyond diagnosis to other clinical 

territories. Many studies use interpretations from medical images to improve prognosis in oncology 

[2-6], cardiology [7-12], and neurology [13-17]. Furthermore, medical imaging and in particular 

functional imaging modalities that capture the functionality of tissue cells, such as positron emission 

tomography (PET), are widely utilized in treatment planning [18-20], treatment monitoring [21-24], 

and treatment response assessment [25-30]. Medical imaging has also stepped up to enable newly-
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developed frontiers in medicine. An example is computer-aided diagnosis (CAD), which has been 

increasingly investigated and applied to assess diverse types of abnormalities as imaged via different 

modalities [31-39]. CAD-based assessment of breast cancer from mammograms is now a part of 

routine clinical work at many hospitals [31, 40-43], and there is significant research on different 

fronts.  

Another emerging area that has benefited significantly from medical images is theranostics. 

Theranostics, a combination of the terms therapeutics and diagnostics, describes the integration of 

targeted therapy and targeted diagnostic tests; e.g. use of a radioactive drug to image (diagnose) and 

another radioactive drug to deliver therapy (treat) cancerous tissue [44, 45]. The idea is “to treat 

what we see and to see what we treat”. Specific multifunctional materials can be employed for 

theranostics including polymers, magnetic, and inorganic nanoparticles that deliver therapeutic use, 

in addition to the ability to be fully functionalized with imaging agents. The latter enables one or more 

diagnostic imaging techniques such as MRI, nuclear medicine imaging (PET, single photon emission 

computed tomography (SPECT)), and even optical and fluorescence imaging [44, 46-52].  

Overall, advancements in imaging techniques have made medical imaging an essential component in 

most episodes of care. An important branch of medical imaging is nuclear medicine imaging, which 

presently enjoys numerous clinical applications and wide clinical usage. Our dissertation focuses on 

the development and validation of image reconstruction and processing techniques towards 

improved quantitation in nuclear medicine imaging. In what follows, we provide a brief introduction 

to nuclear medicine imaging. Subsequently, we discuss medical image quantitation and the concept 

of biomarkers in order to clarify the aims of our efforts. Specifically, we elaborate on the link between 

image quantitation and personalized medicine. We then introduce the field of radiomics, an “image 

processing” technique to characterize phenotypes of regions of interests in medical images. 

Following these introductions, we re-capture and summarize our motivations for this research and 

a list of publications in the course of our work.  
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1.2. Nuclear Medicine and Tomographic Imaging 

The field of nuclear medicine involves the administration of a radioactive-labeled pharmaceutical, or 

radiopharmaceutical, with the aim of providing diagnostic and/or therapeutic information in a wide 

range of disease states. Nuclear medicine imaging involves injecting a patient with a compound 

labeled with a gamma-emitting or positron-emitting radiopharmaceutical. These 

radiopharmaceuticals are sometimes referred to as radiotracers, or simply tracers. The tracer results 

in the emission of high-energy photons, some of which can exit the body. A set of detectors can then 

detect these exiting high-energy photons. The resulting data can be subsequently reconstructed to 

generated images of the distribution of the radiotracer inside the subject [53].  

Unlike X-ray and CT imaging where X-rays are emitted from an external source, transmitting through 

the body. In nuclear medicine imaging, photons are emitted from inside the body. Hence, X-ray and 

CT images are produced through transmission, while nuclear medicine images are obtained through 

emission of photons. Moreover, in contrast to X-ray, CT and MRI modalities that often produce images 

of anatomical structures (hence performing structural imaging), in nuclear medicine, the explicit aim 

is always to capture the biological behavior of a substance in the body [54]. The biodistribution of a 

given radiotracer is determined by physiological and biochemical functioning of the body that may 

not be apparent via structural imaging; thus, nuclear medicine is considered a functional imaging 

modality.  

Nuclear medicine imaging mainly consists of two broad classes: single photon emission, and positron 

annihilation photon emission. The former is the basis of 2D planar imaging (also known as 

scintigraphy or gamma scan), as well as single photon emission computed tomography or SPECT 

imaging, and the latter forms positron emission tomography or PET imaging. In what follows, we first 

discuss single photon imaging including basics of Anger cameras and SPECT imaging, followed by a 
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discussion of positron emission and PET imaging. Subsequently, we discuss tomographic image 

reconstruction, and specifically, statistical image reconstruction. We then elaborate on the causes of 

degradation in quality and quantitative accuracy for nuclear medicine images.  

 

1.2.1. Single photon emission 

1.2.1.1. Anger camera 

Single photon imaging involves the use of radiotracers that emit gamma-rays upon decay. It enables 

detection of a two-dimensional (2D) projection of the three-dimensional (3D) biodistribution of the 

radiotracer in the body. The resulting planar image, though 2D (with no explicit depth resolution) 

can still be diagnostically useful. Once the radiotracer is administered to the patient through 

injection, inhaling, etc., it gets circulated around the body and gets accumulated at certain tissue cells, 

e.g. bones, based on the type of the pharmaceutical. Subsequently, a considerable number of gamma-

rays will be emitted, especially originating at these target sites. On the outside, a gamma camera can 

be used to detect these incoming gamma-rays, convert the absorbed energy from the incoming 

gamma-rays to the detectors to electrical signals, and then form or reconstruct the image using 

reconstruction algorithms. This process happens in the so-called Anger scintillation camera or the 

gamma camera, which was invented in the late 1950s by Hal Anger of the Donner Lab at the 

University of California at Berkeley [54].  

The Anger camera is the most commonly-used imaging instrument in nuclear medicine today [54]. A 

simple diagram of its components is shown in Figure 1-1. The first component the gamma-rays 

encounter is the multi-hole lead collimator with a narrow gap that allows only the incoming photons 

at nearly normal angels to pass through. The gamma-rays originating from the body are emitted 

randomly in all direction. As such, the job of a collimator is to ensure that the detector only captures 

photons from a see-through angle of the collimator and prevent off-angled incoming photons to be 



Figure 1-1. Components of a typical Anger camera 
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a burst of light in the crystal comprising thousands of light (scintillation) photons [54]. This light is 

then channeled out of the back of the crystal where it arrives at an array of photomultiplier tubes 

(PMTs). PMTs receive photons at their front photocathode. For every photon received at the 

photocathode, an electron is released on the inside of the PMT (via the photoelectric effect). The 

electron subsequently goes through a series of electrodes called dynodes and is amplified. Each 

dynode release 3-6 electrons upon receiving one electron, and thus, through having 10-14 successive 

dynodes, one electron that arrives at the photocathode results in 106 to 108 electrons at the other end 

of the PMT (the anode). The output of the anode arrives at a positioning logic circuit, which 

determines the location of the events occurring on the face of the crystal and the combined output of 

all the PMTs [53, 56].  

Another component of the camera is the pulse height analyzer. The collimator only allows photons 

traveling in a predetermined direction to pass through and arrive seamlessly at the crystal; thus, a 

line originated at the scintillation event at the crystal through the collimator hole is assumed to arrive 

at the site of the origin of the photon, which is where the gamma-ray has left the radiotracer in the 

patient’s body. However, it is possible for the gamma-ray to undergo Compton scattering during this 

path. In Compton scattering, an incident photon ejects a valence electron from the outer shell of an 

atom. The incident photon then loses some of its own energy and changes its direction. A photon is 

said to be attenuated when it goes through one or more scatterings and gets distracted from its 

original path or completely loses its energy. Now, if a photon undergoing this phenomenon passes 

through the collimators and reaches to the detectors, then the line drawn from the scintillation 

passing through the collimator hole may not arrive at the location where the gamma-ray was actually 

emitted from. Ideally, we do not want to include such scattered photon in the formation of the image. 

One solution to exclude such photons is by using the pulse height analyzer. Photons that have gone 

through Compton scattering have lost some of their energy relative to a typical photon that arrives 

at the detector without being scattered. The pulse height analyzer only accepts photons with their 
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energy in a certain range called acceptance interval or acceptance window and rejects many 

scattered photons that have been detected. The output of the Anger camera is interfaced to a 

computer where an image is being generated.   

1.2.1.2. Single Photon Emission Computed Tomography (SPECT) 

While the Anger camera is readily used for planar nuclear medicine scanning, it can be used in a 

slightly modified setting to provide a 3D image that contains the biodistribution of the radiotracer 

with depth information inside the body. The process of generating a 3D image from multiple 2D 

projections is referred to as “tomography”. Tomography consists of two Greek words: “tomos” 

meaning ‘slice’ or ‘section’, and “graphō” meaning ‘to write’. Since this is performed digitally, it is 

referred to as computed tomography. Therefore, single photon emission computed tomography or 

SPECT is the process of imaging a sample using the single photon emission technique by acquiring 

projection data multiple times at different orientations, ultimately yielding a 3D image of the sample 

structure using reconstruction algorithms. As such, tomographic reconstruction enables looking at 

slices through the investigated object without physically cutting it. Modern SPECT cameras consist of 

two or three camera heads, like the one in Figure 1-1, mounted on a single rotating gantry, that can 

move around the patient and cover various angles to detect a larger fraction of emitted photon. This 

yields an increase in signal-to-noise ratio and produces a 3D tomographic image [53, 54, 56].  

1.2.1.3. SPECT/CT and its applications in nuclear medicine  

Nowadays, SPECT systems increasingly include a CT component. Such a system, the SPECT/CT, 

allows the use of CT imaging to also estimate and compensate for attenuation of emitted photons [53, 

54].  The CT image is also used to create fused SPECT/CT images in the three orthogonal planes for 

anatomical localization. The addition of CT component, in general, leads to improved sensitivity and 

specificity of single photon emission imaging, due to attenuation correction, as well as anatomical 
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localization, and morphological characterization rendered by the CT, while also facilitating contrast-

enhanced CT scanning as part of the examination [57].  

The significant role of SPECT/CT in nuclear medicine has been reviewed extensively [58-61]. An 

example clinical applications of SPECT/CT include characterization and localization of solitary 

pulmonary nodules and lung cancers, brain tumors, lymphoma, prostate cancer, neuroendocrine and 

endocrine tumors, as well as malignant and benign bone lesions [58]. SPECT/CT is also applied to 

thyroid and parathyroid imaging [62], breast cancer [63, 64], radio-guided biopsy [65] and cerebral 

masses [66]. Other non-oncological applications include infection and inflammation, and to precisely 

localize infectious foci that can be problematic [67, 68], gastrointestinal (GI) diseases such as 

upper/lower GI bleeding [69, 70], pulmonary embolism [71] and neurodegenerative disorders [72]. 

Another major application of SPECT/CT is in patients diagnosed or suspected of coronary artery 

disease. At the same time, myocardial perfusion SPECT (MPS) imaging maintains a dominant and 

unique place for evaluation of the physiological significance of coronary artery problems and 

atherosclerosis [73]. While SPECT has many oncological and neurological applications, most SPECT 

scans are performed in cardiology [74]. One of our main projects targets MPS imaging and will be 

discussed in chapter 4 of this dissertation. 

 

1.2.2. Positron Emission 

Positron-emitting radionuclides can also be used to label pharmaceutical compounds. Once the 

radiotracer is administrated intravenously to the patient and distributed in tissues in a manner 

determined by its biochemical properties, they decay by ejecting a positron from the nucleus. 

Positron-emitters include 11C, 18F, 13N, 15O, etc. that occur naturally in biological molecules, allowing 

them to be more readily incorporated into a wide variety of useful radiotracers, which is an 

advantage over commonly-used SPECT radionuclides such as 99mTC.  
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A neutron-deficient nucleus can become stable by either capturing a new electron that is 

subsequently captured by a proton thus transforming into a neutron or by emitting positron that 

happens from a proton 𝑝 decay. In this case, the following transmission takes place: 

𝑝 → 𝑛 + 𝛽+ + 𝜈𝑒  1.1 

where 𝑛 is the neutron, 𝛽+ is the positron, and 𝜈𝑒  is another subatomic particle called neutrino. For 

a typical radionuclide 𝑋𝑍
𝑀  with mass number 𝑀 and atomic number 𝑍, the following process occurs:  

𝑋𝑍
𝑀 → 𝑋𝑍−1

𝑀 + 𝛽+ + 𝜈𝑒 1.2 

Positrons are emitted with a continuous range of energies up to a maximum, due to the presence of 

neutrino. The freed positrons give up their enormous kinetic energy mostly through Compton 

scattering with electrons within the surrounding medium, until they reach thermal energies. At this 

stage, they start to interact by electrons, mostly leading to positron annihilation1. Higher energy 

positrons require to traverse a larger distance (on average) in the medium before reaching thermal 

energies and interacting with electrons. This distance is referred to as the positron range. Properties 

of commonly-utilized positron-emitting isotopes are more elaborated in [75]. 

Table 1-1. Properties of commonly-utilized positron-emitting isotopes [76, 77] 

 

 𝑻𝟏/𝟐 (min) 𝑬𝒂𝒗𝒈(MeV) 𝑬𝒎𝒂𝒙 (MeV) Mean range in water 

(mm) 

C-11 20.3 0.39 0.96 1.1 

N-13 9.97 0.49 1.19 1.5 

O-15 2.03 0.73 1.79 2.5 

F-18 109.8 0.24 0.64 0.6 

Cu-64 762 0.28 0.66 6.07 

Ga-68 4,086 0.83 1.9 2.9 

Rb-82 1.25 1.52  3.38 5.9  

I-124 6,019 0.69 2.15 3.46 

                                                             
1 A second possibility for positron-electron interaction is the formation of a hydrogen-like orbiting couple called 
positronium. In this case they may either decay by self-annihilation and generating two 511 keV photons (for 
an ortho-positronium) or self-annihilate by emission of three photons (for a para-positronium) which is very 
rare. 
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When a positron and an electron annihilate, based on the mass-energy equivalence principle, they 

emit two gamma-ray photons.  Given 𝐸 = 𝑚𝑐2, inserting the masses of an electron and a positron, 

yields an energy of 511 keV for each of the two emitted photons. These two photons travel almost 

anti-parallel at a 180° angle. The two 511 keV photons can be detected via detectors connected to a 

coincidence-detection circuit that only accepts two incoming photons at two detectors within a short 

timing-window at the order of nanoseconds, just enough to capture photons emitted from the same 

annihilation. This scenario is depicted in Figure 1-2.  

1.2.2.1. Positron emission tomography (PET)  

Imaging in vivo using positron emission makes use of radiopharmaceuticals that decay by emitting 

positrons. The resulting anti-parallel 511 keV photons are subsequently detected by a 360° ring of 

detectors. The data is collected in many angles and is processed with a tomographic reconstruction 

algorithm to produce an image of radiotracer distribution in the body. Such a procedure is referred 

to as positron emission tomography or PET imaging. Although these gamma-ray photons can also be 

detected using SPECT system that operates in a single-photon-counting mode, they are not optimally 

designed for the relatively high energy of 511 keV photons and have low detection efficiency at this 

energy range. More importantly, PET replaces physical collimation that comes with a cost of reduced 

sensitivity with coincidence detection circuit that acts as electronic collimation, increasing sensitivity 

by at least one order of magnitude [54, 56]. PET imaging has gained widespread clinical application 

and is commonly utilized along with other imaging modalities such as CT, MRI, and SPECT.  

1.2.2.2. Image acquisition in PET 

In single photon imaging, as shown in Figure 1-1, collimators restrict the acceptance angle of 

incoming photons, and without them, a detected photon could have come from any region in the field 

of view (FoV). In positron emission imaging, however, much higher sensitivity is achieved by noting 

that collimation can be performed electronically as depicted in Figure 1-2.  The coincidence detection 



Figure 1-2. Positron annihilation. A) positron reaches thermal energy and meets an electron. B) they annihilate, producing two 
511 keV gamma-ray photons travel 180° apart. A coincidence detection circuit can then determine whether they originate from 
a single annihilation event. 

PET scintillation crystals 
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3- Spectral distribution—wavelength of the output light from the crystal that should be 

efficiently detected by PMTs  

4- Linearity—proportionality of the amount of light produced to the energy deposited by 

radiation,  

5- Conversion efficiency—a fraction of the radiation energy converted to detectable scintillator 

light.  

Table 1-2 provides a list of such properties for some of the commonly-used scintillation crystals. In 

the past, bismuth germanate (BGO) was commonly used in PET scanners, whereas, nowadays, LSO 

(Lutetium Oxyorthosilicate), or its yttrium-doped version, LYSO, are used more often due to the 

improved decay time, high conversion efficiency, and energy resolution.  

Table 1-2. Table of commonly-used scintillation materials. Bismuth germanate (BGO), lutetium oxyorthosilicate (LSO), sodium 
iodide (NaI), and gadolinium oxyorthosilicate (GSO).  

   NaI[Tl] BGO LSO GSO 

Atomic No. (Z) 50 73 66 59 

Lin. atten. coef. (cm-1) 0.34 0.92 0.87 0.62 

Index of refraction 1.85 2.15 1.82 1.85 

Light yield [%NaI:Tl] 100 15 75 41 

Peak wavelength (nm) 410 480 420 430 

Decay const. (nanosec.) 230 300 40 56 

Fragile Yes No  No No 

Hygroscopic Yes No No No 
 

 

 PMTs and photo-detectors 

Originally, PET scanners involved the one-to-one coupling of detector crystals and PMTs. In 1985, a 

new technology was developed to couple one PMT to a block of crystals [78], which continues to this 

day. In this scheme, a block of crystals (e.g. 8x8) is coupled to four PMTs, so that one crystal can 

disperse light in all four PMTs based on their distance and the crystal pattern. The crystal position 

and thus the location of the incident photon can be determined by linear averaging of the light output 

in all four PMTs.  
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In recent years, there has been an increased interest to replace PMTs with light-sensitive 

semiconductor detectors such as silicon photomultipliers (SiPMs). These detectors consist of an 

array of microscopic, parallel connected avalanche photodiodes that operate in limited Geiger-mode. 

In this mode of operation, each cell is biased enough just above the breakdown threshold, resulting 

in a cumulative avalanche breakdown within the diode depletion-region that results in an excessive 

current upon encountering a light photon [79, 80]. They exhibit a higher quantum efficiency (fraction 

of incident photons absorbed in the photosensitive area, QE) compared to PMTs, yet essentially do 

not amplify the signal internally like PMTs. The Silicon photodiodes have an internal gain that enables 

the detection of low light levels with a good signal-to-noise ratio in a very small size of only a few 

millimeters thick [81, 82]. Table 1-3 provides a comparison between PMTs and SiPMs. Some of the 

key advantages of SiPM over PMT is as follows: 

• Solid-state (SiPM) vs. vacuum-tube technology 

• Higher quantum efficiency for SiPM (25% to 40% vs. up to 80%) 

• Lower operation voltage (20-40 V vs. 1-3 kV) 

• Insensitivity to the magnetic field (SiPM) 

• Miniaturization (SiPM) 

• No damage in bright light (SiPM) 

Table 1-3. Comparison of two types of photo-detectors typically used in PET: PMTs and SiPMs [83] 

 PMT SiPM 

Gain 106 ~106 

Rise time (ns) ~1 ~1 

QE at 420 nm (%) ~25 ~25 – 75 

Bias (V) >1,000 30 – 80 

Temperature sensitivity (%/° C) < 1 1 – 8 

Magnetic field sensitivity Yes No 

Price/channel ($) > 200 ~ 50 
 

 



14 
 

Time-of-flight (ToF) PET 

Theoretically, it is possible to precisely determine the location along the LOR between two detectors 

at which the annihilation photons originated. This can be done using the exact difference in the time 

at which the dual photons arrived at the pair of detectors defining the LOR. As such, for a system with 

superb timing resolution, there would be no need for reconstruction algorithms, as the point of the 

original can be identified. However, such technology is presently far-fetched. With advances in 

scintillation and detector technology, detector response time has improved as short as a few hundred 

nanoseconds; however, this is enough to only narrow down the probability of annihilation to an 

interval of a few centimeters along the LOR. This technology that utilizes the differences between the 

two detection times to somewhat localize the annihilation is called time-of-flight or ToF. Let us 

denote the difference in arrival times of the two photons by ∆𝑡. In that case, the location of the 

annihilation even with respect to the mid-point between the two detectors, Δ𝑑, is given by: 

Δ𝑑 =
Δ𝑡 × 𝑐

2
 

1.3 

where 𝑐 is the speed of light at ~3×1010 cm/sec. Based on this equation, to achieve a 1 cm resolution 

requires a timing resolution of about 66 picoseconds. Nowadays, superfast electronics can handle 

such speeds, but the bottleneck is the rise time of light outputs from scintillators currently available 

for PET imaging that are too slow to provide this level of timing resolution. The fastest clinical ToF 

technology up-to-date is 214 picoseconds with the Siemens Biograph Vision [84], which narrows 

down the localization to ~3.2 cm along the LOR. Images acquired at such timing resolution, though 

not improving on the resolution, still have a significantly higher signal-to-noise ratios images 

reconstructed with no ToF information. This is because individual events can now be constrained 

within a smaller interval in the image reconstruction process, thus limiting propagation of noise in 

the projection operations within image reconstruction.  



Figure 1-3. ToF PET. A) a pair of photons from an annihilation is emitted and detected by opposing detectors. B) without ToF, 
there is no information regarding the whereabouts of the source along the LOR. During the backprojection, the event is 
backprojected with a uniform probability of originating anywhere along the LOR. C) In the presence of ToF information, some 
degree of localization is possible. 

1.2.2.3. Hybrid PET/CT and PET/MRI 



16 
 

It should be noted that since most PET systems have an axial FoV ~15-26 cm, they often image the 

whole-body using a motorized bed that can operate in the so-called step-and-shoot mode. In this 

method, the patient body is scanned for some minutes at every bed position and then is moved to the 

subsequent bed position. Newer generation PET scanners (e.g. improved crystal/electronics 

technology including improved ToF) have enabled high-quality images with scan times of ~2-4 min 

depending on the application and patient size [89]. Some recent PET scanners can also run under 

continuous bed motion acquisition mode, where the bed is continuously moving, also allowing with 

variable scan times for different parts of the body [90]. The advantage of such systems is the ability 

to customize the speed to specifically reduce the speed during the acquisition over more important 

organs to capture more incoming photons, thus improving signal-to-noise ratios.  

 

1.2.2.4. Applications of PET imaging 

PET is considered both research and clinical tool. Its main application is in clinical oncology but also 

includes applications in other clinical areas such as cardiology and neurology, in addition to 

supporting drug development and pre-clinical studies. 

One important component of a PET scan procedure is the specific radiotracer administrated to the 

patient. Some examples are summarized in Table 1-4. Next, we briefly discuss some areas of 

applications. 
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Table 1-4. Examples of positron-emitting radiotracers used in PET imaging, including targets and clinical applications. 

 Isotope Compound Target Clinical application 

Oncology   

 F-18 FDG Glucose metabolism Tumor imaging 

 F-18 FMISO Hypoxic cell tracer Hypoxic tumor imaging 

 F-18 FET Amino acids Glioma  

 F-18 DCFPyL Prostate specific membrane antigen 

(PSMA) 

Prostate cancer tumors 

 C-11 Acetate Intracellular phosphatidylcholine 

membrane  

Tumor imaging 

 C-11 Choline Phospholipids synthesis Cancer cell proliferation 

 Ga-68 PSMA-11 PSMA  Prostate cancer tumors 

Cardiology   

 O-15 Water Blood flow Myocardial perfusion 

 N-13 Ammonia Blood flow Myocardial perfusion 

 Rb-82 Chloride Myocardiocytes  Myocardial perfusion 

 C-11 Acetate Myocardial oxidative metabolism Myocardial blood flow 

Neurology   

 F-18 FDOPA Pre-synaptic dopaminergic Nigrostriatal dopaminergic pathway 

 F-18 Amyvid β-amyloid neurotic plaque Diagnosis of Alzheimer’s disease 

 C-11 Raclopride  Dopamine D2 receptor Movement disorders  

 C-11 SCH23390 Dopamine D1 receptor Schizophrenia  

 C-11 NMSP Dopamine, serotonin   Neural stem cells transplant 

 O-15 Oxygen Oxygen metabolism Cerebral blood volume 
 

 

PET in oncology 

The most widely-used radiotracer in PET imaging is fluorine-18 fluorodeoxyglucose, or [18F]-FDG. 

FDG is a glucose analog taken up by the tumor cells, then phosphorylated to FDG-6 phosphate by 

hexokinase, and then trapped in the cell in almost all tissues because further downstream glycolysis 

is not possible [91]. Tumor cells require more energy than other normal cells, resulting in 

significantly higher glucose metabolism in malignant cells. As this tracer is trapped in the cell, the 

attached F-18 radionuclide decays by emitting positrons that are detected by the PET scan. [18F]-FDG 

is the staple of initial cancer staging, restaging, recurrence, and monitoring response to treatment in 
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many types of cancers and are covered by the Centers for Medicare and Medicaid Services (CMS) [92-

95].  

A range of other radiotracers is used in oncological clinical practice and research settings. Here we 

mention one very active research area in PET oncology, namely that of imaging prostate cancer 

patients using radiotracers targeting the prostate-specific membrane antigen (PSMA) molecule, 

which is a transmembrane protein that is considerably overexpressed in most prostate cancer cells 

[96]. PSMA imaging is shown to have increased sensitivity and specificity compared with current 

standard imaging with CT, MRI and bone scintigraphy in patients with primary intermediate or high 

risk of prostate cancer [97]. Just as PSMA has gained interest in molecular imaging with PET, it has 

also gained interest in targeted radioligand therapy [98]. Furthermore, new concepts have emerged 

on PSMA targeted theranostics using PSMA tagged by Ga-68 for PET imaging and by Lu-177 for 

therapy and SPECT imaging [99].  

 

PET in cardiology 

Although SPECT imaging dominates nuclear cardiology imaging, PET is also used as a clinical imaging 

tool for quantitative assessment of myocardial perfusion and characterization of tissue viability in 

patients with coronary artery disease [100]. Cardiac PET can accurately identify and assess coronary 

artery stenosis severity as a basis for choosing and following effects of interventions. PET imaging is 

not only a reliable tool for managing coronary artery disease in traditional cardiology practice based 

on symptoms but also facilitates management of asymptomatic coronary atherosclerosis non-

invasively. Such accurate evaluations can be used to identify patients who need cardiac 

catheterization and avoid unnecessary invasive procedures in patients with mild/no coronary artery 

disease [101]. Evaluating blood pool activity and perfusion defect severity, comparing myocardial 
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metabolism to perfusion, and acquiring PET imaging in conjunction with electrocardiogram (ECG) 

gating are among other PET imaging applications in nuclear cardiology [102]. 

 

PET in neurology 

PET has numerous applications in neurology and brain imaging. It can provide information to 

pinpoint and evaluate a range of brain pathologies. Certain radiotracers like O-15 oxygen and [18F]-

FDG can be used to measure brain oxygenation and metabolism, respectively, which significantly 

decrease in patients with Alzheimer’s disease [103]. Unlike surface electroencephalogram (EEG), 

depth electrocorticography, interoperative corticography, and structured MRI that lack high 

specificity in determining epilepsy, PET image can provide information about information about the 

regions of the brain that is causing seizure [104]. PET is also useful in evaluating neurodegenerative 

disease such as Huntington’s disease [105, 106], Parkinson’s disease [107, 108], Alzheimer’s disease 

[109-112], and multiple sclerosis [113, 114]. It is also used in neuropsychology and cognitive 

neuroscience to explore links between specific psychological processes or disorders, and the brain 

activity [115, 116].  

 

Dynamic PET  

Current clinical PET protocols use patterns established for traditional nuclear medicine, where they 

are optimized for qualitative as opposed to quantitative assessment. The radiotracer is administered 

to the patient who then waits for a period prior to image acquisition, which in the case of [18F]-FDG 

is ~60 minutes. This period allows the radiotracer to accumulate in the organs of interest and to 

washout from surrounding organs [117]. Then the patient is imaged on the PET scanner based on 

protocol (e.g. 20 minutes depending on center, scanner, and patient), as a result, a single static image 

is acquired during this acquisition time. However, radiotracer distribution in the body is a dynamic 
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process that is essentially different for normal organs, different tumors, and among different patients 

[118, 119]. An alternative approach involves the dynamic acquisition of temporal images that enables 

a more complete measurement of tracer kinetics between different physically or chemically-distinct 

states or compartments. The exchange of tracer between compartments can be modeled using 

ordinary differential equations, whose coefficients are kinetic parameters. These resulting kinetic 

parameters and models have been validated to produce reliable quantitative measurements of 

various clinically important physiological processes [120-122].  

An example of a widely-popular compartmental method is the Patlak model [123]. This graphical 

analysis method evaluates sequential data such as tissue and blood concentrations over time. It uses 

linear regression to analyze pharmacokinetics of tracers such as [18F]-FDG [124]. This method 

assumes that the tracer can be modeled as having by a nearly irreversible compartment where the 

radiotracer enters and gets trapped during the measurement [125]. Patlak linear graphical analysis 

directly estimates the tracer influx or uptake rate constant 𝐾𝑖  and blood distribution volume 𝑉, which 

when quantified at the individual voxel-level enable parametric imaging. Assuming reversible 

dynamics only, alternative non-Patlak graphical methods can be used  (e.g. Logan method [126]). 

Dynamic imaging and kinetic modeling can provide more accurate quantitation of the tracer relative 

to conventional standard uptake value (SUV) in PET imaging, as discussed in 1.3.2.1. Figure 1-4 shows 

an example co ofnventional SUV image vs. parametric images obtained from kinetic modeling of 

dynamic images of a patient scanned with [18F]-FDG PET. The Patlak 𝐾𝑖  image has significantly 

reduced background uptake compared to conventional SUV, while high background PET signals are 

observed in SUV and Patlak V images.  
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Figure 1-4. An illustration of static and dynamic PET. A) static conventional SUV imaging (70-90 minutes post-FDG injection). 
Dynamic (parametric) images (0-90 minutes) of b) 𝐾𝑖 , and c)𝑉, generated from a dynamic whole-body PET scan using Patlak 
plot with an image-derived input function and linear regression. Note the tumor uptake marked with a purple arrow on top of 
the liver that is notably visible in “b” but has dissolved in the background uptake in “a”.  

Parametric kinetic uptake imaging has implications in various sectors of clinical practice. Dynamic 

cardiac PET followed by kinetic modeling has significant applications in the clinic [127]. In oncologic 

PET, dynamic imaging and trace uptake quantification based on compartmental modeling has been 

shown to improve tumor characterization and treatment response monitoring [128-133]. In the past, 

dynamic imaging was mostly limited to a single bed position over the organ of the interest, but 

recently whole-body parametric imaging protocols have been introduced [134, 135], which refers to 

coverage of the body using multiple bed positions [136] or using the continuous bed motion 

technique [137], both involving multiple passes. The patient is sometimes injected with the 

radiotracer right on the scanner bed to capture the blood input function over the heart and can be 

scanned up to 95 minutes based on different imaging protocols [138]. Alternatively, population-

based input functions can be used, and scaled for the specific patient. Dynamic whole-body PET is an 

emerging technology with promising clinical potential, specifically for improved quantification and 

assessment of systemic disease, including cancer, inflammation, and infection[138]. It combines 
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visualization and tracer uptake quantitation across the whole body, while minimizing dependence 

on SUV activity. It removes background uptake that allows small and less FDG avid tumors to be 

identified. In addition, conventional SUV image can be readily obtained by summation of multiple 

passes through the patient [138]. For more clinical applications of dynamic whole-body imaging, its 

advantages and challenges please refer to [138].  

 

1.2.3. Tomographic image reconstruction  

1.2.3.1. Image reconstruction basics  

In this subsection, we discuss the basics of tomographic image reconstruction. Our focus is on PET 

imaging, but application to SPECT is very straightforward. First, we elaborate on the line-integral 

model. Without considering some degradation effects such as attenuation, scatter and randoms, 

detector deficiency, etc. that will be discussed in section 1.2.4, the total number of detected 

coincidences is related to the total amount of tracer contained in the volume or line of response 

(LOR), a tube that joins two face-to-face detectors. In what follows, we will discuss the 2D 

tomographic reconstruction. For more information regarding 3D PET reconstruction please consult 

[53, 54, 139].  

2D PET imaging only considers LORs lying within a specific imaging plane from a 2D object 𝑓(𝑥, 𝑦) 

as indicated in Figure 1-5. Values of 𝑝(𝑠, 𝜙) are the line integral of the object across the LOR for a 

fixed 𝜙. The collection of all projections for 0 ≤ 𝜙 ≤ 2𝜋 creates a 2D map of 𝑠 and 𝜙, referred to as a 

sinogram (Figure 1-5). The name “sinogram” comes from the fact that if there is a point-source in the 

object, it will create a sinusoidal trend on the sinogram.  



Figure 1-5. A projection  is generated from integration along all parallel LORs at an angle . The projections from all 
angles are stacked on top of each other to generate a sinogram.  

projection Radon 

transform

forward projection operator

backprojection operator
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Images of radiotracer activity concentration can be reconstructed from the projection data by solving 

the inverse of equation 1.5. Image reconstruction algorithms can be categorized into 1) analytical and 

2) statistical reconstruction methods. The focus in this dissertation is on statistical image 

reconstruction which we discuss next; for details on analytical reconstruction methods such as the 

Fourier slice theorem and filtered back-projection, readers are referred to other references [53, 54].  

1.2.3.2. Statistical image reconstruction 

Maximum-likelihood expectation-minimization (ML-EM) 

Statistical image reconstruction has demonstrated superior performance over analytical methods 

[140]. Statistical methods allow (i) accurate modeling of statistical noise, (ii) complex detector 

geometrics, as well as (iii) the ability to include corrections for various image degradation effects 

(section 1.2.4) [141, 142]. Here we briefly discuss the mathematics of image reconstruction in PET 

[143]. 

Let 𝑌𝑖 , 𝑖 = {1, … , 𝑀} denote the projection data as elements of the sinogram matrix, where 𝑀 is the 

number of sinogram bins. Each 𝑌𝑖  can then be modeled as an independent Poisson random variable: 

𝑌𝑖~Poisson{𝑦�̅�} 1.6 

Let 𝒚 = [𝑦1 𝑦2 ⋯ 𝑦𝑀]𝑇 and �̅� = [𝑦1̅̅ ̅ 𝑦2̅̅ ̅ ⋯ 𝑦𝑀̅̅ ̅̅ ]𝑇  denote column vectors of the measured and 

expected counts, respectively. The expected counts are related to the unknown activity distribution 

𝒙 ∈ ℝ𝑁 by an affine transform: 

�̅� = 𝑷𝒙 + 𝒓 1.7 

where 𝑷 ∈ ℝ𝑀×𝑁denotes the detection probability matrix, or the forward projection operator with 

each element (𝑖, 𝑗) referring to the probability of detecting an event from the 𝑗th voxel at the 𝑖th 

detector pair, and  𝒓 ∈ ℝ𝑀 is the contributions of scatter and random events in the projection data 

(see section 1.2.4). Now, the log-likelihood function for the Poisson distributed projection data can 

be written as: 
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𝐿(𝒚|𝒙) =  ∑ 𝑦𝑖 log 𝑦�̅� −  log 𝑦�̅� − log 𝑦�̅� !

𝑀

𝑖=1

 1.8 

The image reconstruction task can be framed as an optimization problem and can be solved using the 

maximum-likelihood expectation-minimization (ML-EM) [144, 145]. The ML-EM has been proven to 

converge, and in addition, it incorporates a non-negativity constraint such that if the initial estimate 

is non-negative, image estimates at every iteration are non-negative. The inverse problem or the 

maximum likelihood estimate can be then written as: 

�̂� = arg max 𝐿(𝑦|𝑥) 1.9 

𝒙𝑛+1 =
𝒙𝑛

𝑷𝑇𝐼𝑀
𝑷𝑇

𝒚

𝑷𝒙𝑛
 1.10 

where 𝒙𝑛 is the image estimate at the 𝑛th iteration, 𝑷𝑇  is the backprojection operator, and 𝐼𝑀 is a 

column vector of ones.  

An accelerated version of ML-EM algorithm is called the ordinary-subset expectation-minimization 

(OS-EM) algorithm [146]. It divides the projection data into subsets and uses those subsets to 

iteratively update the estimation image. The number of OS-EM subsets are approximately equal to 

its speed-up factor. However, unlike ML-EM, OS-EM is not necessarily convergent, though some 

subsidized algorithms have been proposed that can converge [147, 148].  

Noise in statistical reconstruction  

Tomographic reconstruction is an ill-posed problem, and the ML estimates are extremely noisy. The 

convergence property of ML-EM is for its noise-free implementation, which is quite unrealistic. In 

practice, noise contributes to the detected counts. Moreover, as the number of ML-EM (or OS-EM) 

iterations increase, the impact of noise on the reconstructed images are more pronounced. That is 

why in practical implementations of ML-EM, the number of iterations is fixed somewhere around 60 

to 80 updates, which for instance, correspond to 3 to 4 iterations with ~20 OS-EM subsets. 

Furthermore, the noise will be further reduced by post-smoothing the image with a Gaussian filter.  
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Other methods have been proposed to regularize noise to obtain more accurate estimates of activity 

distributions, such as using a penalized likelihood function [149, 150], where instead of maximizing 

the log-likelihood function, a penalized log-likelihood function is maximized that encourages smooth 

solutions with a penalty function and a tuning parameter (hyperparameter) 𝛽 to control the 

contribution of the penalty function and the resolution-noise properties of image estimates [151-

153]. Although penalized (also known as Bayesian) reconstruction has recently become available on 

commercial PET scans [154], the hyperparameter 𝛽 can pose a challenge since it may have to be finely 

tuned for different patients/radiotracer/reconstruction settings.  The penalty function is obtained by 

incorporating a priori distribution on the estimated image; i.e. 𝑝(𝑥) =
1

𝑍
𝑒−𝛽𝑅(𝑥), where 𝑍 is a 

normalizing constant, and 𝑅(𝑥) is a penalty function. The penalized log-likelihood is also called 

maximum a posteriori or MAP estimate [155-158].  

 

1.2.4. Causes of image degradation and quantitative inaccuracy in nuclear medicine  

The relationship between the object and the projection space can be defined by a system matrix, 

which is the detection probability matrix 𝑷 introduced in equation 1.7. Statistical reconstruction 

methods allow modeling of physical degradation factors which will be presented in the next section 

in the reconstruction framework. The system matrix can be factorized as [159]: 

𝑷 =  𝑷𝑑𝑒𝑡.𝑠𝑒𝑛𝑠𝑷𝑟𝑒𝑠.𝑏𝑙𝑢𝑟𝑷𝑎𝑡𝑡𝑛𝑷𝑔𝑒𝑜𝑚𝑷𝑝𝑜𝑠𝑖𝑡𝑟𝑜𝑛 1.11 

where 𝑷𝑝𝑜𝑠𝑖𝑡𝑟𝑜𝑛 models positron range in the image space, 𝑷𝑔𝑒𝑜𝑚 is the detection probability matrix, 

𝑷𝑎𝑡𝑡𝑛 is a diagonal matrix of attenuation correction factors, 𝑷𝑟𝑒𝑠.𝑏𝑙𝑢𝑟 accounts for phenomena that 

result in resolution blur, and finally 𝑷𝑑𝑒𝑡.𝑠𝑒𝑛𝑠 is a diagonal matrix containing detector block 

normalization factors. We elaborate more on these degradation factors in the subsequent section. 
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PET imaging is impacted by several physical phenomena that result in degradation in image quality 

and quantitation. It is important to understand these phenomena to develop correction methods to 

restore the quality of the image to a better extent. Some of the most important factors are: 

1) Attenuation of annihilation photons 

2) Detection of scattered events 

3) Detection of random events 

4) Positron range effect 

5) Photon non-collinearity 

6) Detection deadtime  

7) Detector blurring  

8) Variations in detector sensitivity 

9) Decay of radioactivity 

10) Geometric correction 

11) Patient motion 

From the above list, items 2, 4, 5, 10, and 11 are specific to PET, while others are common between 

PET and SPECT. Corrections for detector blurring, positron range, and photon non-collinearity have 

been traditionally ignored because of the inherent low resolution of the PET camera. However, with 

the advent of higher-resolution scanners, it has become more important to account for these factors 

in the reconstruction task.  Compared to SPECT imaging, attenuation fractions are larger in PET, but 

their corrections are easier. Meanwhile, detection of scattered evens is much more prevalent in 3D 

PET and complicates quantitative reconstruction using PET.  

Before we discuss these phenomena, we need a clear understanding of a true event. This is similar in 

both PET and SPECT, though we explain it from the perspective of PET. As mentioned in section 1.2.2, 

once a positron annihilates, it produces two anti-parallel gamma-ray photons. In a degradation-free 
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system, these photons will travel in straight lines (along a LOR) towards the detectors and fall within 

the coincidence time window. Such an annihilation event that has not been diverted from its LOR and 

has arrived within the coincidence time window is called a true event. In the following subsections, 

we discuss the various phenomena and briefly review some of the related correction techniques. 

Later in this dissertation, we model a number of these phenomena and present a novel method for 

their correction in chapter 2: Adaptive Point-Spread Function (PSF) Modeling for Enhanced 

Quantitation in PET Image Reconstruction.  

 

1.2.4.1. Attenuation  

Gamma-rays interact with matter as they travel through a medium, through photoelectric absorption, 

or Compton scattering. Photoelectric absorption is the dominant photon-matter interaction in tissue 

for photon energies below 100 keV. On the other hand, Compton scattering is more dominant for 

photon energies between 100 keV and 2 MeV [53], and is the only important interaction process at 

511 keV within subjects. As discussed in section 1.2.1, in a Compton interaction, the photon interacts 

with a free or outer-shell electron, causing a decrease in the energy of the photon and a change in its 

direction. The energy of the scattered photon is then given by the following equation: 

𝐸𝑠𝑐𝑎𝑡𝑡𝑒𝑟 =
𝐸0

1 +
𝐸0

0.511
(1 − cos(𝜃))

 1.12 

where 𝐸0 is the energy of the gamma photon before interaction and 𝜃 is the angle of scattering. This 

phenomenon can cause the scattered photon to be deflected out of the FoV so as (i) it is not detected, 

or (ii) it arrives at another detector and is detected by it. Either of these cases results in a loss of the 

true LOR. This phenomenon is referred to as attenuation. Attenuation correction should be 

incorporated in the image reconstruction process to avoid underestimation of the radiotracer 
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distribution. Defining the survival probability 𝐴𝑎 as the probability of a photon not interacting as it 

propagates along a path 𝑎, the Beer-Lambert law, or simply Beer’s law says: 

𝐴𝑎 =  𝑒− ∫ 𝜇(𝑥) 𝑑𝑥
𝑎  1.13 

where 𝜇(𝑥) is the linear attenuation coefficient of the medium photon is traveling in. Linear 

attenuation coefficient provides insights on how effective a given material is in promoting photon 

interactions at position 𝑥 per unit thickness. It increases with higher matter densities and decreases 

with higher photon energies. Subsequently, the probability of attenuation often called attenuation 

factor (AF) is given by 1 − 𝐴𝑎, which is the probability that a photon travels through a medium 

without interacting with matter. 

The survival probability of photons along a LOR is the product of the probabilities of each photon not 

interacting as they propagate along their paths 𝑎 and 𝑏: 

𝐴𝐿 =  𝑒− ∫ 𝜇(𝑥) 𝑑𝑥
𝑎 × 𝑒− ∫ 𝜇(𝑥) 𝑑𝑥

𝑏 =  𝑒− ∫ 𝜇(𝑥) 𝑑𝑥
𝐿  1.14 

where 𝐿 refers to the union of 𝑎 and 𝑏, or the entire LOR. In PET imaging, more than 60% of all emitted 

photons interact with tissue; however, equation 1.14 shows that attenuation along a LOR in PET is 

independent of the position of the annihilation event along the LOR. This contrasts with SPECT where 

attenuation is depth-dependent on the distance to the detector. This key observation result in more 

straightforward attenuation correction in PET compared to SPECT.  

Nowadays the most widely-used method of attenuation correction involves the use of the CT image, 

a key motivation behind PET/CT and SPECT/CT scanners. The CT component of the system can 

quickly acquire an image of the body, with its voxel intensities corresponding to the attenuation 

coefficients of that location in the body. Historically, PET-only scanners used a transmission scan for 

attenuation correction, which would rotate a radioactive source around the patient inside the 

detector gantry and acquire the image without and with the object inside the FoV. Then the ratio 
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between these two scans along each LOR was a measure of the probability that the generated 

annihilation photons are not attenuated along each LOR. This method was much more time 

consuming than CT, and its quality was inferior to a CT image in terms of statistics. Examples non-

attenuation-corrected (NAC) attenuation-corrected (AC) PET images are depicted in Figure 1-6. The 

CT image in (C) is used to correct the PET image shown in part B, and the image is usually displayed 

as a fused form of CT and AC PET, as shown in (D), to be able to anatomically localize the PET uptake 

using CT. Part A of this figure demonstrates some common artifacts encountered because of 

attenuation: unusually-high uptake can be seen on the skin, and the general uptake decreases as we 

track the image from the skin towards the inner parts of the body. By contrast, in the AC PET image, 

high skin uptake is gone, and inner-body uptake is more uniform.  

 

Figure 1-6. Effect of attenuation correction in PET imaging. A) Non-attenuation-corrected (NAC) PET image, B) Attenuation-
corrected (AC) image using C) CT image acquired with the PET/CT. D) A fused attenuation-corrected and CT image together.   

One point to remember is that the energy level of the photons generated by the x-ray tube of the CT 

component is of the order of 40~140 keV, which is less than 511 keV of the annihilation gamma-rays 

[160]. As previously mentioned, the linear attenuation coefficient is dependent on the energy level of 

the photon in the medium. Therefore, some corrections are required to convert the linear attenuation 

correction of the image from the CT scan to those that would be obtained at 511 keV [160, 161], 

posing some challenges. More discussion about attenuation correction in PET/CT and PET/MRI 

systems was provided in section 1.2.2.3. 



1.2.4.2. Scattered events 

Figure 1-7. Example of a scattered event. One of the annihilation photons got scattered, but both are detected under an 
incorrect LOR 
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comparisons of 2D and 3D distributions [166], or direct calculation of scattering distribution using 

the Klein-Nishina equation [167, 168], the latter being the most commonly invoked. 

 

1.2.4.3. Random events 

A random event occurs when two gamma-rays originating from two distinct annihilation events are 

detected within the coincident time window. To understand this, note that only a ‘single event’ can 

be detected from two anti-parallel photons corresponding to a given annihilation. As such, a random 

event occurs when two independent single events occur within a coincidence time window. Random 

events cause localization of an annihilation event along an incorrect LOR. Single events occur because 

of one of the following reasons: 

1) One gamma-ray photon is attenuated (due to photoelectric absorption or scattering) and is 

not detected 

2) One photon passes through the detectors without being detected 

3) One photon does not arrive at the detector at all due to the location and direction of the 

originally emitted gamma-rays 

These are depicted in Figure 1-8. The rate of random events along a LOR connecting detectors 𝑖 and 

𝑗 is given by: 

𝑅𝜏 = 2𝜏𝑆𝑖𝑆𝑗  1.15 

where 𝜏 is the coincidence time windows, and 𝑆𝑖  and 𝑆𝑗 refer to the single event rates at the two 

detectors. From the above equation, one may infer that 1) reducing the coincidence time windows 

results in reduced random coincidences, and 2) since single rates are proportional to the activity in 

the subject, random rates are quadratically proportional to the activity. This implies that higher 



Figure 1-8. Examples of single events that may contribute to random events. A) one photon never gets to the detectors due to 
photoelectric absorption or scattering. B) one photon passes through detectors without being detected. C) One photon does not 
meet detectors due to the orientation of the annihilation. The detection of the two single events, like in “A”, that happens within 
the coincidence time window, results in a random event. 

1.2.4.4. Positron range effect 



Figure 1-9. Positron range effect. The emitted positron travels a distance and reduces its kinetic energy to thermal energy and 
annihilate upon meeting an electron. The detected LOR does not necessarily pass through the location where positron was 
emitted.  



1.2.4.5. Photon non-collinearity 

Figure 1-10. Photon non-collinearity effect. A slight deviation of two gamma-rays from 180° results in detecting the incidence 
from an incorrect LOR (dashed red) instead of the true LOR (dashed green).  
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1.2.4.6. Detection deadtime 

Deadtime refers to the time it takes to process an event, and it limits the counting rate of the scanner. 

As the incoming count rate increases, e.g. due to the higher dose of radioactivity injected to the 

subject, a larger portion of the incoming counts are lost due to deadtime effects. As such, this is 

another condition that limits the injected radioactivity to a patient for optimal imaging. The 

bottlenecks that contribute to deadtime can be the scintillator decay time, crystal identification, 

energy discrimination, overall coincidence detection, or delays in electronics. Therefore, deadtime 

effects can occur at the level of the crystal, block or the subsequent electronic circuitry. Deadtime can 

be corrected by scaling the measured counts by deadtime correction factors measured from the 

single rates [53].  

 

1.2.4.7. Detector blurring 

An incoming photon to a crystal excites electrons in the crystal by Compton scattering and/or 

photoelectric absorption. If all these processes occur in a single crystal where the phone had entered, 

the event and subsequently the LOR will be properly positioned. However, three complications may 

happen: 

Inter-crystal penetration  

 The first issue is when the incident photon enters a crystal at an oblique angle, passing through the 

crystal undetected and only detected in the adjacent crystal. This is referred to as inter-crystal 

penetration, and results in a mispositioned LOR. Subsequently, as the annihilation event originates at 

a distance from the center of the FoV and closer to the edges of the scanner, photons enter the 

detector at a higher angle, with a higher likelihood of penetration. This results in the so-called depth 

of interaction effect (elaborated more later) and manifests itself in the reconstructed images as the 



Inter-crystal scattering 

inter-crystal scattering

Figure 1-11. Detector blurring effects. A) inter-crystal penetration, where the photon penetrates the adjacent crystal where it 
gets detected and causes a mispositioned LOR. B) inter-crystal scattering, where the scattering scintillation light gets detected 
on the other end of the crystal at an adjacent detector, causing a mispositioned LOR. 



Depth of interaction 

depth of interaction

Figure 1-12. The depth of interaction effect. It lowers the resolution for incidents occurs farther from the center of the FoV.  
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         = 𝑅𝑑𝑒𝑡 × [cos 𝜃 +
𝑥

𝑑
sin 𝜃] 

This equation shows that the depth of interaction is described by a multiplicative factor applied to 

detector resolution at a midpoint between a pair of directly opposing detectors. For a typical PET 

scanner with 𝑥 around 2 to 3 cm, 𝑑 around 0.3 to 0.6 cm, and a diameter of 80 cm, the DOI effect 

causes around 40% less resolution degradation at 10 cm away from the center of the FoV [53]. 

Some PET scanners such as the high-resolution research tomograph (HRRT) [179] handle DOI effect 

through a method called DOI-encoding. In DOI-encoding used in HRRT scanners, the crystal block 

comprises of a double scintillator crystal layer that provides some discrete level of DOI information 

and minimizes the misplacement of LORs [180]. 

 

1.2.4.8. Variations in detector sensitivity 

The various detectors in a PET (or SPECT) camera may have variations in their efficiencies, which 

are determined by several factors including (i) the cross-section or effective surface area of the 

crystal, (ii) the change in the effective depth-of-interaction of crystals, (iii) crystal material 

imperfections, (iv) light guide (i.e. isolation between crystals) variations and imperfections, (v) PMT 

gain inconsistencies, and (vi) further inconsistencies in electronics to detect PMT signals. To correct 

for detector variations, usually a positron-emitting germanium cylindrical phantom with uniform 

activity is scanned by the PET scanner for a long period during the quality check (QC) process. In this 

case, all detectors presumably should have uniform inputs. This scan is called a normalization scan 

that produces a normalization sinogram, which provides coefficients that are proportional to the 

reciprocal of the number of counts obtained for each LOR. More details are provided in other 

references [181-184]. An example of a normalization sinogram is provided in Figure 1-13. 



Figure 1-13. An example of a normalization sinogram for a 2D transaxial slice of a GE discovery PET scanner.  

1.2.4.9. Decay of radioactivity 

1.2.4.10. Geometric correction 
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1.2.4.11. Patient motion 

Today’s PET scanners have a spatial resolution of 3.5 to 6 mm FWHM. With such improvements in 

spatial resolution, patient movement during the scan can become more apparent and contribute 

more to image quality degradation. In a very general sense, patient motion can be categorized into: 

motion due to the movements of the lungs (respiratory motion), movements due to heart functioning 

(cardiac motion), and other unintentional or intentional patient body movements (bulk motion). 

Motion correction in PET has been a large field of research for decades and is beyond the scope of 

our work.  For more information please refer to review articles [186-193] 

  

1.3. Medical Imaging Quantitation and Biomarkers 

Modern medical imaging modalities have experienced tremendous progress and can provide an 

unprecedented level of spatial details and cellular/functional information [194]. At the same time, 

there have been advancements in our understanding of the molecular underpinnings of disease and 

the rise of more statistical and evidence-based approaches to diagnosis and treatment. This has 

paved the way to leverage quantitative techniques in medical imaging for supporting a diverse set of 

clinical and research goals [195, 196]. In this section, we explain the basics of image quantitation, 

following by quantitative imaging biomarkers, and we briefly discuss one of the commonly-used 

quantitative imaging biomarkers in PET.  

1.3.1. Image quantitation 

Quantitative imaging refers to the extraction and utilization of quantifiable features from medical 

images for assessment of normality or the severity, degree of change, and status of a disease relative 

to normal conditions [197, 198]. Research in quantitative imaging includes the development, 

optimization, standardization, and application of anatomical, molecular and functional imaging 

acquisition protocols, structured reports, data analyses, and validation against other clinical data 
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[198, 199]. The concept of medical imaging quantitation is relatively close to the definition of 

biomarkers, defined as a characteristic objectively-measured and evaluated, which indicates a 

normal biologic or pathologic process, or response to a therapy [200]. Subsequently, a quantitative 

imaging biomarker can be defined as an objectively-measured characteristic derived from a medical 

image and can be correlated with relevant physiological and anatomical parameters such as disease 

presence, characterization, and severity, as well as its prognosis (predicted disease course with or 

without treatment), and treatment response monitoring and assessment [197]. More relevant 

definitions to quantitative imaging biomarker development are provided in Table 1.  

Table 1-5. Definitions related to quantitative imaging and biomarkers [197, 198, 201] 

Term  Definition  

biomarker A characteristic that is objectively measured and evaluated as an 

indicator of normal biologic or pathogenic processes, or response to a 

therapeutic intervention 

Predictive biomarker A biomarker that is used to forecast the efficacy of a therapy/therapies  

Diagnostic biomarker A biomarker that improves the accuracy of patient diagnosis 

Prognosis biomarker A biomarker that improves the accuracy of patient prognosis 

Response biomarker A biomarker whose change after treatment predicts if treatment would 

lead to a beneficial outcome 

Monitoring 

biomarker 

A biomarker that (usually) is regularly measured to detect relapse or 

emergence of toxicity 

Quantitative imaging The extraction and utilization of various quantitative features, such as 

numerical and statistical, from medical images 

Quantitative imaging 

biomarker 

An objectively-measured characteristic derived from an in vivo image as 

an indicator of a normal biological or pathogenic process, or a response 

to a treatment  

Repeatability  The amount of agreement between subsequent measurements 

measured under the same condition 

Reproducibility  The amount of agreement between subsequent measurements 

performed under varying conditions 
 

 

Quantitative imaging has significantly contributed to the value of diagnostic testing and become more 

prominent in preclinical studies, clinical practice and clinical research [202-206]. The main 

advantage of quantitative imaging is its potential for standardization and higher precision of image 
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interpretation. It further helps with increased diagnostic accuracy, improved reproducibility across 

multiple devices/centers, decreased variability and subjectivity, more structured reporting, and 

more robust association of image findings with clinical and biological data [207]. Evidence-based 

medicine is also another driver for developing quantitative imaging as diagnoses in many clinical 

fronts can be reinforced with quantitative imaging data and biomarkers [208, 209]. Clinical trials are 

another demanding area for quantitative imaging, in which quantitative measurements of tumor 

response are measured and reported to assess the efficacy of investigational therapy. Another long-

term stipulated utilization of quantitative data has been in guidelines for image-based response 

assessment such as response evaluation criteria in solid tumors (RECIST) [210], that is based on the 

measurement of tumor size and frequently used for response assessment in oncology, and have been 

widely used for many years and successfully validated against long-term patient outcomes [211, 

212].  

 

1.3.2. Quantitative imaging biomarkers  

Biomarkers are useful only if they provide added value in predicting a clinical outcome [198]. These 

biomarkers can be derived via methods as simple as using calipers (e.g. to measure the length), or a 

complex measurement of a functional parameter associated with a dynamic relationship of image 

measurements to an external stimulus. Quantitative imaging biomarkers can be generally classified 

as structural, morphological, textural, functional or physical [213]. Nevertheless, there are factors 

that can inherently affect the measuring of quantitative imaging biomarkers and thus reducing their 

reliability, repeatability, and reproducibility, which need to be properly addressed and investigated. 

More information regarding necessary attributes of biomarkers, as well as methods for assessing 

these attributes (e.g. reproducibility) are discussed later (section 3.2.1). As an example, the next 
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subsection 1.3.2.1 discusses a very important and widely popular quantitative image biomarker in 

nuclear medicine imaging. Another set of biomarkers will be introduced in subsequent section 1.4.  

1.3.2.1. Standard Uptake Value (SUV)—an important quantitative biomarker 

A well-known example of a quantitative imaging biomarker is the standard uptake value (SUV) in 

PET imaging with 2-deoxy-2-(18F)fluoro-D-glucose or fludeoxyglucose F-18, also known as [18F]-FDG, 

for oncologic imaging. Increased accumulation of FDG in tumors relative to normal tissue is shown 

to be a useful marker for detection and staging in many cancers [214]. Moreover, since changes in 

FDG accumulation have been shown to provide useful information for assessing response to a 

therapy, SUV is also being used for monitoring individual treatment response as well as an evaluation 

tool for new drugs and therapies [215]. In PET scanners, the in vivo radioactivity concentration is 

quantified (e.g. in kBq/ml or mCi/cc). The tissue uptake varies between patients due to different 

injected doses and patient sizes. The SUV is thus used as a relative measure of FDG uptake. It is 

defined as 

SUV =
𝑐(𝑡)

𝐼/𝐵𝑊
 

1.1 

where 𝑐(𝑡) is the radioactivity activity concentration [kBq/ml] measured by PET for a region of 

interest (ROI) at time 𝑡 and is decay-corrected to 𝑡 = 0, 𝐼 is the injected dose [kBq] to the patient at 

time 𝑡 = 0, and 𝐵𝑊 is the body weight [g] of the patient at the time of the imaging. If all injected SUV 

is retained in the body and evenly distributed, the SUV everywhere in the body would be 1g/ml 

regardless of patient size and injected dose. If we assume 1 ml of tissue weighs 1 gram, then SUV 

would be dimensionless.  

Many parameters can affect the numerator of the SUV equation such as the definition of the ROI and 

its size, image resolution, reconstruction settings, and uptake period [216]. Concerns regarding its 

normalization factors in the denominator are mainly regarding using BW vs. body surface area vs. 
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lean body mass [119, 217], and BW is sometimes substituted by the other two. This is because if SUV 

is only corrected for BW, it does not consider the relatively lower FDG accumulation in fatty tissues 

in the fasting state. Subsequently, SUV corrected for lean body mass would be a more effective 

quantitative biomarker than BW or body surface area especially for obese patients [119, 218]. There 

are different formulas in the literature for estimating a patient’s lean body mass that usually differs 

for men vs. women [219], as well as international guidelines for standardizing the entire process of 

image acquisition in SUV parameters [220]. Following RECIST criteria, a PET-based assessment 

method was introduced, namely the PET Response Criteria in Solid Tumors (PERCIST), which can 

include quantification of maximum SUV in an ROI called SUVmax, or the average SUV in a 1cc sphere  

moved around the tumor until it is maximized, referred to as SUVpeak [204]. In any case, from this 

discussion, we can clearly identify SUV as an important quantitative imaging biomarker in oncologic 

PET imaging.  

 

1.4. Towards personalized medicine with radiomics 

This section introduces the topic of personalized medicine, following the emerging topic of radiomics 

and its applications. Personalized medicine aims at tailoring therapy to each individual for the best 

response and highest safety margin to ensure better patient care (Figure 1-14) [221]. It paves the 

way for each patient to receive an earlier diagnosis and optimal treatment customized to one’s 

specific clinical/molecular/genomic profile that ultimately improves healthcare and lowers costs. 

Personalized medicine is an innovative approach that takes into account a vast spectrum of data – 

from pharmacogenetic and pharmacogenomics information and protein-based biological markers, to 

molecular and anatomical diagnosis and response and targeted therapies, to family history, 

environment, and lifestyle – in order to achieve tailored decisions for individual patients [222-224].  



Figure 1-14. An illustration of standard care vs. precision medicine. In the former approach, all patients undergo the same 
process/treatment, whereas in precision medicine, a subgroup of patients receive tailored care optimized to their 
clinical/molecular/genomics profile.  

describing



Figure 1-15. Imaging and ‘omics’ in various levels of biological studies 

1.4.1. Personalized medicine in oncology  
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becoming more ubiquitous, it is possible to collect, process and analyze large volumes of high-

dimensional patient-specific data that eventually propels the progress in personalized medicine in 

oncology that aims to improve cancer prevention and prognosis.  

Personalized medicine in oncology aims to customize cancer care, such that cancer can be detected 

in very early stages, or the success of preventive and therapeutic interventions maximizes with 

minimum side-effects. Most research in this area focuses on lower-level personalized medicine using 

genomics and proteomics approaches to characterize tumors, which is invasive and requires 

biopsies. Such studies have enabled the identification and validation of many genes that are cancer-

drivers that can cause malignancy in a model system [236]. Despite all these successful efforts, the 

proper realization of personalized medicine in oncology is still limited. One contributing factor is that 

tumors exhibit diverse spatial and temporal heterogeneity, both within (intra-) and between (inter-

) tumors, causing intra- and inter-tumor heterogeneity [237]. Such inter- and intra-tumor 

heterogeneities are likely to cause phenotypic variations that ultimately affect treatment response 

and resistance. Moreover, heterogeneity can be observed over the course of cancer progression in 

different pattern changes, from initiation to metastases, and even relapse after surgery or other 

therapies [238]. For example, Hatt et al. studied PET and CT images of patients with lung cancer and 

showed that tumors with more non-uniformity, i.e. more heterogeneous tumors, are more resilient 

to therapy compared to more uniform tumors [239] (Figure 1-16). These spatial and temporal 

(longitudinal) intra-tumor heterogeneity assessments require multiple biopsies, which adds to the 

patient’s burden due to their invasiveness. As such, this necessitates the development of non-invasive 

approaches for profiling tumor phenotypes.  



Figure 1-16. Heterogeneous tumors are more resilient to therapy compared to uniform tumors [239].  
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Figure 1-17. PET images of four patients with head and neck cancer with their primary tumors delineated by a nuclear medicine 
physician (maroon line). Based on conventional quantitative imaging, all these tumors have almost the same SUVmax. the right 
three ROIs have almost the same volume, too. But does it mean that all these four patients have the same diagnosis and need 
the same therapy, or can we derive more information about the tumor phenotypes from these images? That’s where radiomics 
comes into play. 

1.4.2. Radiomics 

Radiomics transforms digitally encrypted medical images that contain information regarding tumor 

pathophysiology into mineable high-dimensional data [228, 241]. In other words, it hypothesizes 

that different phenotypic characteristics of tumors such as intra- and inter-tumor heterogeneity can 

be quantified as features called “radiomic features” through advanced image processing and 

computer vision techniques [228]. The information is harnessed through image processing and 

quantitative image analyses [242] and can be leveraged via clinical decision support systems to 

improve decision making and personalized medicine [243]. Radiomics can extract a massive amount 

of data from medical images of different modalities (CT, MRI, PET, etc.) to uncover advanced 

underlying features that non-invasively characterize tumor through data analysis. It aims to identify 

new reproducible and repeatable quantitative image biomarkers for disease staging, predicting 

tumor response, therapy assessment, and understanding tumor evaluation and its intrinsic biology. 

Ultimately, radiomics may pave the way for personalized medicine in different areas of clinical 

practice and provide clinicians with crucial information to guide their clinical decisions.   

   

1.4.3. Applications of Radiomics  

The term “radiomics” was introduced in 2011 (though related research was pursued prior to it, the 

term and field were better crystallized later). Radiomics has witnessed significant interest from 



Figure 1-18. The number of published articles about Radiomics shows an increase in interest 
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1.4.3.1. Oncology  

The majority of radiomics research has been performed for oncology. Radiomics is able (to some 

extent) to predict tumor characteristics such as histology [252] and genetic footprint [253-255], in 

addition to response to therapy in the form of pathological response from primary tumor [256, 257], 

lymphadenopathy [258], response to chemotherapy [259], response to chemo-radiotherapy [260], 

recurrence [261, 262], lymph node involvement [263], distant metastasis [264-266], and survival 

[267, 268] for a spectrum of pathologies. Many studies have demonstrated strong prognostic powers 

of radiomics in CT [265, 269-271], MRI [272-275], PET [247, 276, 277], as well as multiparametric 

imaging [278, 279]. In terms of clinical outcome, some studies have demonstrated the discriminating 

capability of radiomics for stratification of tumor stages [280], tumor histology [281], and other 

clinical outcomes [282]. 

1.4.3.2. Non-oncological applications 

Application of radiomics is not limited to oncologic imaging. In neurology, radiomics has been used 

in Alzheimer’s disease [283], [284-287], multiple sclerosis [288, 289], autism [290], as well as some 

publications from our group in using radiomics for correlating brain DaTSCAN SPECT with motor 

function in Parkinson’s disease patients [291, 292]. We have also developed radiomics analysis of 

cardiac SPECT imaging [293, 294] which this dissertation especially elaborates. Radiomics has also 

been recently studied for immunotherapy [295]. It has also been utilized in assessing radiation injury 

in patients post-radiotherapy [296-298]. 

1.4.3.3. Combination of radiomics and other “-omics” 

Following the emergence of “omics” research and the promising results, researchers have started to 

look beyond a particular modality and combine “omics” for more accurate outcome analysis and new 

applications. In light of this interdisciplinary research, radiomics has been mostly studied in 

combination with genomics and termed “radiogenomics” [230]. It is expected that such combinations 
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may notably contribute to the realization of personalized medicine [299]. Lung cancer has been a 

prominent area in radiogenomics research, due to its prevalence, an abundance of imaging data 

especially from CT, as well as publicly available datasets such as the national lung screening trial 

[300]. Many groups have studied using radiogenomics for diagnosis, prognosis, and predicting 

optimal therapy in lung cancer (see review article [248]). We have also participated in radiogenomics 

research with external collaborators where we used radiogenomics to predict EGFR and KRAS 

mutation of patients with lung cancer [301, 302].  

 

1.5. Our Motivation and Overview of Efforts  

The main motivation behind this dissertation research was to enhance quantitation in nuclear 

medicine imaging, especially in PET and SPECT. Above, I elaborated on the significance of 

quantitation for improved patient care and towards the realization of personalized medicine. My 

multiple research studies can be generally classified under two themes (both of which aim to enhance 

quantitation in nuclear medicine): methods in “image reconstruction” and in “image processing”. 

In the former theme, I specifically studied the impact of point-spread function (PSF) modeling in PET 

image reconstruction, and introduced the concept of generalized PSF modeling, demonstrating its 

superior performance compared to existing PSF modeling techniques. In the latter theme, I focused 

on the radiomics analysis of nuclear medicine images (both PET and SPECT) in oncologic and 

cardiologic applications. I developed a standardized radiomic framework for calculating 

standardized and reproducible quantitative biomarkers (radiomic features), followed by specific 

clinical applications. I developed various extensions and workflows, and have released two software 

packages: (i) PET Simulation and Image Reconstruction; and (ii) Standardized Environment for 

Radiomics Analysis (SERA) that are available for scientific purposes to the imaging community 
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The work and research in the course of my Ph.D. studies resulted in 4 journal and 29 conference 

publications [293, 294, 301-331], of which 11 were as first author, as well as 3 journal submissions 

under review [332-334]. Specifically, we have 1 journal paper [303] and 4 conference works [304-

307] on aspects of point-spread function (PSF) modeling in PET image reconstruction, which chapter 

2 elaborates. We also have 3 journals papers [308-310] and 25 conference works [293, 294, 301, 302, 

310-331],,  on image processing and/or radiomics in different settings. These include my 

standardized radiomics efforts which are elaborated in chapters 3 and 4, including collaboration with 

the image biomarker standardization initiative (IBSI). Some publications also involved collaborative 

usage of our radiomics package (SERA) or other tools developed, such as extensions and workflows 

developed to extract clinical images and quantitative measures via MIM and Matlab software 

packages.  

In what follows, Chapter 2 presents our new approach to PSF modeling—adaptive PSF modeling for 

enhanced reconstruction.  Chapter 3 elaborates concepts behind standardized radiomics workflows, 

following by our IBSI collaborative efforts, and subsequently, two studies on reproducibility analysis 

of radiomic features in two distinct nuclear medicine clinical contexts. Chapter 4 contains a 

comprehensive study of using radiomics in myocardial perfusion SPECT stress tests to predict 

coronary artery calcifications in patients with a normal scan. Finally, concluding remarks and 

opinions have been expressed in chapter 5.  
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Part I: Enhanced Quantitation Using Advanced Image 
Reconstruction  
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2. Adaptive Point-Spread Function (PSF) Modeling for 
Enhanced Quantitation in PET Image Reconstruction 

In this chapter, we fist discuss the partial volume effect (PVE) in PET imaging, shedding light on how 

it impacts images. Subsequently, we discuss methods of partial volume correction (PVC) to 

compensate for PVE. Specifically, we focus on a well-known and widely-used PVC technique referred 

to as  point-spread function (PSF) modeling. Since PSF modeling has pros and cons, there is a debate 

as to whether or not enable it during PET reconstruction. We subsequently propose an alternative 

approach to the dichotomy of using or not to use PSF modeling—namely, an adaptive, contextualized 

PSF modeling framework for enhanced quantitation in PET. For evaluation, we first model our idea 

using a simple framework of deblurring a Gaussian-filtered image. Next, after demonstrating 

promising results from this simplistic model, we move forward to introducing and implementing our 

adaptive PSF modeling in a realistic PET reconstruction framework, and demonstrate how it 

outperforms the abovementioned dichotomy modeling in terms of image quantitation. The first part 

was presented as a conference proceeding in SPIE annual meeting [304], while the main contribution 

of this project was published in the journal Physics in Medicine and Biology [306].  

2.1. Partial Volume Effect in PET 

PET imaging continues to be affected by several resolution degradation factors, some of which were 

discussed earlier in section 1.2.4, resulting in image blurring, also referred to as the partial volume 
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effect (PVE). PVE technically refers to two distinct phenomena that ultimately make the PET voxel 

values different than what they ideally should be [335]. The first effect is the 3D image blurring 

caused by the finite spatial resolution of the PET system. This limitation is caused by the extent of the 

detectors, as well as degradation factors mentioned earlier including positron range (section 1.2.4.4), 

detector blurring (section 1.2.4.7), photon non-collinearity (section 1.2.4.5), depth of interaction 

(section 1.2.4.7), as well as patient motion (section 1.2.4.11). These degradations result in blurred 

images that subsequently cause spillover between regions. Due to this spillover, a region with higher-

than-background uptake will appear larger, but dimmer. This effect can be mathematically described 

by a 3D convolution operation, where the image is generated by convolving the true image with the 

3D image response or point-spread function (PSF) of the imaging system.  

To illustrate this first effect (the spillover effect) due to PVE, we use a digital simulation of a national 

electrical manufacturing association (NEMA) NU-2 image quality phantom that is commonly used for 

image quality calibrations for PET scanners [336]. A phantom is a specially-designed container that 

includes some internal structures (e.g. rods, spheres, etc.) with known measurements that can be 

filled with radioactivity, and when imaged with a scanner, can demonstrate how accurately its image 

is reconstructed. The NEMA NU-2 phantom consists of a large semi-cylinder container that includes 

six spheres with inner diameters of 10, 13, 17, 22, 28 and 37 mm (Figure 2-1). The container and the 

spheres are filled with radioactive solutions with known activities and then imaged using a PET scan. 

The reconstructed image is used to calculate measurements to determine the quality of the scanner 

and the reconstruction protocol. 



Figure 2-1. NEMA NU-2 image quality phantom. Left: an actual phantom design by a manufacturer. Six spheres inside the 
container are filled with known radioactivity. Right: a transaxial slice of the digitally-simulated NEMA NU-2 phantom that 
passes through the center of all the spheres.  



Figure 2-2. A 3D illustration of the partial volume effect (PVE). PVE results in spillover to nearby voxels and blurring. Left: 3D 
illustration of the true image of a 2D transaxial slice of NEMA NU-2 image quality phantom. Right: 3D illustration of the noise-
free reconstruction of the slice on the left with OS-EM algorithm with 2 iterations and 14 subsets.  
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PET imaging. Therefore, the quest for correcting PVE and producing higher resolution PET images 

remains highly relevant.  

 

2.1.1. Methods for Partial Volume Effect Correction 

The first medical applications of PET imaging were focused on the brain, and earlier PET prototypes 

were developed specifically to image functionality of the brain [337]. Similarly, the first methods for 

partial volume correction (PVC) were also developed for neurologic PET procedures to enhance their 

quantitative capabilities [338, 339]. MRI images were used in PVC strategies relying on an adjunct 

co-registered structural image, due to the higher gray and white matter contrast compared with CT 

[340, 341]. Nowadays, the anatomical information provided by the CT component of the hybrid 

PET/CT scanners (section 1.2.2.3) also may enable PVC in other body organs including 

cardiovascular [342], atherosclerosis [343], and whole-body oncologic imaging applications [335, 

344].  

PVC methods can be tackled via reconstruction-based or post-reconstruction-based techniques that 

are broadly categorized into ROI-based and voxel-based methods [345].  The aim of ROI-based 

methods is to produce improved estimates of mean ROI uptake [339, 346, 347]. This is often achieved 

by using anatomical information from MRI images; however, these techniques usually involve an 

assumption of homogeneous PET uptake distribution in the anatomical regions, and more 

importantly, do not produce images. Another technique is the use of recovery coefficient, where the 

uptake in a region is multiplied by a correction factor, which is pre-calculated for an object whose 

size and shapes are similar to those in the ROI [346]. Voxel-based methods, on the other hand, 

produce images. Some examples of voxels-based PVC techniques include multiresolution [348-350] 

and partition-based methods [347], both of which typically include simplifying assumptions. Another 

example is the use of iterative deconvolution [351], which is often used for image restoration—i.e. to 
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recover spatial resolution. Deconvolution can severely enhance noise levels, but promising 

performances can be achieved when utilizing regularization [352] and denoising  [353]. Some 

reconstruction-based PVC methods involve incorporating anatomical information provided from the 

CT or MRI components in the context of Bayesian maximum a posteriori (MAP) PET reconstruction. 

In this method, anatomical regions are often segmented and used as prior images wherein intervoxel 

PET intensity variations are penalized while allowing large intervoxel variations across the 

boundaries. A distinct approach to voxel-based PVC is point-spread function (PSF)-modeling, also 

referred to as resolution modeling (RM), which we elaborate in the next section. 

 

2.1.2. PSF Modeling in PET 

PSF-modeling aims to capture object-domain and/or detection-domain resolution degrading effects 

and facilitate more accurate modeling of the measurement [354]. As a result, it can reduce image 

degradations caused by model-mismatch and yield improvements in reconstructed image quality as 

it compensates for some partial volume effects. As such, PSF-modeling has attracted considerable 

interest in PET over the past decade [177, 354], and has been adopted by major PET vendors in their 

state-of-the-art PET scanners [84, 355-359]. 

2.1.2.1. Types of PSF modeling 

PSF-modeling implementations are commonly divided into (i) image-space, and (ii) projection-space 

methods. Theoretical analyses of these two approaches have been provided [177, 360], and a few 

studies have performed preliminary comparisons between the two [361, 362].  

Imaged-based PSF modeling 

Image-based methods attempt to incorporate resolution blurring effects entirely in the image-space, 

based on the idea that the reconstructed image can be considered as the blurring of the true image 

by a point-spread function. This can be performed within the image reconstruction (PSF modeling in 
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the image space component of the system matrix, thus applied before forward projection and after 

back projection operations), or performed post-reconstruction in the form of iterative deconvolution 

[351, 354, 357, 360, 361, 363-365]. These methods are straightforward to implement, do not impose 

a significant computational burden, and produce images with high quality so that certain vendor PET 

scanners have already provided this option [358].  

Projection-based PSF modeling 

On the other hand, projection-space methods perform modeling of degradation effects within the 

projection-space component of the system matrix. Iriarte et al. published a review on system models 

for statistical reconstruction of PET data; they indicate that the most popular approach of combining 

models of physical degradation factors is to factor the system matrix as a product of independent 

matrices, each one describing one or a collection of effects [354]. This arrangement is a well-

established approach that has led to high-quality efficient reconstructions and yields substantial 

enhancements in storage preserving and computational time. Also, some studies on image-based PSF 

modeling considered anisotropy [357, 362, 364, 365], using more complex functions, e.g. mixtures of 

Gaussians and exponential [360, 362, 365], and PSF estimation methods based on measurements of 

or arrays of point sources [361, 362, 366]. 

The projection-based methods can be categorized into: (a) empirical methods utilizing measured 

data points [139, 367], (b) Monte Carlo simulations [159, 354, 368-370], (c) analytical models [172, 

371-374] including additional modeling for positron range [174, 375-378], and (d) hybrid 

approaches incorporating combinations of these methodologies; e.g. starting with a simple 

geometrical calculation, and then imposing additional effects [373, 379-381]. These studies focus on 

the benefits of different methodologies and exploit their synergies to compute the system matrix 

[354]. In this study, we focus on the analytical models and will elaborate more in section 2.3.2.  
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2.1.2.2. Pros and Cons of PSF modeling  

Advantages of PSF modeling  

PSF-modeling provides a number of advantages: (i) improved spatial resolution and contrast 

recovery [357, 361-363, 377, 382]; (ii) reduced spatial noise or image roughness (IR), resulting in a 

visually smoother image [383], and (iii) improved focal lesion detectability performance [384-386]. 

Disadvantages of PSF modeling 

At the same time, PSF-modeling poses two concerns [387]: First, it impacts noise characteristics of 

the reconstructed images as they appear smoother. Moreover, the resulting noise power spectrum 

(NPS) of the PSF modeled reconstructed image is seen to be amplified in the mid-frequency domain 

while exhibiting smaller values at higher frequencies [388]. Some efforts have been devoted to the 

analysis of the resulting noise properties that have important implications for quantitation and lesion 

detectability performance in PET imaging. These studies performed an experimental evaluation of 

noise characteristics on real data sets [388-391], or through Monte Carlo simulations [392, 393], and 

subsequently analyzed the impact of reconstruction parameters by adopting a variety of figures-of-

merit (FOMs). PSF-modeling has different effects on different noise metrics [384, 388]. Rahmim et al. 

used analytic models of noise propagation [394, 395] to investigate the impact with and without 

resolution modeling. In a PSF modeled system matrix, more lines-of-response (LORs) contribute to a 

single voxel, as each voxel is related to more measurement locations compared to a non-PSF modeled 

system. This results in a more ill-conditioned inverse problem that suffers from slow convergence 

[396]. Moreover, at matched iterations, voxels in a PSF reconstruction depict lower voxel variance 

and higher inter-voxel correlations vs. no-PSF [384, 397]. As a result, PSF modeling noticeably alters 

the noise texture. Tong et al. derived analytical expressions relating image roughness and ensemble 

noise to voxel variance and inter-voxel correlations [384]. Due to PSF modeling, images become 

smoother, but the ensemble standard deviation of ROI mean uptake (a measure of reproducibility) 
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may remain unchanged [384] or even be amplified for smaller ROIs [398, 399]. We elaborate more 

on how this phenomenon impacts different noise metrics in section 2.   

The second issue concerning PSF-modeling is its susceptibility to produce edge overshoot effect – a 

reminiscence of Gibbs ringing patterns at the edges of a region [396, 400, 401], manifesting as 

overshoots in smaller regions. This issue may compromise the accuracy of signal quantitation in 

small regions [177]. Snyder suggested using a less blurred (i.e. underestimated) version of the true 

PSF in the reconstruction [400, 401]. This method was shown to be effective at suppressing the edge 

overshoot effect [396, 399]. Snyder [400] also suggested that a possible reason for the appearance of 

edge overshoots is the mismatch between estimated PSF and true PSF and that the small mismatch 

can be amplified due to the instability of deconvolution process. Nonetheless, it was shown [307, 363, 

396] – as we also demonstrate in this work – that even reconstruction with the true PSF results in 

the edge overshoot effect. Furthermore, for specific detection or quantitation tasks, it is plausible that 

such an effect may even enhance task performance, as we show in this work for quantitation. 

 

2.1.3. Motivation  

Clinical tasks vary from pure detection-related tasks (e.g. diagnosis and staging) to quantitation-

related tasks (e.g. therapy response assessment and prognostication). The features that make a PET 

image suitable for detection task differ from those that make an image effective for tumor 

quantitation. In fact, noise contributes differently to these two general tasks, and PSF-induced noise 

propagation can result in improved quantitation but may reduce lesion detectability performance, or 

vice versa [388]. However, such analyses and optimizations have only been performed for the 

dichotomy case of no-PSF vs. PSF modeling. It is possible to generalize PSF modeling to include 

overestimated and underestimated PSF kernels. This provides a wider range of options to 

study the impact of PSF modeling on image quantitation tasks, thus facilitating task-based 
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optimization for quantitation. Furthermore, given the challenges with reproducibility as well as edge 

overshoots in PSF modeling, it is plausible that generalized PSF modeling may provide adaptive 

kernels that perform optimally, properly balancing different effects. The present work pursues 

such a generalized adaptive PSF framework in the context of tumor quantitation, which in future 

efforts can be thoroughly evaluated for lesion detectability tasks as well.  

In the following sections, first, we present the adaptive PSF modeling idea utilizing a simplistic image 

blurring-deblurring framework that comprises an image-space deconvolution-based PSF modeling. 

We used Gaussian blurring with a predetermined filter size to blur the image and then deblurred that 

image with a range of filter sizes to assess the plausibility of the idea that generalized PSF modeling 

enhances image quantitation. After showing some encouraging preliminary results, we present our 

practical implementation of this idea using an in-house developed realistic PET scanner simulation 

and reconstruction framework. We adopted an “analytically-modeled” “projection-based” PSF 

modeling (section 2.1.2.1). It is important to show the feasibility of these findings in a practical setup, 

therefore, in this step, we intended to design our study as close to a real-world scenario as possible. 

We used analytically modeled PET degradation phenomena and ultimately used them in our 

simulation and reconstruction framework that models PET scanner with its various degradation 

phenomena. We also used a digital anthropomorphic phantom using realistic uptake values by 

modeling tracer kinetic uptake using patient-derived kinetic modeling parameters. We simulated a 

wide variety of scenarios for different tumor sizes with and without noise and introduced a wide set 

of figures of merit to assess the performance of adaptive PSF modeling from different perspectives. 

As mentioned earlier in this chapter, what appears in section 2.2 is published as a conference 

proceeding in [304], and the subsequent section 2.3 is published in the journal of physics and 

medicine and biology [306]. 
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2.2. Adaptive Image-Based PSF modeling 

2.2.1. Introduction 

In this section we propose a generalized PSF modeling framework, including extensive task-based 

optimization, wherein we continualize the conventionally discrete framework of PSF modeling vs. no 

PSF modeling, to include varying degrees of PSF modeling. The proposed framework has the 

advantage of providing a trade-off between the enhanced contrast recovery by PSF modeling and the 

reduced inter-voxel correlations in the absence of PSF modeling, and to enable improved task 

performance.  

 

2.2.1.1. Aims of the study 

The concerns regarding PSF modeling in PET discussed earlier have prompted us to propose an 

extensive task-based assessment of a generalized PSF modeling framework, wherein we continualize 

the conventionally discrete framework of PSF modeling vs. no PSF modeling, to include varying 

degrees of PSF modeling, including overestimation and underestimation of the ‘true PSF’. Such a 

generalized scheme allows consideration of a much wider array of images, which are subsequently 

analyzed in the context of different imaging tasks. We elaborate upon these next.  

 

2.2.2. Methods 

2.2.2.1. Generalized image-based PSF modeling 

The investigated context was that of oncologic FDG PET imaging. In this initial assessment, we 

focused on lung tumor imaging, with SUV images at 45min, simulated based on kinetic parameters 

extracted from the literature ([402], Table II). We used a single slice of an XCAT anthropomorphic 



Figure 2-3. XCAT digital anthropomorphic phantom, capable 
of realistically modeling the human body and widely used in 
imaging research.

Figure 2-4. A transaxial slice of the XCAT phantom with a 
simulated lung tumor. The slice includes regions from lung, 
myocardium and blood pool. 



Figure 2-5. Blurring the true image using a Gaussian filter 
with size , which models the image degradation. 

Figure 2-6. Poisson noise added on top of the already-blurred 
image to model the effect of noise.  

Figure 2-7. An example of a reconstructed image with  and iteration 5. 
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2.2.2.2. Quantification task performance 

Analysis of noise-bias pattern is a popular method to assess quantitative performance. We generated 

noise vs. bias trade-off curves, as generated with increasing iterations into the various generalized 

PSF modeling algorithms. We also performed convergence analysis, in which an algorithm was 

quantified as converged when the last 10 iterations altered the bias no more than a certain threshold. 

We then computed the coefficient-of-variability (COV), 𝜎𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  defined below, compare to the mean 

uptake. We further include the contrast vs. noise trade-off. These two noise performance metrics 

were specifically defined as:  

i) Spatial variance 𝜎2
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , calculated for an image at a given noise realization (in the case of 

multiple noise realization measurements, this expression is subsequently averaged) via the 

following: 

𝜎𝑠𝑝𝑎𝑡𝑖𝑎𝑙
2 =

1

𝑁 − 1
∑(𝑠𝑖 − 𝑚)2

𝑁

𝑖=1

 2.1 

where 𝑠𝑖 denotes the image values at any voxel 𝑖 within a given ROI (e.g. tumor) consisting of 𝑁 voxels 

and having a mean 𝑚. In the case of multiple noise realization measurements, this expression is 

subsequently averaged. 

ii) Ensemble variance of ROI mean uptake 𝑚𝑟  across multiple noise realizations 𝑟 = 1, … , 𝑅, with the 

average ROI mean uptake �̅�: 

𝜎𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒
2 =

1

𝑅 − 1
∑(𝑚𝑟 − �̅�)2

𝑅

𝑟=1

 2.2 
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2.2.3. Results 

Figure 2-8 and Figure 2-9 depict SUVmean COV and SUVmax COV vs. SUVmean bias; respectively. In these 

two figures, neither of no PSF modeling ℎ̂ = 0 nor full PSF modeling (ℎ̂ = ℎ = 6) achieve the best 

noise-bias trade-off; yet, Figure 2-8 demonstrates the best performance achieved through ℎ̂ = 4. The 

higher SUVmax COV in Figure 2-9 compared to SUVmean COV in Figure 2-8 is due to the greater Gibbs 

ringing artifacts for higher ℎ̂. Figure 2-8 also shows that besides the underestimated filter ℎ̂ = 4 mm, 

slightly-overestimated kernels such as ℎ̂ = 8 mm also demonstrates superior performance to both 

no PSF and full PSF modeling. We also observe from Figure 2-9 that slight overestimation results in 

less SUVmean bias and less SUVmean noise at matched iterations compared to both no PSF and full PSF.  

 

Figure 2-8. SUVmean COV vs. SUVmean bias trade-off for iterations 
1-20 

 

Figure 2-9. SUVmax COV vs. SUVmean bias trade-off for 
iterations 1-20 

 

Figure 2-11 contains noise-contrast trade-off plots and shows higher contrast for higher ℎ̂ because 

of greater overshoot of the edges. This effect can be observed more in detail in Figure 2-11, where 

the CRC vs. iterations is plotted. This plot shows contrast converges faster for smaller filter sizes, 

without a significant increase in its value. On the other hand, overestimating filters with higher ℎ̂ 

require more iterations to converge and their CRC value converges to a value higher than 1. The 
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Figure 2-10. Ensemble noise percent of added noise vs. 
contrast percent trade-off for iterations 1~100 

Figure 2-11. CRC trend for fixed iterations for different 
reconstruction filters. Filters with higher spread converge later 
than smaller filters. 
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Table 2-1. Ensemble Noise Values at convergence. 

�̂� FWHM 0 1 2 3 4 5 6 7 8 

COV 3.44 3.42 3.47 3.54 3.58 3.93 4.12 4.75 5.01 

%change COV 0 -0.74 0.14 2.77 4.08 14.23 19.58 37.73 45.36 

 

 

2.2.4. Discussion 

As the first step towards assessing generalized PSF modeling scheme, we proposed a generalized PSF 

modeling framework with extensive task-based optimization to continualize the conventionally-

dichotomized framework of PSF modeling vs. no PSF modeling and applied various degrees of PSF 

modeling for reconstruction. We showed how this framework provides a trade-off between the 

enhanced contrast recovery and the reduced inter-voxel correlations for no PSF modeling and 

improves task performance. We assumed a blurring kernel with FWHM of ℎ and performed iterative 

EM including PSF modeling with varying widths ℎ̂, to demonstrate underestimated and 

overestimated resolution blurring kernels ℎ̂ enhance task performance in terms of lower SUVmean 

noise and bias. Slightly-overestimated kernels showed the possibility to reach a contrast recovery of 

100%. Overall, the results reveal that generalized PSF can result in enhanced quantitation 

capabilities, while lowering COV compared to full PSF modeling, thus providing an attractive solution 

for both diagnostic and treatment response monitoring applications. 

With this promising preliminary result, we now move on to implement generalized adaptive PSF 

modeling using a more realistic scheme.  

 

2.3. Adaptive projection-based PSF modeling 
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2.3.1. Introduction 

Following the promising preliminary study of generalized PSF modeling for a simplistic image-based 

blur-deblur scheme, in this section, we present the study of adaptive generalized PSF modeling in 

projection-space.   

Frameworks explored in the past involve a dichotomy of PSF vs. no-PSF modeling. By contrast, the 

present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET 

images, while incorporating a wide spectrum of PSF models, including those that under- and over-

estimate the true PSF, for the potential of enhanced quantitation of standardized uptake values 

(SUVs). The developed framework first analytically models the true PSF, considering a range of 

resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration, 

and scattering) as present in data acquisitions with modern commercial PET systems.  

In the following subsections, first, we elaborate on analytically modeling on the PET system and 

various image-degradation phenomena. Then, in the methods section, we describe our realistic PET 

simulation and reconstruction framework. We subsequently present our results and discussion.  

 

2.3.2. Modeling a PET system in analytical PSF modeling 

In this section, we explain a systematic approach to modeling PET imaging and reconstruction, 

following by analytical modeling of some of the PET image degradation phenomena. These models 

were subsequently be used to realistically model PET forward projection and reconstruction and 

then were implemented in our in-house developed PET simulation and reconstruction software. 

These models were later used to generate a spectrum of PSF kernels to assess our proposed 

generalized PSF modeling scheme.   
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Suppose 𝑝(𝑖, 𝑗) is the element of the detection probability matrix 𝑃 ∈ ℝ𝑀×𝑁 that represents the 

probability of detecting an emission from pixel 𝑗   (𝑗 = 1, … , 𝑁), at detector pair 𝑖   (𝑖 = 1, … , 𝑀). 

Currently factorized schemes for the system matrix are based on the proposed works of Mumcuoglu 

et al. [159] and Qi et al. [368]for 2D and 3D acquisitions respectively: 

𝑃 = 𝑃𝑑𝑒𝑡.𝑠𝑒𝑛𝑠𝑃𝑑𝑒𝑡.𝑏𝑙𝑢𝑟𝑃𝑎𝑡𝑡𝑒𝑛𝑃𝑔𝑒𝑜𝑚𝑃𝑖𝑚.𝑏𝑙𝑢𝑟 2.3 

𝑃𝑖𝑚.𝑏𝑙𝑢𝑟  accounts for image-based blurring effects, particularly the positron range. A detailed 

discussion on analytically modeling positron range effects in statistical image reconstruction can be 

found in [368]. As the current work focuses on [18F]-FDG scanning known to exhibit short mean 

positron range (0.64 mm), its effect can be safely ignored in the PSF model. 

𝑃𝑔𝑒𝑜𝑚is the geometric projection matrix where the (𝑖. 𝑗) element defines the probability that a photon 

pair produced in voxel 𝑗 reaches the front faces of the LOR 𝑖 in the absence of attenuation and 

assuming perfect photon-pair collinearity. We used the built-in Radon transform command in 

Matlab® to perform the geometric projection. The number of projection bins of this function is 

sufficient to compute the projection at unit intervals, even along the diagonal.  

𝑃𝑑𝑒𝑡.𝑏𝑙𝑢𝑟  accounts for blurring in the sinogram space and includes photon pair non-collinearity, inter-

crystal scattering, and crystal penetration [53]. Technically, modeling radial, angular and inter-

sinogram blurring requires a 3D blurring scheme. However, in the present work, we assume a small 

axial acceptance angle, and these blurring effects are confined to a single sinogram using a 2D 

blurring model. Each of these effects can be analytically modelled and eventually combined. We 

briefly discuss modeling of resolution degrading effects in sinogram space and later we show how to 

exploit these analytical expressions to create adaptive generalized PSF kernels. 

Photon non-collinearity has to be technically modeled in the geometric component 𝑃𝑔𝑒𝑜𝑚 in equation 

1. However, as an approximation to considerably simplify the system matrix computation, one can 
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assume photon non-collinearity is depth independent and model it in the projection-space 

component 𝑃𝑑𝑒𝑡.𝑏𝑙𝑢𝑟 of the system matrix [159, 388]. The FWHM of the Gaussian approximation that 

models the effect of blurring on the spatial resolution using simple geometric calculations can be 

given as:  

FWHM ≅ (0.25 ×
𝜋

180
)

𝐿

2
= 0.0022 × 𝐿 2.4 

where 𝐿 is the detector separation and can be related to the scanner diameter 𝐷 for different angles 

of incidence 𝜃 via 𝐿 = 2𝐷 cos(𝜃). Therefore, equation (2) becomes: 

FWHM ≅ 0.0022 × 2𝐷 cos(𝜃) 2.5 

This results in an angular dependent Gaussian blurring kernel 𝐷𝑛𝑜𝑛−𝑐𝑜𝑙
𝜃 (𝑥, 𝑧), which models blurring 

due to photon non-collinearity along the (𝑥, 𝑧) in radial and axial directions of the sinogram, 

respectively.  

Although the remaining two effects – inter-crystal scattering and penetration – are often not 

distinguished from one another, it would be very beneficial to conceptually separate them for proper 

modeling: inter-crystal penetration occurs when a photon penetrates the incident detector element 

and is detected in the adjacent crystal; whereas inter-crystal scattering of photons can occur even 

when the angle of incidence is 90 degrees.  

The penetration effect can be modeled using our knowledge of the 511 keV attenuation coefficient of 

crystals, 𝜇, as well as the angle of incidence 𝜃. If we model the individual detectors’ penetration by 

𝑝𝜃(𝑥), then we can calculate the resulting penetration distribution 𝐷𝑝𝑒𝑛𝑒𝑡
𝜃 (𝑥) for the coincident pair 

as [371, 372] : 

𝐷𝑝𝑒𝑛𝑒𝑡
𝜃 = ∫𝑝𝜃(𝑋)𝑝𝜃(2𝑥 − 𝑋)𝑑𝑋

𝑥

 2.6 
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where the 1D attenuation distribution 𝑝𝜃(𝑥) can be described by the angular-dependent exponential 

function:  

where 𝑥′ denotes the tangential direction along the detector surface, such that 𝑥 = 𝑥′ cos(𝜃).   

For the scattering component, which can be effectively decoupled from the penetration effect [172], 

we used real measured projection data of a point source at the center of the field-of-view (FOV) and 

determined the average radial and axial scatter blurring in the sinogram space. After correcting for 

the non-collinearity effect through subtraction in squares, we arrive at an estimate for 𝐷𝑠𝑐𝑎𝑡𝑡𝑒𝑟(𝑥, 𝑧). 

An important point is that, since the non-collinearity effect is independent of crystal blurring, it can 

be convolved with the corresponding crystal blurring kernels once they are created, as we briefly 

discuss next.  Consequently, combining the above analytical models, we arrive at the overall 

projection-space blurring kernel 𝐷𝑝𝑟𝑜𝑗
𝜃 (𝑥, 𝑧) through the following convolution expression: 

𝑃𝑎𝑡𝑡𝑒𝑛 in Eq. 1 is a diagonal matrix containing the attenuation coefficients. The attenuation image in 

current work was derived by forward projecting the attenuation map created by the XCAT 

anthropomorphic phantom for a typical 80kVp CT scan. The sinogram was then corrected for 511 

keV 𝛾-rays using a three-step correction method proposed by Abella in [372]. Finally, 𝑃𝑑𝑒𝑡.𝑠𝑒𝑛𝑠 is also 

a diagonal matrix that contains the detector efficiencies for normalization. Here, we obtained a 3D 

normalization sinogram of the GE scanner and incorporated it into our model.  

 

𝑝𝜃(𝑥) = 𝑒−𝜇𝑥′/ sin(𝜃)  2.7 

𝐷𝑝𝑟𝑜𝑗
𝜃 (𝑥, 𝑧) = 𝐷𝑛𝑜𝑛−𝑐𝑜𝑙

𝜃 (𝑥, 𝑧) ∗ 𝐷𝑝𝑒𝑛𝑒𝑡
𝜃 (𝑥) ∗ 𝐷𝑠𝑐𝑎𝑡𝑡𝑒𝑟(𝑥, 𝑧) 2.8 
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2.3.3. Methods 

In this section, we describe our proposed approach to incorporate and assess generalized PSF kernels 

in the image reconstruction framework. First, we describe a simulation configuration, followed by 

the image reconstruction method incorporating the true PSF kernel. We then explain the 

methodology of generating a spectrum of PSF kernels from the true PSF. Finally, we define the FOMs 

for assessing and analyzing the results. 

2.3.3.1. Simulation and phantom configuration 

We used the 4D anthropomorphic XCAT phantom [403] to generate dynamic FDG-PET images of 

different tumors, as well as the corresponding attenuation map. In this study, we chose to implement 

six liver tumors of different diameters (10, 13, 17, 22, 28 and 37 mm), which was in agreement with 

the NEMA NU-2 image quality phantom [336]. The position of the center of the tumor spheres is fixed 

across all six images for consistency. Figure 1 depicts two of these six reference images. The original 

reference image has a transaxial dimension of 1024×1024 and a voxel size of 0.5856 mm, and 2D OS-

EM reconstructions with seven subsets are performed into 256×256 images with voxel dimensions 

3.47 × 3.47 × 3.27 mm3. Starting from a higher resolution image is more realistic to better capture 

the spatial continuity of the actual object (patient) being scanned, albeit its contribution to the 

reconstruction time.  

  

Figure 2-12. XCAT generated phantom as reference images with liver tumor sizes of (left) 10mm, and (right) 22mm. 
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We simulated a set of 60-min post-injection SUV PET images for a scan duration of 3 minutes. The 

FDG tracer kinetics were modeled based on a patient-derived input function [404], a set of realistic 

kinetic parameters reported in the literature (table 1), and the standard two-tissue compartment 

kinetic model for FDG. Thus, a respective set of time-activity curves (TACs) were generated for each 

tissue and tumor to allow calculation of the activity concentration levels at 60-min post-injection. 

Lesion spheres were also modeled based on rate parameters in the liver region. Additionally, based 

on an evaluation of multiple-patient [18F]-FDG PET scans, we found out that the activity concentration 

values of the soft tissue background outside the liver were about 21% of the corresponding value in 

the liver. We set the liver rate constants to derive the background activity TAC accordingly. The 

dynamic acquisition protocol consisted of 9 passes (from 30 to 90 minutes, 45 seconds for each bed 

position). The uptake activities were then calculated by temporal integration for the duration of the 

scan.  

 

2.3.3.2. Image reconstruction  

We performed the simulations were performed using an in-house validated reconstruction software 

[388]. First, noise-free emission images were generated by assigning the modeled values to the 

respective regions of the voxelized XCAT human torso digital phantom. Then, forward projection of 

the emission images was performed [405, 406] based on the geometry of a GE Discovery RX PET/CT 

[407]. The generated sinograms were subsequently attenuated according to the XCAT attenuation 

factors and scaled based on the reported sensitivity of the scanner (normalization).  

Our reconstruction software performs an analytic OS-EM projection-space based PSF-modeling 

reconstruction and models positron range, geometric projection, photon non-collinearity, inter-

crystal scattering, crystal penetration, and corrects for attenuation and detector deficiencies. A 

detailed modeling of our analytic reconstruction is provided in Appendix A.  
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Analytic simulations were performed for the images reconstructed using 367 radial bins (60 cm 

radial field of view) and 581 angular samples covering 180° with. Poisson noise was subsequently 

simulated to generate 200 independent noise-realizations. Finally, the generated PET projection data 

were reconstructed, using the proposed methods to produce PET images, as described in the next 

subsection.  

Artifacts in reconstructed PET images are location specific; so ideally the location of the masked ROI 

has to be the same for both the tumor and the background to perform more precise quantitative 

analysis. Therefore, we ran our simulation once with tumors present (each of the six tumors) and 

once with the tumor absent, and then use the mask from the tumor-present reconstructed image to 

mask out the background region in the tumor-absent reconstructed image. To add more accuracy to 

our quantitative analysis, we also assure that for every PSF-kernel and every iteration of the noise-

free reconstructed images, the ROI location in the tumor-absent matches the actual location in the 

tumor-present.  

Table 2-2. Kinetic parameters used in the simulation of the anthropomorphic phantom for [18F]-FDG tracer. References: 
myocardium and normal lung [408], normal liver [409], liver tumor [409] and bone [410]. 

Tissue 
Compartment 

𝑲𝟏 
(mL min-1g-1) 

𝒌𝟐 (min-1) 𝒌𝟑 (min-1) 𝒌𝟒 (min-1) 𝑽𝒃 

Lung 0.301 0.864 0.097 0.001 0.168 
Liver 0.864 0.981 0.005 0.016 0.00 
Bone 0.091 0.469 0.0023 0.067 0.00 
Myocardium 0.6 1.2 0.1 0.001 0.00 
Liver tumor 0.243 0.78 0.1 0.00 0.00 
Background 
activity 

0.183 0.981 0.005 0.016 0.00 
 

 

2.3.3.3. Generalized PSF-modeling 

In this section, we describe how to generate a spectrum of PSF (generalized PSF) kernels from the 

true PSF kernel. We propose an analytical approach to generate a wide spectrum of PSF kernels that 

portray both underestimations and overestimations of the true PSF, in addition to no-PSF and true 
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PSF. The “no-PSF” kernel assumes the incoming rays are solely detected at their incident detector, 

whereas the true PSF kernel matches exactly with the forward-projector based on scanner 

parameters and mathematical models of blurring as we explain below.  

In order to implement image reconstruction via a spectrum of PSF kernels that has a smooth 

transition from the no-PSF kernel (identity matrix) to the analytically-modeled “true PSF” and 

beyond, we observed that we have to simultaneously vary the outputs of three equations that model 

photon non-collinearity, inter-crystal scattering, and penetration. We constructed a series of 

generalized PSF kernels that included under- and overestimation of the true PSF by applying a line-

space of incremental scaling factors to these three modeled terms. More specifically, three sequences 

of numbers are multiplied by (i) the mass attenuation coefficient for the crystal (LYSO in this case) in 

Eq. 2.7 that models inter-crystal penetration, and (ii, iii) the FWHMs of 𝐷𝑛𝑜𝑛−𝑐𝑜𝑙
𝜃  (Eq. 2.6) and 𝐷𝑠𝑐𝑎𝑡𝑡𝑒𝑟  

that model non-collinearity and inter-crystal scattering, respectively.  

Table 2-3 contains the three scaling factors multiplied by the attenuation coefficient of crystals and 

FWHM of non-collinearity and crystal scattering used in generating 20 generalized PSF modeled 

kernels presented in this study. The column on the right contains the factor we multiplied by the 

attenuation coefficient of LYSO crystal that is 0.087. The second to the right column includes the 

factor we used to rescale the FWHM of photon non-collinearity in Eq. 2.5. The third column contains 

the FWHM of inter-crystal scattering effect being used in Eq. 2.6.  
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Table 2-3. List of scaling factors used to generate 20 PSF modeled kernel 

 

Kernel 
index 

FWHM of inter-
crystal 
scattering  

Factors 
multiplied by 
the FWHM of 
photon non-
collinearity  

Factors 
multiplied by 
the attenuation 
coefficient of 
crystals 

No-PSF  1 0.04 0 111.1 

Underestimated PSF  

2 0.392 0.091 44.534 

3 0.785 0.182 18.746 

4 1.438 0.409 6.983 

5 1.962 0.545 2.826 

6 2.354 0.682 1.319 

7 2.616 0.773 1.240 

8 2.877 0.818 1.156 

9 3.139 0.909 1.080 

True PSF 10 3.27 1 1 

Overestimated PSF 

11 3.662 1.091 0.919 

12 3.924 1.182 0.840 

13 4.185 1.227 0.76 

14 4.447 1.318 0.68 

15 4.709 1.409 0.6 

16 4.970 1.5 0.519 

17 5.232 1.545 0.440 

18 5.493 1.636 0.360 

19 5.755 1.727 0.280 

20 5.886 1.773 0.240 
 

 

We defined and used multiple metrics for quantitative task-performance analysis. This included four 

types of noise (image roughness (IR), SUVmean coefficient of variation (CoV), SUVmax CoV, and average 

max-min difference) and two types of bias (SUVmean bias and SUVmax bias). In addition, mean-squared 

error (MSE) of each voxel and MSE of SUVmean were computed. Definitions of these metrics are 

provided in detail in the next section.  
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2.3.3.4. Signal and noise figures of merits for quantitative analysis  

We used several figures of merit (FOM) to quantify the performance of generalized PSF modeling 

kernels in our study. Below we define these metrics and elaborate on why each FOM is required for 

studying different aspects of image quantitation.  

We denote the total number of independent noise realizations by 𝑅, the total number of image voxels 

by 𝑁, and the total number of voxels in a (tumor) region-of-interest (ROI) by 𝑀. If �̂�𝑖  and 𝑣𝑖
𝑟  refer to 

the true and reconstructed uptake values of the 𝑖th voxel (𝑖 = 1, … , 𝑁) at the 𝑟th noise realization, 

respectively, then: (i) �̅�𝑟 = SUVmean
𝑟 =

1

𝑀
∑ 𝑣𝑖

𝑟𝑀
𝑖=1  represents the spatial mean of voxels across an ROI 

at noise realization 𝑟, (ii) �̅�𝑖 =
1

𝑅
∑ 𝑣𝑖

𝑟𝑅
𝑟=1  represents the mean of a given voxel i, averaged temporally 

across all noise realizations, and (iii) �̅� =
1

𝑅
∑ �̅�𝑟𝑅

𝑟=1   is the ensemble mean of all SUVmean
𝑟  values across 

𝑅 noise realizations. Since each ROI is set to have a uniform uptake in the true image, we denote �̂�𝑖 =

�̂� to represent the value of all the voxels inside that region. Subsequently, the following noise and 

bias metrics can be derived:  

Contrast recovery curves (CRC) 

We define two types of CRC: SUVmean CRC and SUVmax CRC. The former is defined as the ratio between 

the contrasts of the reconstructed image and the true object in terms of the ROI average. The latter 

would be the same ratio but in terms of the ROI maximum voxel.  

Bias in SUVmean and SUVmax 

Biases in activity uptake quantitation were defined in terms of SUVmean and SUVmax, calculated as 

follows [384, 388]:  

 

SUVmean Bias =  
1

𝑅
∑(SUVmean

𝑟 − �̂�)

𝑅

𝑟=1

 2.9 
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where SUVmax
𝑟 =  max𝑖∈{1… 𝑀}{𝑣𝑖

𝑟} represents the voxel with the maximum uptake value inside the 

tumor ROI of realization 𝑟.  

Equations 2.9 and 2.10 show that SUVmean and SUVmax biases are basically defined as the deviation of 

the reconstructed image from the true value of the object. Both biases are then normalized to the true 

value for plots in the results section. It is worth noting that studies of quantitative task performance 

using clinical patient data would not have this level of rigor in determining the bias (given typical 

lack of access to the true value of every voxel).  

The coefficient of variability (CoV) of SUVmean and SUVmax 

We characterized the CoV for both SUVmean and SUVmax. The former was defined as follows: 

 

where �̅� was defined at the beginning of this section. Similarly, the maximum uptake CoV defined as 

the variability of the maximum voxel of selected ROI across all realizations, and can be calculated as: 

where SUVmax
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the SUVmax values averaged across the noise realizations. Both equations will 

be normalized to �̅� in plots of the results section 2.3.4.3for more proper comparison.  

SUVmax Bias =  
1

𝑅
∑(SUVmax

𝑟 − �̂�)

𝑅

𝑟=1

 2.10 

SUVmean CoV =  (
1

𝑅 − 1
∑(SUVmean

𝑟 − �̅�)2

𝑅

𝑟=1

)

1
2

 2.11 

SUVmax CoV =  (
1

𝑅 − 1
∑(SUVmax

𝑟 − SUVmax
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2

𝑅

𝑟=1

)

1
2

 2.12 
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Mean-squared error (MSE) 

MSE is a more general metric that combines noise and bias of voxels within a single quantity. It can 

be averaged over all voxels within an ROI to represent the MSE of the ROI, and then for the 𝑅 

realizations, the mean of all MSEs would be calculated: 

Due to the importance of both the accuracy and precision of SUVmean value in clinical practices and to 

better study the effect of different reconstruction kernels to the mean uptake, we defined the next 

FOM as the MSE of the mean uptake. MSE can also be calculated by summing the squared noise and 

squared bias [411]. The MSE of SUVmean was defined as: 

Image roughness (spatial noise) 

Image roughness (IR) measures the voxel by voxel variability in the image and can be calculated even 

for a single realization. Within a given ROI containing 𝑀 voxels, image roughness was defined as the 

variability of the voxel values with respect to SUVmean. This was then averaged over 𝑅 noise 

realizations: 

where �̅�𝑟  is the mean of all voxels, 𝑣𝑖
𝑟s, inside the given ROI of realization 𝑟. The noise values plotted 

in the results section were normalized to �̅�𝑟 .  

Voxel variation (σ0) 

This metric provides a measure of the variability of individual voxels over multiple noise realizations:  

MSE =  
1

𝑅𝑀
∑ ∑(𝑣𝑖

𝑟 − �̂�)2

𝑀

𝑖=1

𝑅

𝑟=1

 2.13 

MSE of SUVmean =  SUVmean Bias2 +  SUVmean CoV2 2.14 

𝜎𝑠𝑝𝑎𝑡𝑖𝑎𝑙 =  
1

𝑅
∑ (

1

𝑀 − 1
∑(𝑣𝑖

𝑟 − SUVmean
𝑟 )2

𝑀

𝑖=1

)

1
2𝑅

𝑟=1

 2.15 
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Voxel variation impacts both image roughness and SUVmean CoV [384].  Assume a uniform region 

consisting of 𝑀 voxels with voxel variance 𝜎0
2 for each voxel and inter-voxel covariance cov(𝑖, 𝑗) 

between two voxels 𝑖 and 𝑗. Tong et al. showed that the expectations of image roughness (Eq. 2.15) 

and SUVmean CoV (Eq. 2.11) is given by:  

and 

In Eq. 2.17, it is seen that the reduced voxel variance and increased inter-voxel covariance due to PSF 

modeling result in overall reduction in image roughness. In Eq. 2.18 however, these two works 

against one another and the increasing (positive) covariance contributes positively to SUVmean CoV.  

Averaged differences of max and min uptake 

To better quantify edge effects, we assessed the range of uptake within the ROI after reconstruction. 

For a total of 𝑅 realizations, the average max-min difference was calculated as follows: 

where SUVmin
𝑟 = min 𝑚{𝑣𝑟}, referring to the lowest uptake values within the ROI of the 𝑟th realization. 

The result was then averaged over all realizations. For plotting purposes in Results section, we 

normalized this measure to �̅�. This subtraction of the minimum undershoot from the maximum 

𝜎0 =
1

𝑀
∑ (

1

𝑅 − 1
∑(𝑣𝑖

𝑟 − �̅�𝑖)2

𝑅

𝑟=1

)

1
2𝑀

𝑖=1

 2.16 

𝐸[𝜎𝑠𝑝𝑎𝑡𝑖𝑎𝑙
2 ] = 𝜎0

2 −
1

(𝑀 − 1)𝑀
∑ cov(𝑖, 𝑗)

𝑖≠𝑗

=  𝜎0
2 −

2

(𝑀 − 1)𝑀
∑ cov(𝑖, 𝑗)

𝑖>𝑗

 2.17 

𝐸[{𝑆𝑈𝑉𝑚𝑒𝑎𝑛CoV }2] =
𝜎0

2

𝑀
+

1

𝑀2
∑ cov(𝑖, 𝑗)

𝑖≠𝑗

=  
𝜎0

2

𝑀
+

2

𝑀2
∑ cov(𝑖, 𝑗)

𝑖>𝑗

 2.18 

Averaged Max-Min difference =  
1

𝑅
∑(SUVmax

𝑟 − SUVmin
𝑟 )  

𝑅

𝑟=1

 2.19 
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2.3.4. Results 

Figure 2-13. Isocontours of selected PSF modeled radial profiles: radial bins positions vs. radial bins. The intensity of contours 
is the probability of an incoming radial bin (LOR) from different angles (vertical axis) to a particular bin and its seven neighbor 
bins (zero for the centred bin and ±7 bins in the horizontal axis). The dashed line represents the LOR perpendicular to the 
detector element. Kernels 4, 6 and 8 are examples of underestimated and kernels 12, 15 and 18 are examples of overestimated 
PSF kernels. 
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It is worth breaking down how each of the three degradations phenomena affects the PSF kernel. 

Inter-crystal scattering symmetrically blurs the neighboring crystals of the incident detector. 

Equation 2.5 addressing photon non-collinearity also yields a symmetric blur. However, in inter-

crystal penetration, photons penetrate the neighboring crystals and cause the parallax effect. This 

skews the PSF with respect to the true LOR, thereby inducing symmetry.  

The generalized PSF-modeling kernels presented here has an advantage over the underestimated 

PSFs performed in image-space in previous studies that characterize PSF kernels by varying the 

FWHM of the measured PSF [396, 412]. Those approaches overlooked two issues with the realistic 

PSF kernels that we can observe in Figure 2-13. First, realistic PSF kernels are anisotropic, so their 

FWHM varies with the angle of LOR. Second, under- and overestimating the true PSF not only changes 

its FWHM but also shifts its peak location that is angular dependent. This can be observed in Figure 

2-13, where the peak of radial bins corresponding to LORs entering with an oblique angle (radial bins 

1 to 150 in Figure 2-13) drifts from 1 to 4 as we increase the PSF kernels width.  

 

2.3.4.1. Reconstructed images 

Noise-free reconstruction. 

Figure 2-14 shows images of the noise-free reconstruction with 10 iterations and 7 subsets. PSF-

modeling is known to improve resolution and enhance contrast. This can be observed by comparing 

the no-PSF reconstructed images in the left column with the columns representing kernel #7 (slight 

underestimation) and beyond. The two major drawbacks of PSF modeling can also be addressed here, 

as we point out in some observations from this figure:  

(i) Following a few iterations, edge ringing phenomenon – a staple aftermath of PSF-modeling – starts 

to appear from kernel 6 (not shown in this figure – an intermediate underestimation of the true PSF 

– in all tumor sizes) and intensifies as the PSF kernel index – i.e. its deblurring effect – increases. This 



Figure 2-14. Noise-free reconstruction images of liver tumor and background (cropped to include liver tumor and its 
background tissue) after 10 iterations and 7 subsets. Rows represent different tumor sizes. Columns starting from the left 
indicate no-PSF reconstruction, four under estimating PSF kernels (#3, #5, #7 and #9), true PSF, and four overestimating PSF 
kernels (#12, #14, #16 and #18). The intersection of white dashed lines indicates the center of the tumor in the true object. The 
center of the FOV is located at the left-hand side of the tumor, and hence the tumor edges in its left and right sides pointed at 
by A and C arrows are more pronounced than top and bottom indicated by B and D.  
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(iii) The edge overshoot in PSF reconstructed images of tumors larger than 17mm is not uniform 

across its ring; i.e. the edge is more pronounced in the left and right, compare to the top and bottom. 

This can be observed in bottom-middle reconstructed image in Figure 2-14 by comparing the regions 

pointed to by “A” and “C” having a darker red color with “B” and “D”. The reason is closely related to 

the parallax effect. Photons from annihilation events away from the center of the FOV may experience 

significant inter-crystal penetration. Thus, the apparent LOR may not exactly match the true LOR and 

would be closer to the center of the FOV. In no-PSF modeling reconstruction, this LOR mismatch 

resulting in skewed lesions towards the center of the FOV will not be “deblurred”, whereas it will be 

deblurred by incorporating a true PSF-modeling kernel. The edge overshoot appears as an aftermath 

of this deblurring. The overshoot would be more pronounced in the direction of the parallax effect 

that skews the regions towards the center. In this figure the center of the FOV is located 

approximately on the left side of the tumor, so the left and right edges of tumor undergo more 

deblurring compared to the top and the bottom (“A” and “C” directions compare to “B” and “D”), thus 

exhibiting more edge overshoot.  

(iv) Furthermore, the overshoot on the right side of the ring (pointer “C”) is longer than the one on 

the left side (pointer “A”). The reason is the partial ring section in the right is farther with respect to 

the center of the FOV than the left. Therefore, the amount of deblurring and edge overshoot is larger, 

and subsequently, an asymmetric edge overshoot will appear on the left and the right of the region.   

(v) The final observation is that the apparent tumor location manifested in the reconstructed image 

drifts away from the center of the FOV as we apply higher kernels. This movement can be tracked 

using the white dashed lines representing the center of the tumor in each image. The reconstructed 

ROI with the 10th kernel (true PSF) is in a perfect position; while it slightly shifts towards the center 

of the FOV for underestimated kernels including no-PSF, and slightly shifts away from the center for 

overestimated ones. These effects result from under-/over-correcting for the parallax effect by 

various PSF kernels. By applying the underestimated kernels, the full correction (i.e. deblurring) is 
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not yet accomplished, thus the apparent position of the ROI is not back in its initial location; whereas 

the overestimated the kernels are actually over-correcting (over-deblurring) the region in the 

reconstruction. 

 

Noisy reconstruction.  

Figure 2-15 shows noisy reconstructed images. These images display the edge overshoot in the 

reconstructed ROIs of kernels 7 and above, in addition to its asymmetry, as explained in the last 

section. However, they also demonstrate another principal of PSF modeling: modified noise texture. 

With more blurring kernels, images look smoother, voxel variance reduces in both the tumor and the 

background, and the noise becomes more correlated and blobby. The inter-voxel correlation 

increases as we apply wider PSF kernels, thus the images look smoother with a blobby noise-texture.  
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Figure 2-15. Noisy reconstruction images of liver tumor and background (cropped to include liver tumor) for iteration #10 
iterations with 7 OS-EM subsets and no post-smoothing. Rows represent different tumor sizes. Columns starting from the left 
indicate no-PSF reconstruction four under estimating PSF kernels (#3, #5, #7 and #9), true PSF, and four overestimating PSF 
kernels (#12, #14, #16 and #18) 

2.3.4.2. Contrast recovery analysis 

Figure 2-16 shows plots of contrast recovery for SUVmean and SUVmax (CRCmean and CRCmax, 

respectively) of the tumor reconstructed with 20 PSF kernels. The first six images show that neither 

PSF nor no-PSF kernels can yield a CRC of one. PSF overestimation, however, yields a CRC value closer 

to one. Yet in most cases, extreme overestimation, i.e. kernels 15 and above, results in CRCmean higher 

than one, which is as undesirable as CRC<1 for underestimated kernels (mostly due to PVE at the 

edges) and induces an overestimation bias in the reconstructed region that alters quantification. 

The CRCmean curves have a smooth and monotonic transition with respect to increasing PSF kernel 

width. PSF modeling corrects for PVE and thus reduces blurring at the edges, therefore no-PSF 

modeling yields the maximum PVE and lowest CRCmean.  
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Figure 2-16. Averaged CRC of SUVmean and averaged CRC of SUVmax vs OS-EM iterations for six tumors over 200 noise 
realizations. The dashed line highlights CRC=1. CRCmean plots have a fixed vertical axis range of [0.5, 1.3], and the range for 
CRCmax plots is fixed to [0.5, 3.5]. 
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Another observation from this figure is that the true PSF reconstruction yields CRCmean less than one. 

The reason is that the overshoot at the edge of the ROI does not actually involve the outmost set of 

voxels of the region. The set of voxels undergoing overshoot are encircled by another ring(s) of voxels 

that (i) contain more voxels than the overshoot ring, and (ii) have less uptake than the reference 

truth. This is because the edge has not been completely recovered until after 40-60 (total) iteration 

updates, and the algorithm has not yet perfectly converged. These surrounding voxels at the very 

edge of the ROI decrease CRCmean to less than one—even in the presence of the overshoot edge—and 

consequently induce negative bias, as can be seen in the results of section 2.3.4.3. The EM algorithm 

is known to improve with every iteration towards convergence that eventually reconstructs edges 

perfectly after a massive number of iterations. However, this is impractical in PET reconstruction due 

to the presence of noise and its severe amplification. Therefore, the PVE at the edges of the region 

impacts CRCmean and causes it to be suboptimal. Thus, the observed underperformance is an attribute 

of the EM algorithm in PET reconstruction, and it disturbs image reconstruction with any degree of 

PSF modeling. But it can be observed from Figure 2-16 that overestimated PSF modeling kernels tend 

to mitigate this deficiency. 

CRCmax plots interestingly follow a reverse pattern, where, in contrary to CRCmean, underestimated 

and no-PSF attain higher CRCmax values and the curves decline as kernels’ widths increase. We 

observe that most of the curves lay above one, which is due to (i) the presence of noise and (ii) not 

performing any post-smoothing on the images that are shown to reduce CRC [396]. Moreover, 

iterative reconstruction algorithms, including OS-EM, are known to intensify the noise as they iterate. 

Therefore, this produces a monotonic increase regardless of the generalized PSF kernel. However, 

PSF reconstruction with wider kernels yields more correlation between the voxels. As a result, voxels 

cannot oscillate freely in the presence of the noise and their fluctuation decrease as the PSF kernel 

width increases. This inter-voxel correlation not only contains the oscillation of each voxel due to 
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noise but also limits the overshoot from rising too much in reconstruction with overestimated PSF 

kernels. The combination of these two effects contributes to the reduction of SUVmax thus CRCmax.  

The CRCmax curves also show that the smaller tumors (first three ROIs) have smaller CRC values; even 

the first few iterations may generate a CRCmax of one. The reason is again that the region is not fully 

recovered within 30 iterations. It is because the few voxels of the region mostly have values less than 

the reference truth due to the PVE, even when reconstructed with wide PSF kernels. The noise will 

then be added on top of this PVE and cause the CRCmax to become closer or even exceed one. More 

importantly, edge overshoot has not yet developed in early iterations of smaller tumors because the 

very few voxels across the ROI have not created enough extent for the overshoot to rise. Larger 

tumors, on the other hand, have an ample amount of space for multiple overshoot- and undershoot 

rings to appear. Therefore, as the diameter of the region grows, CRCmax increases, but it decreases 

with wider PSF kernels. 

 

2.3.4.3. Noise-bias performance comparison 

We defined three measures of bias, six measures of noise and two types of MSE in section 2.3.3.4, and 

are presenting their plots in this section. Note that the curves representing reconstruction with PSF 

kernels in all plots follow the same legend as Figure 2-17. In all figures, the starting iteration for 

plotting is two. 

 

Image roughness (IR) vs. SUVmean bias.  

Figure 2-17 shows image roughness vs. SUVmean bias for six tumors. The range on all six plots is fixed 

for a better comparison unless otherwise stated.  
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Figure 2-17. Image roughness vs. SUVmean bias for six tumors. Each point in the curves represents the results for a single OSEM 
iteration.  

IR decreases as the kernel index increases, which is consistent with PSF-modeling reducing spatial 

voxel variation and yielding a smoother image. Comparing no-PSF with true PSF (kernel #10) and a 

medium overestimated PSF kernel #15 (orange curve) at matched iterations shows a range of 

25%~35% and 38%~45% less noise for kernels #10 and #15 within all six tumors, respectively. At 

matched noise, SUVmean biases of these two kernels compared to no-PSF degrade significantly for first 

four tumors (25%~45% less bias for kernel #10 and 60%~94% for kernel #15), while its variation 

with respect to different kernels drops for two larger tumors (-16%~2% difference in bias for kernel 

#10 and 6%-16% less bias for overestimated kernel #15. Excessive overestimation, such as for 

kernel indices over 16, usually leads to a positive bias.  
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The behavior of IR curves can be explained by Eq. 2.17. No-PSF and underestimated kernels have 

higher 𝜎0 and lower covariance value; both of which contribute to amplify the spatial noise. As the 

kernels approach, true PSF and its overestimation, 𝜎0 degrades and voxels exhibit more covariance, 

and both yield lower image roughness. Moreover, IR has a small increase for larger ROIs. These 

regions consist of more voxels that result in less weight of the second term on the right-hand side of 

Eq. 2.17; which also results in a lower range of IR for larger tumors.  

 

SUVmean CoV vs. SUVmean Bias 

The plot of SUVmean noise vs. bias is shown in Figure 2-18. Unlike the other figures displayed earlier, 

each of the six plots has different axis ranges for more clear differentiation of the curves. 
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Figure 2-18. SUVmean CoV vs. SUVmean bias for six tumors. Note that axes ranges are not the same for each plot in this figure.  

Compared to the previous noise vs. bias performance curves with noise extending over 60%, the 

three plots for larger tumors in Figure 2-18 have much lower values and a smaller range of SUVmean 

CoV. Observing lower values for SUVmean is predictable, because not only it is an averaging process, 

but also the PVE at the edges contributes largely to the negative bias. As the PSF kernel’s width 

increases, some undershoots also may appear that increase the impact of overshoots and contribute 

to maintaining lower SUVmean values. For matched iterations (7th iteration; same for earlier two 

figures), no-PSF reconstruction demonstrates 0~5% and -1%~10% less noise compared to kernels 

#10 and #15, respectively. One immediate reason for such a small SUVmean CoV level for these larger 

ROIs is a higher number of voxels. Nonetheless, in the first three smaller ROIs, the SUVmean CoV values 

and ranges are slightly higher: no-PSF shows (mostly) improved noise performance compared to 
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kernels #10 and #15 by -2%~15% and 7%-11%, respectively. Some relevant discussions are 

provided in the next section explaining the observed patterns. 

 

SUVmax CoV vs. SUVmax bias 

The plot is shown in Figure 2-19 displays an approximately linear relationship between noise and 

bias. 

 

Figure 2-19. SUVmax CoV vs. SUVmax bias for all six tumors.  

SUVmax noise vs. bias curves of the overestimated PSF kernels typically demonstrate lowered noise, 

lowered bias and thus a higher quantitation performance compared to other earlier PSF kernels. In 

terms of SUVmax CoV, kernels #10 (true PSF) and #15 show 43%~57% and 58%~72% less noise, 
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respectively, as compared to no-PSF. In terms of SUVmax bias, the numbers are 18%~42% and 

43%~55%, respectively. This is mainly due to increased inter-voxel correlation explained for CRCmax 

in section 2.3.4.2. The first three curves in this figure also show that smaller ROIs exhibit a negative 

SUVmax bias for the first few iterations (maximum of 7) for the overestimated PSF curves, whereas 

the three larger ROIs do not show a negative bias, due to reasons explained in 2.3.4.1 about the 

smaller ROIs greatly suffering from PVE.  

 

Average max-min difference vs. SUVmean bias 

The noise vs. bias plot is presented in Figure 2-20. It was mentioned in section Averaged differences 

of max and min uptake that this noise metric essentially is a measure of shape and quantifies regions’ 

non-uniformities due to PVE and the edge overshoot effect.  
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Figure 2-20. Averaged max-min difference vs. SUVmean bias for each of the six tumors studied. 

The significance of this metric is its ability to assess edge overshoot effect and PVE. Comparing this 

shape metric for no-PSF with kernels #10 and #15 with matched iterations shows 15%~20% and 

21%~28% less shape variability, respectively. Underestimated kernels are more prone to noise and 

post-smoothing was not performed here, so most of the higher variabilities measured in the smaller 

blurring kernels are due to the noise. Nonetheless, it is interesting to observe the monotonic decrease 

of this shape variability that mostly depicts the effect of higher correlation because of more 

deblurring with wider PSF kernels.  
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MSE vs. PSF modeled kernels indices 

Figure 2-21 depicts plots of MSE vs. PSF kernels, where MSE effectively combines noise and bias 

within a single metric. Every line in the plot corresponds to an OS-EM iteration, and the results are 

shown for different ROIs. Interesting observations can be made. Except for the first few iterations in 

the smallest ROI, we see generally decreasing MSE values with increasing PSF widths for each given 

iteration. Also, plotting MSE and performing minimization while allowing for iteration number to 

vary – i.e. looking at the bottom of each plot – we see that least MSE is obtained, in all six ROIs, for 

overestimated kernels. 

 

 

 

Figure 2-21. MSE vs. PSF kernels. Each color indicates an OS-EM iteration. 
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MSE of SUVmean vs. PSF modeled kernels indices 

We calculated the MSE values for SUVmean using equation 12 and plotted them vs PSF kernel indices, 

as shown in Figure 2-22 (note that each plot has a different horizontal axis range). We indicated that 

the MSE of SUVmean captures the effects of both its noise and bias, thus providing us with an indicator 

of the overall performance of SUVmean, which itself is robust to spatial noise and can be used to 

quantify PVE. In these figures, following the trends of increasing iterations implies wider PSF kernels 

require more iterations to converge than narrower PSFs. Furthermore, we observe that the best 

performance, in terms of the minimum MSE of SUVmean, was obtained for overestimated PSF kernels.  

More specifically, it is seen that for small tumors, minimum overall MSE is obtained with medium PSF 

overestimation, whereas for the two largest regions, the slight decrease in SUVmean CoV (higher 

SUVmean reproducibility, as explained in SUVmax CoV vs. SUVmax bias) boosts the performance of 

underestimated PSF kernels. However, the MSE improvement between underestimated PSFs and 

true PSF for the two largest regions are 0.10 and 0.11, while the improvements for the overestimated 

PSFs (kernel 14 for instance) vs. the true PSF are 0.56, 0.61, 0.36 and 0.08 for ROIs 1 to 4, respectively. 

Therefore, overestimated PSF achieve more significant improvement.  
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Figure 2-22. MSE of SUVmean vs. PSF kernels. Note that each plot has a different scale.  

 

Plots vs. sphere diameters 

In the following Figure 2-23, six of the FOMs are plotted vs. ROI sphere diameters. The iteration is 

fixed at 10 for plotting: 
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Figure 2-23. Various quantification metrics vs. ROI diameters (in mm) at iteration 10 from different kernel sizes: (a) image 
roughness, (b) voxel variation, (c) SUVmean CoV, (d) SUVmax CoV, (e) SUVmean bias, and (f) SUVmax bias. Legends are the same as 
Figure 2-17. 



105 
 

These six plots provide better intuition about the impact of PSF kernels for ROIs with different sizes 

and help make interesting observations. Figure 2-23.a shows a small reduction in average voxel 

variation as the diameter increases. This is related to the fact that with larger ROIs, a smaller fraction 

of voxels is impacted by edge overshoot effect, which itself amplifies voxel variability [388]. Also, as 

seen in Figure 2-23.b, image roughness decreases with increasing ROI size. This is also related to the 

above effect, as well as the fact that second term in Eq. 2.17 decreases with increasing voxels (M).  

Figure 2-23.c shows an important trend. As mentioned in section SUVmean CoV vs. SUVmean Bias, the 

only plots that show overestimated PSF kernels have inferior performance were for SUVmean CoV. But 

as we explained, both Figure 2-8 and Figure 2-23.b indicate that this inferior reproducibility is not 

substantial; even in its worst case the CoV for the 10mm and 13mm ROIs, they vary within a range of 

1.5% from minimum to maximum SUVmean CoV. This figure also shows a considerable decline in CoV 

with an increase in a number of voxels in an ROI, as expected, as the mean measure becomes 

substantially more robust.  

An analogous trend observed in Figure 2-23.d, Figure 2-23.e and Figure 2-23.f is a peak in SUVmean 

CoV, SUVmean bias and SUVmax bias curves, respectively for 13-17mm tumors, especially with PSF 

overestimation. This pattern is mostly generated because of edge overshoot effect. We explained in 

2.3.4.2 that although this aftermath is referred to as edge overshoot, it does not involve voxels exactly 

at the edge of the ROI. The outermost ring of voxels always undergoes PVE (even at extreme PSF 

overestimation) where they have not yet recovered their true value. Excluding this outermost ring, 

four rings of voxels can contribute to the first overshoot ring as can be observed in large ROIs in the 

last row of figure 3 for kernel #10 (true PSF), and even more rings in the case of extreme 

overestimation. In larger ROIs the distance between one end of the region to the other is much larger 

than 10 voxels, therefore a complete doughnut can arise in the edge of the region. The center of this 

doughnut accommodates smaller undershoots and overshoots in mid-sized ROIs, as well as a flat 

region in larger ROIs. However, in smaller lesions, such as the 13mm and 17mm tumors, the extent 
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from one edge to the other is less than what is needed for these two overshoots to remain separate 

(thus generate a doughnut). Hence these two overshoots merge together and create a single 

overshoot with a value higher than each of the individual edges. This results in higher SUVmax FOM 

values, including higher SUVmax noise (Figure 2-23.d) and bias (Figure 2-23.f). Due to this 

phenomenon in smaller regions, most of the voxels inside the reconstructed ROI undergo an 

overshoot and exhibit a positive bias, resulting in a more positive SUVmean bias. This is the main 

reason for the peak in 13mm and 17mm regions in Figure 2-23.e. In larger tumors, the outermost 

ring of voxels contains more voxels than the overshoot rings exhibiting overshoot. Moreover, the 

negative bias that these outermost voxels experience due to PVE is much larger than the positive bias 

that inner ring of voxels exhibits due to the edge overshoot, which eventually causes the SUVmean bias 

to become negative.  

 

2.3.5. Discussion 

2.3.5.1. Noise vs. bias analysis 

In the current work, we plotted various noise vs. bias curves to assess the quantitation performance 

of true PSF, no-PSF and generalized PSF-modeling kernels. We performed a comprehensive analysis 

of generalized PSF modeling reconstruction for assessing quantitative task-performance, including 

noise vs. bias analysis between four types of noise (IR, SUVmean CoV, SUVmax CoV, and average max-

min difference) and two biases (SUVmean bias and SUVmax bias). Past efforts have focused on 

quantitation performance comparison between PSF vs. no-PSF-modeling reconstructions. These 

included bias (and/or contrast) vs. noise trade-off curves, commonly illustrating outperformance of 

PSF when defining noise as IR [357, 361, 363, 413], or SUVmean CoV [360, 362, 370, 382]. Our present 

study shows improvement in IR, SUVmax CoV, and the average max-min difference for the true PSF 

kernel vs. no PSF, complying with previous reports and demonstrates medium overestimated PSF 



107 
 

kernels outperforming the true PSF. At the same time, reproducibility in terms of SUVmean CoV 

between true PSF vs. no PSF shows less significant improvement (for small tumors with the same 

number of OS-EM iterations) or even a slight degradation (for small regions for PSF vs. no PSF or 

which complies with the previous reports; both of which complies with previous reports [384, 398, 

399]. The same behavior is observed for overestimated PSF vs. true PSF. However, since SUVmean 

metric is involved averaging voxels yielding a smoother value, its coefficient of variability is generally 

very low. Therefore, in practice, reproducibility degradation of overestimated PSF vs. no-PSF is 

negligible (<10% variability for a CoV of 3%).  

We also notice that more thorough analysis of reproducibility vs. bias can be performed for many 

other metrics (beyond SUVmean and SUVmax) in the emerging area of radiomics and heterogeneity 

quantification [247, 306, 309, 414-428]. This requires a distinct effort which can be pursued in the 

context of varying PSF kernels. 

 

2.3.5.2. Important factors in quantitation analysis  

In the present work, it was seen that two essential and determining parameters need to be carefully 

tuned for task-performance optimization: (i) number of iterations and (ii) segmentation of the target 

region or thresholding the ROI.  

The number of iterations in reconstruction.  

It can be seen from the plots in sections 2.3.4.2 and 2.3.4.3 that matched iterations cause different 

levels of contrast, noise or bias in reconstructions with different PSF kernels. This is because the 

degree of convergence in true PSF versus no-PSF reconstructions differs at the same number of 

iterations. This is very important when assessing and analyzing quantitation task performance. As 

an example, consider the four plots of SUVmean bias vs. sphere diameters in Figure 2-24 for iterations 

5, 7, 11 and 13. We observe that these plots follow a comparable pattern, where curves peak at 13mm 
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and 17mm ROIs. However, the values are considerably changing. No curve demonstrates a positive 

bias in iterations 5 and 7, whereas in iterations 11 and 13 the maximum value of the plot increases, 

creating positive bias. As such, merely comparing images reconstructed with different PSF kernels at 

the same number of iterations for PSF and no-PSF would not be sufficient (although this practice 

commonly appears in the literature [354, 412]). Therefore, it is necessary to observe the trend of 

quantification metrics with increasing iterations to obtain an accurate and meaningful comparison.  

A.

 

B.

 

C.

 

D.

 

 

Figure 2-24. SUVmean bias vs. sphere diameters for iterations number (a) 5, (b) 7, (c) 11, and (d) 13. Legend is the same as Figure 
2-17. 
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ROI segmentation.  

ROI segmentation was performed using thresholding, and the level was set to 55% in the present 

work, which we explored and assured visually to correspond very closely to the reference truth 

region. In any case, we observed that ROI segmentation has a significant impact on quantitation. This 

is because the uptake values of the outermost voxels at the boundaries of a reconstructed ROI suffer 

from PVE and hence have relatively lower values compared to the reference truth, which eventually 

impacts the noise and bias metrics. Correspondingly, the maximum voxel in a noise-free 

reconstructed ROI may represent either the overshoot due to the edge overshoot effect in mild 

underestimated, full, and overestimated PSF-modeling, or the true value of the ROI in no- and heavily 

underestimated PSF-modeling. On the other hand, the minimum voxel in such an ROI may represent 

a voxel in an undershoot of the ringing effect in mild underestimated, full, and overestimated PSF-

modeling, while it may also refer to a low uptake in the very edge of the region due to PVE. In this 

case, the thresholding should be defined properly so that the masked ROI excludes low uptakes at 

the edges. Otherwise, in the case of mild underestimated, full, and overestimated PSF-modeling, it 

would be hard to determine whether the minimum uptake is due to an undershoot of the edge effect 

that occurs inside the first overshoot ring, or it is a blurring due to PVE at the border of the ROI. To 

prevent this confusion, we optimized the thresholding ratio to preserve the region shape, while 

excluding blurred voxels due to PVE in noise-free reconstruction, and then apply it to the noisy 

reconstructed images. 

 

2.3.5.3. Noise metrics 

From the analysis provided in section Voxel variation (σ0) of Section 2.3.3.4, it can be deduced that 

noise, when measured spatially, can be significantly reduced by PSF modeling (given the same 

iteration number) whereas SUVmean CoV actually could be unchanged [384], increase [399], even 
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multi-fold [398]. This potential increase in SUVmean CoV means a reduction in SUVmean reproducibility. 

The present work explored how generalized PSF modeling (under or over-estimated kernel 

estimation) impacts quantitative performance given these different metrics, and the effect of 

iterations number was also especially considered. 

We observed in section SUVmean CoV vs. SUVmean Bias that SUVmean CoV vs. bias curves of 

underestimated PSF kernels demonstrated slightly better performance for small regions. Visual 

assessment of these plots reveals that the underestimated PSF kernels outperform true and 

overestimated PSF kernels only within the first few iterations. However, if iterations exceed 40 (not 

depicted), the noise vs. bias curves of underestimated PSF kernels for the largest ROI in Figure 2-18 

would eventually follow the pattern observed in Figure 2-17, Figure 2-19 and Figure 2-20—i.e. 

overestimated PSF curves outperforms underestimated and true PSF. The reason for this behavior 

can be partially explained by equations 2.17 and 2.18 in section 2.3.3.4; especially Eq. 2.18, in which 

the two terms of 𝜎0 and covariance act against each other. Although more iterations increase 𝜎0 and 

decrease covariance, the effect of a 1/ 𝑀 factor in the first term of Eq. 2.18 further diminishes the 

effect of 𝜎0 compared to the first term in Eq. 2.17, thus the first term cannot impact SUVmean CoV in 

Eq. 2.18 as much as it impacts IR in Eq. 2.17. Furthermore, increased covariance values in earlier 

iterations contribute to SUVmean CoV, increasing it and thus decreasing reproducibility of the higher 

PSF modelled kernel indices. Nonetheless, this degradation of reproducibility for overestimated 

kernels, particularly the kernel #15, was lower (<10%) compared to improvements (reductions) in 

IR (~50%) and 𝜎0 (30%~50%), while increasing CRC (a CRCmean of 0.95 for kernel #15 vs. 0.85 for 

kernel #10 and 0.80 for no-PSF). In the present work, we did not include any noise-suppression or 

control in the current analysis, but surely studies should be pursued to analyse methods such as post-

reconstruction smoothing, penalized EM, and other credible methods and study their effects along 

with various degrees of PSF modeling in quantitation. Also, the present work was focusing on a single 

tumor contrast derived from clinically derived kinetic parameters for a liver tumor. Future studies 
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need to be performed that includes tumors with higher contrasts. The present work proposes and 

expands on a particularly neglected dimension of imaging, namely on the extent of PSF kernels. But 

in future studies it s,hould be integrated along with various filtering regimes and number TOF kernels 

to find the optimal combination for optimizing the overall PET quantification. 

 

2.3.5.4. Comparison with past efforts 

A preliminary study of projection-space generalized PSF-modeling was performed involving a 

spectrum of underestimated PSF kernels [307]. In that study, we quantitatively analyzed projection-

space reconstructions with a spectrum of PSF kernels generated from the true PSF using a convex 

combination approach; i.e. (1 − 𝛼) × “no-PSF kernel” + α × true “PSF kernel”, 𝛼 ∈ [0,1], where the 

“no-PSF” kernel is a delta function that assumes the incoming rays are solely detected at their 

incident detector. Those intermediate kernels are considered underestimations of the true PSF 

kernels. The convex combination method used to generate PSF kernels for that study cannot be 

extended to generate overestimated kernels, thus we chose to rescale reconstruction parameters as 

we explained in Appendix B. Therefore, although some of the underestimated PSF kernels on that 

study do not perfectly match the PSF kernels used in this work, the results follow the same pattern: 

the SUVmean CoV of slightly underestimated kernels showed a 12% increase compared to true PSF.  

The present work pursues such a generalized PSF framework in the context of quantitation [305], 

which in future efforts can be thoroughly evaluated for detection tasks. Additional work is being 

pursued in this area on the front of heterogeneity analysis, including studies on the effect of PSF 

modeling on heterogeneity quantification task performance, with the aim of adopting more 

reproducible and robust shape and textural features and optimizing them for enhanced prediction 

and prognostic tasks [306]. 



112 
 

Positron range is another PET degradation that induces more blur to the system matrix, as it 

increases the FWHM of the PSF. Some vendor PET scanners use Ge-68 point sources to characterize 

the PSF as modeled within PSF-reconstruction [139]. However, in comparison, the most popular 

isotope, F-18, has a relatively small positron range. Therefore, utilizing a PSF kernel obtained from 

Ge-68 point-sources that has a significant positron range to reconstruct F-18 PET data is 

approximately equivalent to an overestimated PSF kernel in the reconstruction, since both increase 

the FWHM of the PSF. It is interesting to note, based on our observations with overestimated PSF 

kernels, that this may not be a problem in fact, and may effectively lead to improvements in 

quantitative performance, though further analysis is required to implement the exact model of 

radiotracers with higher positron range, that is left for future study. 

 

2.3.6. Conclusion  

PSF-modeling is an increasingly employed partial volume correction method. We studied the impact 

of an array of projection-space-based PSF models on PET reconstructed images for optimized 

quantitative task performance. The system PSF was constructed using models of photon non-

collinearity, inter-crystal scattering, and inter-crystal penetration, as well as the patient attenuation 

map and scanner normalization sinogram. Using these models, we generated 20 generalized PSF-

modeling kernels – including no and true PSF, as well as 8 underestimated and 10 overestimated PSF 

kernels. We used an XCAT anthropomorphic phantom with 6 different liver tumor sizes and 

kinetically derived [18F]-FDG time-activity curves to reconstruct noise-free, as well as 200 noisy 

images using the OS-EM algorithm. The quantitative figures of merit included contrast recovery, 

mean-squared error, and various noise metrics (image roughness, voxel variation, SUVmean and 

SUVmax coefficient of variability (CoV), averaged max-min difference) and biases (SUVmean, SUVmax). 

We evaluated these metrics for different tumor sizes/iterations/PSF kernels/noise realization.  



113 
 

The results of our main study follow those of our preliminary image-based PSF modeling presented 

in section 2.2 earlier in this chapter. Our results show that for the standard range of iterations 

employed in the clinic (not excessive), edge enhancement due to overestimation counter-

intuitively lowered SUV bias in small tumors, while inter-voxel correlations suppressed image 

roughness and enhanced uniformity in all tumors, only slightly degrading SUVmean reproducibility 

in the smallest tumors. One may at first imagine that overestimating the PSF would lead to higher 

overshoots at the edges. However, we only observed this at higher iterations. In fact, using an 

overestimated PSF resulted in improved contrast and limited edge overshoot effect at lower 

iterations, in turn enabling enhanced SUV quantitation. Overall, our work suggests that one ought 

not necessarily to utilize an exactly matched system PSF for enhanced image reconstruction 

performance, and that slightly overestimated PSF modeling can improve PET image 

quantitation. Our proposed framework can as such be pursued as a powerful and viable approach 

in quantitative task-based optimization including in prognostication and treatment response 

assessment. 
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Part II: Enhanced Quantitation using Advanced Image 
Processing and Radiomics 
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3. Standardized Radiomics in Nuclear Medicine Imaging 

3.1. Introduction 

“Images are more than pictures, they are data” [244]. Radiomics refers to the mapping of images to 

data and then mining that data towards improved clinical decision support. Initially, radiomics was 

utilized for oncologic studies, but it has expanded to other clinical areas. Also, while first efforts on 

radiomics were mostly performed on high-resolution images from CT and MRI, starting in 2009 

radiomics-type approaches were also studied in PET imaging, and later on, our group applied 

radiomics to SPECT imaging [291]. In the field of radiomics, image features (also known as radiomic 

features) are extracted from regions of interest (ROIs). An ROI can consist of a functional region; e.g. 

a tumor (possibly also including its immediate background), or an anatomic region (e.g. putamen in 

brain studies, left anterior descending segment of the heart, or other tissues of interest). However, 

this relatively new field faces substantial challenges on its path to routine clinical usage [244]. 

Chapter 1 provided an introduction to radiomics and some of its applications (section 1.4.3). In this 

chapter, we elaborate on the radiomics workflow. Then, we discuss the importance of standardized 

and reproducible radiomics, following by our collaborative efforts with the image biomarker 

standardization initiative (IBS) to standardize radiomic features and processes. Finally, we present 

two of our studies applying standardized radiomics to PET and SPECT clinical datasets, where we 

perform radiomics feature selection, a first and important step towards reliable radiomics analysis.  
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3.1.1. Motivation  

As we explain in detail in section 3.2, radiomics workflows suffer from different sources of variability, 

and it is crucial for a systematic and reliable radiomics study to account for and present a method to 

correct for all these variabilities. In this chapter, we describe radiomics standardization efforts and 

our contribution to a global initiative aiming at standardizing radiomics studies (section 3.2.3) that 

have been published in the form a global collaboration effort [311, 325, 333, 429]. We have also 

released our work as a software package entitled Standardized Environment for Radiomics Analysis 

(SERA). Furthermore, in section 3.3, we present our studies on reproducibility of radiomic features 

in two distinct nuclear medicine projects, some of which we have previously presented to the 

community [314, 317].   

 

3.1.2. Radiomics workflow 

Figure 3-1 shows a sample radiomics workflow. Following the acquisition of high quality and 

standardized image, the ROI is first defined and segmented, since most radiomics analyses are 

defined for ROIs, not the entire image. The segmentation task can be performed manually by an 

imaging expert such as a radiologist or radiation oncologist for a CT or MRI image, or a nuclear 

medicine physician for a PET image. It can also be performed semi-automatically or be fully 

automated, but it is recommended for these efforts to be supervised by an imaging expert. The 

segmented ROI may then need to be resampled to a cubic voxel size, and this resampling also involves 

interpolation.   

In the next step, radiomic features are calculated automatically from the segmented ROI. Radiomic 

features can be from different feature families (or classes) based on the property that they 

characterize from the ROI. Features families are namely divided into first-order, and higher-order 

features. The first order features are those that are directly calculated from the ROI. Examples include 



Figure 3-1. A typical radiomics workflow. Following image acquisition, the ROIs are segmented, then radiomics features are 
calculated from the segmented ROI. Features are narrowed down in the feature selection step.  



118 
 

3.1.3. A brief introduction to radiomic features calculations 

The detailed procedures at every step of the radiomic workflow, including the definitions of over 100 

essential radiomic features, are not provided in this dissertation, and the reader can refer to the IBSI 

documentation for these details [429]. In this section, we briefly describe some of the preprocessing 

procedures prior to feature calculation following by the main radiomic feature classes, and the name 

selected features from each class.  

 

3.1.3.1. Image preprocessing 

Below we briefly describe some image preprocessing steps prior to feature calculations. 

Segmentation  

Segmentation can be performed manually by radiology or nuclear medicine expert, or semi-

automatically using methods such as gradient-based approaches, thresholding based on maximum 

voxel (e.g. SUVmax), thresholding based on deviation from reference (liver) uptake, or performed 

automatically using available deterministic techniques and/or deep learning. The segmentation 

mask would be a 3D binary matrix of the same size as the image following a similar grid system.  

 

Interpolation 

Texture features may require resampling to have isotropic (cubic) voxel sizes to be rotationally 

invariant. It also enables a comparison between analyses from different samples and cohorts. 

Resampling requires voxel interpolation, and it affects image feature values since they are sensitive 

to variations in the voxel size [430-432].  
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Interpolation algorithms map voxel intensities from the original image grid to an interpolation grid, 

where voxels are spatially represented by their centers. Commonly-used interpolation algorithms 

include: 

• Nearest neighbors 

• Linear  

• Cubic convolution 

• Cubic Spline 

More details on interpolation processing including grid orientation and grid translation can be found 

in the IBSI document [429]. 

 

Re-segmentation 

Re-segmentation is a process following image segmentation and interpolation in which certain voxels 

may be removed from the ROI if they are outside of a certain range. One example that demonstrates 

the benefit of re-segmentation is excluding air voxels from an ROI of a lung tumor. Two main methods 

to perform re-segmentation are:  

Range re-segmentation 

This method excludes voxel intensities beyond a predefined interval (e.g. exclude voxels with 

intensities outside of [−500,400] HU in a lung tumor radiomics study. 

Intensity outlier filtering 

In this re-segmentation method voxel with intensities that are considered outliers may be removed 

from the ROI. One method is to calculate the mean 𝜇 and the standard deviation 𝜎 of the grey-levels 

(defined below) inside the ROI and then exclude voxels outside of the range [𝜇 − 3𝜎 , 𝜇 + 3𝜎] [264]. 
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The ROI is called the morphological mask before performing re-segmentation and after re-

segmentation is referred to as the intensity mask.  

 

Intensity discretization 

ROI voxel intensity discretization or quantization is often required for calculation of higher-order 

texture and heterogeneity features to make them tractable and suppress noise [245]. During the 

discretization process, voxel intensities are discretized into new values called grey-levels (GL). They 

are two commonly-used approaches to ROI discretization: 

Fixed bin-number discretization 

In this method, voxel intensities 𝑋𝑖 , 𝑖 = 1, … , 𝑁𝑅𝑂𝐼 , where 𝑁𝑅𝑂𝐼  is the total number of voxels in the 

ROI, are discretized into a fixed number of 𝑁𝑔 bins as follows: 

𝑋𝑖
𝐷 = {

⌊𝑁𝑔

𝑥𝑖 − 𝑋𝑖
min

𝑋𝑖
max − 𝑋𝑖

min
⌋ 𝑥𝑖 < 𝑋𝑖

max

𝑁𝑔 𝑥𝑖 =  𝑋𝑖
max

 3.1 

where 𝑋𝑖
min and 𝑋𝑖

max are the minimum and maximum values of all 𝑥𝑖 , 𝑖 = 1, … , 𝑁𝑅𝑂𝐼 .  

Fixed bin-number discretization imposes some attributes to the ROI. First, it removes the 

relationship between image intensity and the physiological underlying matter (if any). Second, it has 

a normalizing effect which is an advantage in case of imaging modalities with arbitrary units such as 

MRI and SPECT. Third, certain classes of radiomic features are highly dependent on the number of 

GLs, and fixed bin-number discretization enables a direct comparison of feature values across 

multiple ROIs or multiple patients.  

Fixed bin-size (or fixed bin-width) discretization 

This discretization type is a simple concept where a new bin is assigned for every intensity interval 

with a width 𝑤𝑏 . In this case, 𝑤𝑏 is the bin width, and it starts at a minimum fixed GL referred to as 



3.1.3.2. Radiomic features 

Figure 3-2. A 2D ROI over a prostate tumor on a PET image. The original segmented ROI has SUV values (middle matrix) with 
a certain size. The ROI is then resampled to a finer resolution and discretized with a fixed bin-size of  SUV. 
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Table 3-1. List of radiomic features in compliance with IBSI guidelines. For details on subtypes, refer to section Grey-level co-
occurrence matrix (GLCM) on page 128. 

 
Feature Family Subtypes 

Number of 

Features 
F

ir
st

-o
rd

er
 

fe
at

u
re

s 
Morphology - 29 

Local Intensity - 2 

Intensity-based Statistics - 18 

Intensity Histogram - 23 

Intensity-Volume Histogram - 7 

H
ig

h
er

-o
rd

er
 f

ea
tu

re
s 

Gray Level Co-occurrence 

Matrix (GLCM) 

2D Averaged 

2D Slice-Merged 

2.5D Direction Merged 

2.5 D All Merged 

3D Averaged 

3D Merged 

25 

25 

25 

25 

25 

25 

Gray Level Run Length 

Matrix (GLRLM) 

2D Averaged 

2D Slice-Merged 

2.5D Direction Merged 

2.5 D All Merged 

3D Averaged 

3D Merged 

16 

16 

16 

16 

16 

16 

Gray Level Size Zone Matrix 

(GLZSM) 

2D  

2.5 D  

3D  

16 

16 

16 

Gray Level Distance Zone 

Matrix (GLDZM) 

2D  

2.5 D  

3D 

16 

16 

16 

Neighborhood Grey Tone 

Difference Matrix (NGTDM) 

2D  

2.5 D  

3D 

5 

5 

5 

Neighboring Grey Level 

Dependence Matrix 

(NGLDM) 

2D  

2.5 D  

3D 

17 

17 

17 

 Total  487 
 

 

Morphological features 

Morphological features or shape features describe geometric aspects of an ROI. These features are 

based on ROI voxel representations of the volume. Voxel representations of morphological features 

can be set as coordinates of the voxel centers, or a surface mesh representation of the ROI. The latter 
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can be performed by different algorithms including Marching Cubes [433]. These different definitions 

can impact the calculated values. For instance, the definition of “volume” based on the mesh 

representation calculates the volume of the space contained by the triangulate mesh surrounding the 

ROI, whereas the volume based on the voxel representation would be simply the number of voxels 

times the volume of a single voxel. The IBSI guideline refers to the first approach as “volume” and the 

second approach as “approximated volume” since the mesh representation provides a value nearer 

to the truth. Below is the list of some morphological features.  

1- Volume 

2- Approximate volume 

3- Surface area 

4- Surface to volume ratio 

5- Compactness 1 

6- Compactness 2 

7- Spherical disproportion 

8- Sphericity 

9- Asphericity 

10- Centre of mass shift 

11- Maximum 3D diameter 

12- Major axis length 

13- Minor axis length 

14- Least axis length 

15- Elongation 

16- Flatness 

17- Volume density-AABB 

18- Area density-AABB 
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19- Volume density-OMBB 

20- Area density-OMBB 

21- Volume density-AEE 

22- Area density-AEE 

23- Volume density-MVEE 

24- Area density-MVEE 

25- Volume density-convex hull 

26- Area density-convex hull 

27- Integrated intensity 

28- Moran’s I index 

29- Geary’s C index 

Most of the above features solely depend on the morphological ROI (as defined earlier), and are 

independent of voxel values. For the definition and formulation of these features please refer to the 

IBSI documentation [429]. 

 

Local Intensity features 

Local intensity refers to two specific features that are computed based on the voxel intensities within 

a defined neighborhood around a centered voxel. The centered voxel should belong to the intensity 

ROI, but the neighboring voxels may be from outside of the intensity ROI if the centered voxel is at 

the edge of the ROI. The two local intensity features are: 

1- Local intensity peak 

2- Global intensity peak 
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The former is the maximum mean intensity of a 1cm3 sphere, that is, voxels found in a set of voxels 

within a radius of 𝑟 = (
3

4𝜋
)

1/3
≈ 0.62 cm of the centered voxel. The difference between the two is 

that in the local intensity peak, the center voxel should belong to the intensity ROI, whereas in the 

global peak, the centered voxel can be from anywhere on the image. The former is close to the 

definition of SUVpeak in PET imaging. 

 

Intensity-based statistical features 

These features describe how voxel values within the ROI are distributed. These voxel-values do not 

need discretization. They intensity-based features would not be meaningful in the case of arbitrary-

unit modalities such as MRI and SPECT. Below is a list of these features. For their formulation please 

refer to the IBSI document [429]. 

1- Mean 

2- Variance 

3- Skewness 

4- Kurtosis 

5- Median 

6- Minimum 

7- Percentile 10 

8- Percentile 90 

9- Maximum 

10- Interquartile range 

11- Range 

12- Mean absolute deviation 

13- Robust mean absolute deviation 
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14- Median absolute deviation 

15- Coefficient of variation 

16- Quartile coefficient of dispersion 

17- Energy 

18- Root mean square 

 

Intensity histogram features 

To calculate these features, first, we have to generate an intensity histogram by discretizing the 

original set of voxel intensities 𝑥𝑖  into grey-level bins based on one of the approaches described in 

section 3.1.3.1. Subsequently, a range of features can be calculated from the histogram: 

1- Mean 

2- Variance 

3- Skewness 

4- Kurtosis 

5- Median 

6- Minimum 

7- Percentile 10 

8- Percentile 90 

9- Maximum 

10- Mode 

11- Interquartile range 

12- Range 

13- Mean absolute deviation 

14- Robust mean absolute deviation 
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15- Median absolute deviation 

16- Coefficient of variation 

17- Quartile coefficient of dispersion 

18- Entropy 

19- Uniformity 

20- Maximum gradient 

21- Maximum gradient grey level 

22- Minimum gradient 

23- Minimum gradient grey level 

 

Intensity-volume histogram (or cumulative histogram) features 

The (cumulative) intensity volume histogram (IVH) is generated by producing a cumulative 

histogram from the distribution of discretized voxels into bins. It describes the relationship between 

a GL and the fraction of the volume of the histogram containing at least that particular GL. IVH is the 

only feature class that may have its own discretization type. For consistency, it is recommended to 

set the range of the IVH to be the same as the re-segmentation range. The following features can be 

calculated from IVH: 

1-  Volume fraction at 0.10 intensity 

2- Volume fraction at 0.90 intensity 

3- Intensity at 0.10 volume 

4- Intensity at 0.90 volume 

5- Difference volume fraction at 0.10 and 0.90 intensity 

6- Difference intensity at 0.10 and 0.90 volume 

7- The area under the IVH curve 
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Below we continue with higher-order feature classes. For brevity, we only explain three higher-order 

classes of features through the rest of this section. Readers can refer to the IBSI guideline for 

definitions of other higher-order feature classes [429] which we have implemented in our SERA 

software.  

 

Grey-level co-occurrence matrix (GLCM)-based features 

These features were originally developed to assess the texture of a surface in 2D images, but they can 

be extended 3D objects as well. Voxel intensities are usually discretized prior to calculation of the 

texture features with methods that were explained in section 3.1.3.1.  

The grey-level co-occurrence matrix (GLCM) is a matrix that expresses how two voxels “co-occur” 

with respect to one another; in other words, it expresses how combinations of discretized GLs of 

neighboring voxels are distributed along a certain direction and with a certain distance [434]. GLCM 

with a neighboring distance of 1 has a 26-connected neighborhood in 3D and 8-connected 

neighborhood in 2D, yielding 13 unique directions in 3D and four in 2D. Thus, for a 3D approach with 

a distance of one, an ROI has 13 unique GLCMs for every 13 direction.  

GLCM calculation across a certain direction is as follows. Let 𝑀𝑚be the 𝑁𝑔 × 𝑁𝑔GLCM matrix with 𝑁𝑔 

number of GLs present in an ROI intensity mask, and 𝑚 is a certain direction from one of the possible 

choices we presented in the previous paragraph. The element (𝑖, 𝑗) of the GLCM matrix 𝑀𝑚 contains 

the frequency at which combinations of GL 𝑖 and GL 𝑗 co-occur in neighboring voxels along the 

direction 𝑚. The GLCM, consequently, is a symmetric matrix. An example of GLCM with some 

highlights to help understand the matrix evaluation is presented in Figure 3-3. 



Figure 3-3. A sample GLCM 2D matrix for direction (1,0) and distance 1. GLCM is calculated on the discretized intensity ROI. 
Each element of the GLCM matrix is the frequency of neighboring voxels  and  in the given direction and the given distance. 
For example, the GLs in this image are between 1 to 4. they are 6 co-occurrence of GL “1” with GL “2” in the “right” direction 
with distance one in the figure above as marked by green color.   
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16- Inverse difference moment 

17- Inverse difference moment normalized 

18- Inverse variance 

19- Correlation 

20- Autocorrelation 

21- Cluster tendency 

22- Cluster shade 

23- Cluster prominence 

24- Information correlation 1 

25- Information correlation 2 

Each of the above features is derived from GLCM and returns a single value; i.e. each of the above 

features would have 13 values for each of the 13 GLCMs for 13 directions. GLCM can be calculated 

both in 2D with 4 different directions and in 3D with 13 directions, yielding 4 2D and 13 3D features, 

respectively. But only one value is ultimately reported as the final value, which means either GLCMs 

or features should be somehow combined. According to IBSI guidelines, there are six different 

methods to aggregate GLCMs and arrive at a single feature value, which results in six different feature 

calculation options as mentioned in Table 3-1. These methods are: 

1- 2D, averaged: Features are first computed from each 2D directional matrix. Then average 

feature over all directions and all slices.  

2- 2D, merged: First merge all 2D directional GLCMs over all directions per slice, then calculate 

features for this single merged GLCM, then average calculated features over all slices.  

3- 2.5D, averaged: First merge all 2D directional GLCMs over all slices per direction, then 

calculate features for this single merged GLCM, then average calculated features over all 

directions. 



2.5D, merged: 

3D, averaged: 

3D, merged: 

Grey-level run length matrix (GLRLM)-based features 

Figure 3-4. An example of GLRLM generation. The generated GLRLM is based on the (1,0) direction. Each element of GLRLM 
refers to the number of instances that a certain GL (rows) has appeared in the ROI with a certain run-length (columns). For 
example, there are only 2 instances of GL “3” with run-length of “2” as marked by green color.   
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Below is a list of IBSI features for GLRLM: 

1- Short runs emphasis 

2- Long runs emphasis 

3- Low grey level run emphasis 

4- High grey level run emphasis 

5- Short run low grey level emphasis 

6- Short run high grey level emphasis 

7- Long run low grey level emphasis 

8- Long run high grey level emphasis 

9- Grey level non-uniformity 

10- Grey level non-uniformity normalized 

11- Run length non-uniformity 

12- Run length non-uniformity normalized 

13- Run percentage 

14- Grey level variance 

15- Run length variance 

16- Run entropy 

Elaborating each feature is outside of the scope of this thesis, yet, we briefly describe an interesting 

pattern for generation of some GLRLM features that make them more intuitive to understand and 

occurs in other higher-order classes such as GLSZM, GLDZM and NGLDM. The first eight GLRLM 

features with an emphasis on high or low GLs and/or run-lengths are calculated by distributing 

weights in different patterns on the GLRLM matrix and then performing a weighted average based 

on these patterns to arrive at a single number. Figure 3-5 can be used to explain this. In the figure, 

darker colors represent higher weights, and lighter color represent lower weights. We observe that 

e.g. for short runs emphasis (SRE), more weight is given to the left side of the GLRLM where it 
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represents the elements with shorter run-length. As another example,  the long run low grey-level 

emphasis (LRLGLE), gives more weight both to (i) “long runs”, i.e. towards the right of GLRLM, and 

(ii) to “low grey-levels”, i.e. towards the upper side of the matrix. Therefore, the pattern is to give 

more weights towards the upper-right side of the GLRLM.  

 

Figure 3-5. The first 8 GLRLM features can be visualized by these weighting patterns for a 6 × 6 GLRLM. For example, short-
run low GL, puts more weight towards “short run-lengths” that is towards the left side of the matrix, and “low GLs” that is 
towards the upper side of the matrix, creating a weighting pattern towards the upper-left side of the matrix, and calculating 
the feature based on this weighted-average.  

 

Grey-level size zone matrix (GLZSM)-based features 

The grey-level size-one matrix (GLSZM) counts the number of zones, or connected components, of 

linked voxels. Voxels are considered in the same zone if their neighboring voxel has the same GL. As 

such, GLSZM, like other higher-level feature classes, require discretization of the ROI. However, 

unlike GLCM and GLRLM, GLSZM is not directionally-dependent.  

Let 𝑀 be the 𝑁𝑔 × 𝑁𝑧 GLSZM with 𝑁𝑔 representing the maximum GL present in the ROI intensity 

mask, and 𝑁𝑧 is the maximum zone size of any connected group of voxels. Then, an element of this 

matrix 𝑠𝑖,𝑗  represents the number of zones with GL 𝑖 and size 𝑗. Figure 3-6 shows an example of 

GLSZM generation.  



Figure 3-6. An example of GLSZM. Each element  represents the number of zones of connected voxels with grey level  
(rows) and zone size  (columns). For instance, they are two instances of grey level 2 with size 1, as it marked with a black color.  
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across all slices. The first 8 GLSZM features have the same intuition behind as the first 8 features of 

GLRLM as discussed in the previous page. They are based on weighted-average of GLSZM with a 

certain pattern described by the feature name, as shown in Figure 3-7. 

 

Figure 3-7. Weighing patterns of the first 8 GLSZM features. A similar approach to Figure 3-5.  

 

Other higher-order feature classes 

As mentioned before, there are other more complex higher-order radiomic feature classes that we 

do not elaborate here, and readers can refer to the IBSI guideline for detailed elaboration [429]. In a 

nutshell, these feature classes are as follows: 

Grey level distance-zone matrix (GLDZM)-based features 

GLDZM counts the number of groups of connected voxels with a specific GL value and distance to ROI 

edge. It contains an extra-level of information compared to GLSZM: it captures the relation between 

the distance from the edge, zone-size, and GL. Sixteen feature are derived from GLDZM.  

Neighboring grey level dependence matrix (NGLDM)-based features 

NGLDM captures the coarseness of the overall texture. Seventeen features are derived from the 

NGLDM. 
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Neighborhood grey tone difference matrix (NGTDM)-based features 

NGTDM contains the sum of GL differences of voxels with a specific GL and the average discretized 

GL of neighboring voxels within a distance. Five features are computed from NGTDM.  

Overall, in our SERA product, we defined 487 unique radiomic features in 11 classes. These features 

can be calculated with different discretization levels (either fixed bin-size or fixed bin-number). 

Under the assumption that only two discretization levels are considered, the number of features in 

our parameters space is easily increased to 1000. At the same time, most radiomics studies hardly 

include more than a few hundred data points. As such, the important question is: Can we use these 

hundreds or thousands of features to correlate with or predict clinical outcome?  

 

3.2. Properties of Responsible and Reproducible Radiomics Research  

Although radiomics is a relatively young discipline and has experienced relatively fast growth (Figure 

1-18), it has not been yet been translated to routine clinical practice. This may be due to the low 

reproducibility of most current studies [436]. Radiomics has a complex workflow involving many 

steps that often suffers from incomplete reporting of methodologic information. Consequently, few 

radiomics studies available in the current literature are readily reproducible from start to the end 

[436]. Another major issue is the relatively small number of images in radiomics research datasets 

that may induce overfitting and high false-positive rates. This further worsens with the tendency to 

report overly-optimistic results [436].  

Guidelines and protocols are available for quality control measures in nuclear medicine imaging to 

standardize patient preparation, dose production and administration, image acquisition, image 

reconstruction, SUV normalization, etc., such that the absolute SUV values are interchangeable in 

multicenter studies [216]. To perform radiomics in PET, such standardized SUV measurements are 

crucial; yet, the methodology to prepare the image and calculate radiomic features is also subject to 
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variability, showing a crucial need for standardization [247, 437, 438]. Several studies have shown 

the importance of robust and standardized protocols to enable reliable quantification of 

heterogeneity with textural features.  They demonstrated an important need to standardize the 

computation methods due to the complexity of the radiomics workflow [216, 247, 436, 439]. In what 

follows, first, we briefly mention the causes of variability in radiomics workflow, following by an 

introduction to the IBSI effort, and then elaborate on the properties for a responsible radiomics 

research.  

3.2.1. Causes of variability in the radiomics workflow 

A serious challenge with the calculation of radiomic features is the very large number of features that 

can theoretically be calculated and different ways to calculate them. In addition, acquisition protocol, 

scanner variations, quantitative corrections, reconstruction algorithm settings (e.g. PSF vs. no PSF, 

number of iterations, etc.), post-reconstruction processing (Gaussian post-smoothing), as well as 

user-induced variations such as ROI definitions are all other sources of variability that increase the 

complexity and hamper the reproducibility. Figure 3-8 shows a flowchart of a typical radiomics 

workflow and summarizes a few of the choices that the user confronts during each step of the 

process.  

 



Figure 3-8. Points of variability in a radiomics workflow aiming at radiomic feature calculation and selection. 

3.2.2. The image biomarker standardization initiative (IBSI)  
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Table 3-2. Different configurations of the IBSI standardization effort  

 Config. A Config. B Config. C Config. D Config. E 

Approach 2D 2D 3D 3D 3D 

Interpolation - Yes Yes Yes Yes 

Voxel dimension - 2×2 2×2×2 2×2×2 2×2×2 

Interpolation Method - Linear  Linear Linear Cubic 

Range re-segmentation [-500,400] [-500,400] [-1000,400] - [-1000,400] 

Outliers re-segmentation - - - 3𝜎  3𝜎  

Discretization FBS FBN FBS FBN FBN 

Bin size 25 HU 32 bins 25 HU 32 bins 32 bins 

 

 

3.2.3. Standardized Environment for Radiomics Analysis (SERA) 

Using the comprehensive guidelines from the IBSI effort, we developed an entirely in-house Matlab®-

based framework to perform radiomics analysis, named as Standardized Environment for Radiomics 

Analysis (SERA). SERA is able to process images from different clinical imaging modalities such as 

CT, MRI, PET, and SPECT. Radiomic features calculated with SERA are standardized and in 

compliance with IBSI, which ensures their reproducibility, and have been adopted for a number of 

published research studies [293, 294, 310, 312, 325-328, 333].  

SERA calculates 487 IBSI-standardized features, including 79 first-order features (Morphology, 

Statistical, Histogram, and Intensity Histogram features), 272 higher-order 2D features, and 136 3D 

features. In addition to 487 IBSI features, it also calculates 10 Moment Invariant features, that are not 

included in IBSI. The detailed list of the number of features in each class is the same as Table 3-1.  

3.2.3.1. SERA configurations 

SERA has options to set and modify all parameters that have been defined or used in the IBSI 

guideline. The image preparation configuration includes the following: 
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Resampling and interpolation:  

SERA can resample to 2D and 3D isotropic voxel sizes; interpolation algorithm used in resampling 

image and ROI (nearest/linear/cubic); partial volume threshold (mostly used for CT HU). 

Discretization:  

Parameters to change include bin size, discretization type (fixed bin-size/fixed bin-numbers), and 

separate discretization for IVH features. 

Other settings 

Other settings including grey-level rounding, image re-segmentation (range re-segmentation, 

outliers). 

3.2.4. Results of our IBSI standardization effort 

From the 21 participating centers, SERA was one of the only three packages that included 100% of 

the IBSI features. It took several trials for some of the features to be fine-tuned, where we fixed our 

definitions and code by receiving feedback from IBSI organizers. Table 3-3 shows the results of our 

most recent feature calculation on the five categories defined in Table 3-2. It includes a number of 

features in each category, the number of features SERA matched with IBSI benchmarks, and the 

overall accuracy of each category. 

Table 3-3. Results of our IBSI standardization effort 

 Config. A Config. B Config. C Config. D Config. E 

No. of features for config 351 351 215 215 215 
No. of matched features 320 315 207 209 20 
No. of no matched 18 16 3 1 5 
No. of partial matched 0 0 0 0 0 
No. of features with no consensus  14 20 5 5 191 
Accuracy  94.7% 95.1% 98.6% 99.5% 80% 
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3.2.4.1. Observations  

One very interesting and important observation from our IBSI effort is that even with different 

centers using the same detailed workflow configuration and feature formulation, the reported 

feature values were highly variable when using the exact same image and the same ROI!  This further 

emphasizes the variability issue in radiomics research, though it also demonstrates that inter-center 

agreements can increase over time with coordinated efforts. Another observation was more 

variability in configurations D and E in Table 3-2 where more sophisticated interpolations were used.  

3.2.5. Properties of an effective radiomic feature 

Aside from standardization of radiomic features, further steps should be taken within a radiomics 

workflow to reduce the feature-space dimension and to prevent overfitting. Below we discuss some 

important properties of an ideal radiomics feature, as well as some recommended techniques to 

assess them [247]. 

3.2.5.1. Repeatability 

Repeatability is related to the variability of a given radiomic feature when obtained under the same 

conditions; i.e. from two separate scans of the same subject performed close together in time. To 

assess repeatability, some studies have suggested comparing metrics calculated on test-retest PET 

images using e.g. the Bland Altman method for comparison. [441, 442]. 

 

3.2.5.2. Reproducibility  

Reproducibility is related to the variability of a given radiomic feature when obtained under varying 

conditions; e.g. by varying processing parameters to compute the features (Table 1-5). Section 3.2.3 

outlined several causes that may induce variability before, during, or after data acquisition. As an 

example, different configuration settings within the radiomics workflow itself, such as segmentation 
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method, discretization type, discretization bin size, etc. can be sources of variability. To assess the 

reproducibility of radiomic features, they can be calculated through differing analysis pipelines [442]. 

Features can be computed for different parameter settings, followed by analysis to identify features 

with substantial variability (i.e. low reproducibility) when varying certain parameter settings. 

Examples of these analyses will be provided later in section 3.3.  

3.2.5.3. Redundancy  

Features can be quantified through statistical and rank correlation analyses in order to find and 

eliminate redundant features [314, 317, 438, 443]. Certain machine learning techniques can be used 

to select features or combine them [444].  

3.2.5.4. Offers value with regards to a given clinical endpoint 

Features that survive the above refinement steps should also be analyzed with respect to the tasks 

or outcomes of interest, e.g. response to treatment, diagnosis, prognosis, etc., to select only those that 

offer value. A number of robust machine learning techniques are available to use for these regression 

or classification techniques [445].  

 

3.3. Feature Selection and Reproducibility of Radiomic Features in Nuclear 

Medicine 

In this section, we present two studies on feature selection and reproducibility of radiomic features 

in SPECT and PET. Each study was performed on a unique nuclear medicine dataset. We aimed to 

investigate the feature-space to eliminate non-reproducible, or redundant features. Some of these 

efforts have been presented to the community [314, 317]. At the same time, we did not perform 

repeatability analysis as it requires test-retest imaging datasets which are areas of ongoing efforts.   
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3.3.1. Reproducibility of Cold Uptake Radiomics in 99mTc-Sestamibi SPECT Imaging of Renal 

Cell Carcinoma  

99mTc-Sestamibi SPECT/CT imaging of renal cell carcinoma (RCC) has recently shown significant 

promise to distinguish benign oncocytomas from malignant RCC, where the former appears as high 

uptake in SPECT images and the latter as cold uptake. We aim towards radiomics analysis of cold 

uptake in SPECT images towards another significant yet more daunting task of discriminating 

between RCC subtypes.  

3.3.1.1. Introduction 

Recent studies on 99mTc-sestamibi single-photon emission computed tomography / computed 

tomography (SPECT/CT) imaging of renal tumors have shown promising results for distinguishing 

renal cell carcinoma (RCC) from benign oncocytomas [446]. While normal renal tissue has positive 

radiotracer uptake on 99mTc-Sestamibi SPECT, these studies reported positive (hot) uptake for benign 

cases and negative (cold) uptake for RCC. RCC has several histologic subtypes including clear cell, 

papillary, and chromophobe variants (Figure 3-9). It is an open question as to whether cold 99mTc-

sestamibi uptake has the potential to discriminate between these subtypes of RCC. 

Radiomics analysis, via its combination of effective metrics that quantify shape and texture/ 

heterogeneity, holds significant promise towards identifying patients with higher risk and to help 

realize personalized medicine. It is been widely studied in oncologic MRI, CT, and PET [229, 291, 424, 

447-449], and recently also was explored in brain SPECT imaging by our group [292]. This work 

presents another novel exploration of radiomics in SPECT analysis. In addition to, it is, to our 

knowledge, the first application of radiomics to cold uptake imaging. Overall, we aim to preform 

radiomics analysis of 99mTc-sestamibi SPECT for the potential to discriminate different RCC types. 

The purpose of the present specific study is to perform feature selection, by assessing the 

reproducibility and reliability of radiomic features in ⁹⁹ᵐTc-Sestamibi SPECT images, and to derive 
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robust features for correlation with tumor histology. Radiomics analysis usually involves evaluating 

hundreds of radiomic features for correlating with clinical data. The present reproducibility analysis 

aims to exclude radiomic features that are non-reproducible, non-repeatable, and redundant, in 

order to avoid data overfitting and to enable proper classification with clinical endpoints [247, 314, 

317, 442, 445, 450-452].  

 

Figure 3-9. a) postcontrast CT image of a patient with Oncocytoma, b) 99mTc-sestamibi SPECT/CT scan of the patient shows 
high uptake, c) postcontrast CT image of clear cell RCC (CCRCC), d) 99mTc-sestamibi SPECT/CT scan of the same patient shows 
cold uptake. 

 

3.3.1.2. Methods 

50 patients presenting with a solid solitary clinical T1 renal mass were imaged with 99mTc-sestamibi 

SPECT/CT as part of a prospective study evaluating the diagnostic performance of this imaging test. 

All patients also had a contrast-enhanced CT or MRI scan. A trained radiologist used contrast-

enhanced CT or MRI scans along with co-registered SPECT/CT images to manually segment a region 

of interest (ROI) around the renal mass on the SPECT image. Segmenting the tumor with a cold uptake 

on the SPECT image is rather challenging due to three reasons. First, the need for accurately co-

a b 

c d 



145 
 

registering two image sets: 1) CT of SPECT/CT and 2) a contrast-enhanced CT or MRI to anatomically 

localize the mass. Then, both CT images should be co-registered with the SPECT. Second, low-

resolution SPECT images and their large voxel sizes require more meticulous contouring to minimize 

exclusion of tumor voxels. Third, the inclusion of normal renal tissue with high activity right next to 

the tumor conspicuously disrupts the cold uptake ROI and should be also minimized. At the same 

time, the segmented cold-uptake ROI should be free from any voxels from the cold-uptake 

background, too. These reasons evidently show the importance of studying the reproducibility of 

segmentation for 99mTc-sestamibi SPECT RCC images.  

To study the impact of segmentation on reproducibility, we generated three more ROIs from the 

manually segmented ROIs, with removing one (shrinkage) and adding one and two voxel-layers 

(enlargement) to the ROI in all three dimensions. These ROIs were created by thresholding a 

Gaussian-blurred version of the binary ROIs with different values. Images were then uniformly 

quantized using the fixed bin-number discretization into eight different gray-levels (GLs) (22, 23, …, 

29). We used SERA (section 3.2.3) with all features except 2.5D higher-order features as presented in 

Table 3-1. Table 1 contains the details about the radiomic features classes.  

For the four segmentations, Spearman’s rank correlation was calculated between each quantization 

pair to find relatively consistent quantization levels. The intra-class correlation (ICC) between 

remaining GLs across all patients was used to adopt robust features for segmentation. Furthermore, 

features were studied with regards to their characteristics to propose a more practical and 

reproducible set of features. 

 

3.3.1.3. Results  

Reconstructed RCC SPECT images are not expressed in the form of quantitative metrics such as 

standard uptake value (SUV) in PET imaging. Instead, voxel intensities denote the number of counts, 
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which might be further different from the true counts due to specific scaling by some scanners. In the 

current dataset, the range of the maximum voxel intensities was 600~8000. For such a non-

normalized dataset, radiomic features assuming normalized voxel intensities are meaningless. Thus, 

only a subgroup of the non-normalized statistical features will be practical. These features include 

variance, skewness, kurtosis, the coefficient of variation and quartile coefficient of dispersion. 

Moreover, a fixed number-of-bins quantization should be performed, as fixed bin-width quantization 

is impractical due to the same reason of non-normalized images.  

We evaluated the intra-class correlation (ICC) of features vs. segmentation to assess their 

reproducibility to segmentation. We defined two sets of ROIs: all four ROIs, including the manually 

segmented plus the three resized ROIs denoted by G1, and all ROIs except the shrunk one denoted by 

G2. We subsequently evaluated the ICC of features to segmentations in G1 and G2 separately. We also 

evaluated the ICC for different GLs, too. Figure 3-10 shows four plots depicting ICC of features vs. 

segmentation (both G1 and G2) and for two GLs (32 and 512). The comparison of these ICC values 

had led us to several interesting observations. The general trend shows a higher ICC for moderate 

GLs (e.g. 32) as can be seen in Figure 3-10.c and Figure 3-10.d. A large group of features evaluated 

with higher GLs exhibits lower ICC. This is due to the presence of outlier voxels from the nearby high-

uptake tissue that becomes more pronounced in higher GLs causing more variability. Moreover, we 

observe that ICC generally decreases as we include the shrunk ROI in the segmentation set (i.e. G2 vs. 

G1) for most features without altering the trend (Figure 3-10). This indicates a high sensitivity of 

most of the features to segmentation. More precisely, ICC>0.7 and ICC>0.85 for G1 and G2, 

respectively, leads to exactly 204 features, and these two feature sets have Spearman correlation of 

one; i.e. adding one more ROI nearly decreases ICC values but does not change their order. 



Figure 3-10. ICC type C-1 between all 363 radiomic features and segmentation: a) three segmentations (all except shrunk ROI) 
with 512 GLs, b) all four ROIs with 512 GLs, c) three segmentations (all except shrunk ROI) with 32 GLs, b) all four ROIs with 
32 GLs. Feature classes introduced in Table 1.
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Figure 3-11 depicts the Spearman correlation between GL=512 and seven smaller GLs. It shows a 

relatively consistent Spearman-correlation≥0.5 for gray-levels≥32, suggesting the exclusion of lower 

GLs. Also, ordering of features was retained for GL larger than 32, but not for 16 and under. At the 

same time, very high GLs like 256 and 512 should also be avoided due to their sensitivity to the 

inclusion of high counts and misregistration/segmentation as mentioned above. Therefore, unlike 

radiomics analysis of the high-uptake images such as in PET, having higher GLs does not necessarily 

imply better quantification.  

 

Figure 3-11. Absolute Spearman rank correlation between feature classes calculated with all eight GLs and GL=512. The figure 
shows consistent corr>0.8 for GL≥32 and all radiomic feature classes except NGTDM 2D 

Furthermore, we plotted the Spearman correlation between the top 20 most reproducible features 

(from the previous steps) and tumor volume in Figure 3-12. We observe a decreasing trend that 

indicates radiomic features may provide complementary information to tumor volume, which is 

partially due to the impact of partial volume effect in the reconstructed image.  



Figure 3-12. Spearman correlation between tumor volume and top 20 most reproducible features with the highest Spearman 
correlation with volume, GL=512, manual segmentation. Most features exhibit a decreasing trend as the volume increases. Only 
for volumes>5cc other radiomic features may provide complementary information, that is due to the partial volume effect 

3.3.1.4. Discussion  
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does not carry much information from a tumor with a cold uptake and is sensitive to misregistration/ 

segmentation. Instead, features with a rather uniform waiting on all GLs should be adopted. These 

features are recommended for further investigation of the significant discrimination task amongst 

RCC tumor subtypes. 

 

3.3.2. Reproducibility of Radiomic features in 18F-DCFPyL PET Imaging of Prostate Cancer 

3.3.2.1. Introduction  

Prostate cancer (PC) is the second most common cause of cancer-related death in men [453]. PC is 

often curable; however, many patients experience a residual, recurrent, and metastatic disease that 

require imaging for diagnosis, lesion detection, therapeutic monitoring, and staging [454]. Prostate-

specific membrane antigen (PSMA) is a transmembrane protein that is highly relevant in prostate 

cancer theranostics because of its marked overexpression in prostate cancer [455]. The past decade 

has seen significant growth in design, synthesis, and evaluation of radiotracers targeting PSMA for 

imaging and therapy. An increasing number of studies are demonstrating additional diagnostic value 

in the primary staging of intermediate- to the high-risk stage and in the late metastatic phase of PC. 

PSMA PET/CT imaging is capable of localizing lesions for primary PC staging that is not evident on 

standard-of-care imaging, leading to major impact in early diagnosis and treatment planning [456]. 

PSMA PET is also shown to demonstrate higher lesion detection rate at lower serum prostate-specific 

antigen (PSA) levels compared to other PET radiotracers or standard-of-care imaging. This has major 

implications on biochemical recurrence staging and therapy planning [457, 458].  

18F- and 68Ga-labeled inhibitors of PSMA have entered early clinical development for PET imaging of 

PC since 2012, and have demonstrated great promise for identification of local and distant sites of PC 

with high sensitivity and high specificity [454, 459]. One of these 18F-labeled PSMA inhibitors, 

developed at Johns Hopkins University, is 2-(3-(1-carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-



Figure 3-13. An example of a [18F]DCFPyL PET/CT image. “A” shows a coronal CT slice, “B” shows the corresponding PET slice, 
and “C” shows the fused PET/CT. Primary lesion in prostate gland is shown by a purple arrow in “B”, and three metastatic 
lesions in ribs are shown with orange arrows.  

3.3.2.2. Methods 
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• four threshold-based segmentations ranging from 30% to 60% of SUVmax, seed placement by 

a nuclear medicine physician.  

Images were resampled to isotropic cubic voxels of 2 mm for consistency. Two different methods of 

fixed bin-number discretization (uniform and Max-Lloyd [461]) were considered with seven 

different GLs (4, 8, 16, 32, 64, 128, and 256) that were used for higher-order textural features 

extraction. In addition to five conventional quantitative uptake measurements (SUVmax/peak/mean, 

tumor volume (TV), total lesion activity (TLA)), a total of a selected set of 87 radiomics features were 

extracted for each ROI per each patient and for each discretization level. These 92 features include: 

11 first-order, 9 morphological, 26 GLCM, 12 GLRLM, 13 GLSZM, 5 GLTDM and 10 moment-invariant 

(MI) features [462] (Table 3-4). Spearman rank correlation analysis was performed for the seven 

discretization levels and the two methods to determine reliable and practical GLs. We further 

quantified the intra-class correlation (ICC) to inspect the reproducibility of features across six 

segmentations and seven GLs of two quantization methods. The statistical relationship between all 

92 features was also explored based on the optimum GL and manual segmentation. 

3.3.2.3. Results 

SUVmax derived from primary tumors of 25 patients ranged from 5.6 to 51.8 (15.8±11.5). Tumor 

volume ranged from 0.5 to 61 cc (7.3cc±11.8cc). Figure 3-14 shows the distribution of SUVmax and 

tumor volume across these 25 patients for each of the 6 segmentation types. The left plot in Figure 

3-14 shows an almost identical distribution of the 25 cases across all segmentation, which is due to 

the very high reproducibility of SUVmax with respect to segmentation. The right image shows the 

proximity of PET-edge segmentation and manual segmentation. It also demonstrates the closes 

threshold-based segmentation distribution to the manual segmentation is 30% and 40% 

segmentation. 



Table 3-4. List of selected radiomic features categorized based on each feature class used in this study. 

Figure 3-14. Statistical distributions of SUVmax and MTV for 25 patients across 6 different segmentation methods, 64 GLs of 
uniform quantization 



Figure 3-15. Heat map depicting the absolute value of Spearman correlation coefficients between pairs of textural features 
(left) and their log p-values (right). 



Figure 3-16. Spearman correlation of top 20 most reproducible features with the highest Spearman correlation based on and 
uniform quantization gray-levels with SUVmax (left) and MTV (right), with 64 uniform gray level and manual segmentation. 
Most features exhibit a decreasing trend as the range shortens. 

Figure 3-17. ICC between all six segmentations for (left) and between only 2 user-guided segmentations (right) for all 92 
features grouped into their feature families. 

3.3.2.4. Discussion 
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(GLSZM) exhibit high reproducibility and reliability in this study of 18F-DCFPyL prostate PET. This is 

an interesting finding since these features are also reported to be reproducible for radiomics studies 

using FDG PET as well [247]. This finding indicates high reproducibility across radiotracers for the 

aforementioned features. As a result, these set of features are recommended for investigation of their 

possible prognostic or predictive value. 

 

3.3.3. Conclusion 

In this chapter, we provided more details about the radiomics workflow and explained how the 

complexity of radiomics analysis impacts reproducibility and reliability. In addition, we presented 

recommendations on how to configure and then assess radiomics analyses to mitigate these issues. 

We further explained our efforts in joining the image biomarker standardization initiative (IBSI)—a 

global group of top universities and cancer centers aimed to standardize the preprocessing and 

feature calculation of radiomics analyses. We developed a standardized environment for radiomics 

analysis (SERA) – an entirely in-house toolbox for image preprocessing and feature calculation based 

on the IBSI guidelines with 100% coverage of the features, released for use by the wider community. 

Furthermore, we presented two studies on reproducibility analysis of radiomic features: in renal cell 

carcinoma SPECT and prostate cancer PET imaging. Some radiomic features such as GLCM entropy 

as well as GLSZM zone-size non-uniformity and zone-size variance were reported as reproducible in 

both studies. Also, fixed bin-number discretization with 64 to 128 GLs was reported to convey 

enough details about variabilities inside ROIs that can be captured by different feature classes 

without discarding important heterogeneity information. Several of the reported features were not 

only found to be reproducible in our specific studies but also have been reported to be reproducible 

in studies with other radiotracers, indicating their broader appeal and potentials. Furthermore, 

features reproducibility was significantly challenged by segmentation methods. We suggest that 



157 
 

more advanced segmentation methods with higher accuracy and less inter- and intra-reader 

variability may need to be adopted for reproducible radiomics. Overall, the two presented projects 

are the first studies of their kind in their specific clinical applications and can be used in future efforts 

to shrink the feature-space and help discover and validate effective imaging biomarkers.  
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4. Radiomics Analysis of Clinical Myocardial Perfusion Stress 
SPECT Images to Identify Subclinical Coronary Artery 
Disease 

4.1. Introduction  

This chapter aims to enhance the clinical utility of routine clinical myocardial perfusion (MP) SPECT 

imaging through advanced radiomics analysis. We hypothesize that identification of mild 

heterogeneities via radiomic analysis can enable identification of subclinical coronary artery disease 

(CAD) that would carry important diagnostic and prognostic information. In this chapter, we aim to 

evaluate our exciting and novel hypothesis that MP SPECT radiomic features extracted from clinically 

normal (non-ischemic) MP SPECT scans correlate with coronary artery calcification (CAC) as 

extracted from CT imaging. This chapter starts with an introduction to myocardial perfusion imaging 

using SPECT, as well as coronary artery calcification scoring using CT, as well as clinical motivations 

for our work; subsequently, we describe our methods, following by results and conclusion.  

 

4.1.1. Myocardial Perfusion stress SPECT test 

4.1.1.1. Basics of Myocardial Perfusion Imaging  

Myocardial perfusion SPECT (MPS) is established for non-invasive evaluations of patients suspected 

with coronary artery disease (CAD)[463, 464]. It is probably the most widely-used technique of 

nuclear cardiology, and its purpose is to assess the adequacy of blood flow to the myocardium [465]. 
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Although MP imaging can be performed with either planar or tomographic techniques [465, 466], 

nowadays tomographic MP imaging through SPECT scanners has become widely-popular, more 

accessible and more affordable to patients.  

A standard MP SPECT exam consists of two SPECT scans, one under rest and one under stress 

condition, although recent studies have shown if first the “stress” test is taken, and the image is 

interpreted as normal, there is no need for the second “rest” test, which is referred to as “stress-only” 

image [467]. The stress MP test is usually performed following a physical exercise (e.g. on a 

treadmill), or intravenously administered stress pharmaceuticals such as adenosine or dipyridamole.   

MP stress SPECT has an established pathophysiologic basis with radiotracers capturing blood flow. 

If a patient with CAD is at rest, typically, blood flow through a diseased coronary artery (e.g. narrowed 

through plaque build-up) is not decreased until coronary stenosis exceeds 90% of the artery. On the 

other hand, coronary reserve, which refers to the ability to increase coronary blood flow in case of 

increased metabolic demand, is reduced if coronary stenosis exceeds 50% [468, 469]. As a result, 

patients suffered from CAD may have a homogenous uptake of myocardial blood flow even in the 

presence of severely-narrowed coronary artery. But the same degree of narrowing can result in 

reduced flow reserve when the heart is stressed under exercise, resulting in inhomogeneity of 

regional MP (Figure 4-1). Such inhomogeneity can be captured using radiotracers that are distributed 

in the body in proportion to myocardial blood flow [465].   
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Figure 4-1. MP SPECT image of a patient with myocardial ischemia. The top and the bottom views show images acquired at 
stress and rest, respectively. The arrow shows decreased blood flow (reversibility) at the inferior wall in the stress image at the 
place of the arrow compared to the rest—a typical sign of myocardial ischemia. 

MP SPECT is typically performed by administrating 99mTc-sestamibi. Technetium-99m is a gamma-

ray emitting radionuclide that rays at 140 keV and is optimally suited for imaging with a gamma 

camera. It is possible to give patients two doses of 99mTc-Sestamibi on a single day, while the latter 

dose must be higher than the first one, e.g. 10mCi for the first scan and 35mCi for the second one. The 

image acquisition varies between 20 to 45 minutes.  

Several visual patterns are common in MP imaging. A normal pattern consists of uniform 

homogenous uptake of the radiotracer all around the left ventricle. A defect may be identified at areas 

where the myocardium exhibits relatively lower tracer uptake, such as the one shown with a red 

arrow in Figure 4-1. A defect is considered reversible if it is present at the stress image but is no 

longer present, or partially improved, on the rest image. A fixed defect, such as a myocardial infarct, 

remains unchanged in extent or severity on both rest and stress images.  
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4.1.1.2. Applications of MP SPECT imaging 

MP SPECT imaging has extensive clinical applications. The sensitivity and specificity of stress imaging 

for detection of CAD using visual assessment have been reported at over 90% with SPECT and 95% 

with PET (using 82Rb or 13N) [470]. However, 13N requires an on-site cyclotron for production, and 

82Rb has a monthly associated cost of generator replacement, plus SPECT cameras have a clear 

affordability advantage over PET scanners. In addition, MP SPECT has high prognostic value, and 

whether a patient has a reversible perfusion defect plays a strong role in the assessment of risk [471]. 

Patients with reversible MP defects have a higher likelihood of CAD events during follow-up 

compared with patients with fixed defects. Further applications of MP SPECT imaging include 

preoperative screening before major noncardiac surgical procedures to assess their perioperative 

risk [472-474], imaging after coronary angioplasty to detect restenosis—a common problem in 20 to 

40 percent of the patients undergoing this procedure [475], assessment of MP in acute ischemic 

syndrome in patients with unstable angina [476], and accurate assessment of myocardial viability 

[477].  

4.1.2. Coronary artery calcification quantitation using coronary artery calcium scoring 

Large prospective studies have shown that coronary artery calcification (CAC) scoring is associated 

with the risk of future cardiovascular events [478-481]. Studies have shown that noninvasive tests 

for CAD including electrocardiogram (ECG), ultrasound imaging, and even MP SPECT scan, which are 

used quite often in cardiac patients’ assessment and diagnosis, were of limited value to detect this 

calcification due to their low sensitivity [482]. A minimum of 25% of the patients that experience a 

non-fatal acute myocardial infarction or sudden death do not have previous symptoms [483], and it 

is necessary to identify asymptomatic individuals at greater risk of future cardiovascular events to 

plan for preventive strategies.  
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Our Motivation: CAC is a highly specific marker of coronary atherosclerosis, and higher CAC scores 

are associated with increased plaque burden and increased cardiovascular risk [484, 485]. Previous 

studies demonstrated that a considerable number of stenoses do not result in abnormal perfusion on 

MP imaging [486, 487], which is why in our work we set the inclusion criteria of “non-ischemic 

normal” MP stress scans. Furthermore, the CAC score is shown to offer incremental diagnostic 

information over MP SPECT for identifying patients with significant CAD and negative MP imaging 

results [488]. Therefore, finding a feature or a set of features (a radiomics signature) from MP stress 

SPECT images that can predict CAC score would be beneficial as it eliminates an additional non-

contrast CT for CAC assessment, thus reducing excessive dose to the patient. Unlike MP SPECT, CAC 

test is not reimbursed by CMS, while it is known to improve risk stratification in asymptomatic 

individuals [484, 486]; but our study enables CAC assessment from MP SPECT. Moreover, CAC 

calculation requires sophisticated software and trained radiologists. It is included in the CAD 

patients’ diagnosis package in large institutions such as our Johns Hopkins Hospital but is not readily 

available in community settings.  

CAC scoring is performed using a CT scan based on its axial slices in synchrony with ECG without 

administrating any contrast agent [489]. Calcification is referred to an area of hyper-attenuation with 

≥ 1 mm2, or ≥ 3 adjacent voxels, of >130 Hounsfield Units (HU) [490]. The main scoring CAC protocol 

is the Agatston method [490] that is widely-used, especially as a reference for most population 

databases and risk stratification studies, thus, is the most important method often used in clinical 

practice. This method uses the weighted-sum of lesions with a density above 130 HU, where the area 

of calcium is multiplied by a factor related to the maximum plaque attenuation as follows: 

• 130 – 199 HU, factor 1 

• 200 – 299 HU, factor 2 

• 300 – 399 HU, factor 3 
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• ≥ 400 HU, factor 4 

According to the Agatston method, this score is calculated for each of the four three arteries of the 

heart, namely the left anterior descending (LAD) the right coronary artery (RCA) and the left 

circumference (LCX), as well as the left main (LM). LM is a small artery that divides into LAD and LCX 

(Figure 4-2). This calculation, despite being relatively straight-forward, requires special software and 

the cost associated with its licensing requirements might be another hurdle in the widespread 

application of CAC scoring in smaller cost-effective radiology centers.  An example of CAC present in 

a CT image shown in Figure 4-3. 

 

Figure 4-2. Main coronary arteries of the heart: left main (LM) which divides into left anterior descending (LAD) and left 
circumference (LCX), and right coronary artery (RCA). Coronary artery calcification is present in LAD that results in reduced 
blood flow to this artery (pale color of the LAD).  



Figure 4-3. Coronary artery calcification in three main arteries of a patient. The left image depicts slices of heart with CAC in 
their RCA and LAD, and the right image shows CAC in LCX.  

4.1.3. An overview of our framework 



Figure 4-4. Diagram of the problem addressed in this chapter: using radiomics of stress MP SPECT to predict CAC scores from 
CT.  

not

imaging-based cardiomics

4.2. Radiomics of MPS to Predict Coronary Artery Calcification 
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4.2.1. Three Steps in Our Study 

Step 1: Improved quantitative assessment through analysis of standardized radiomic features on MP 

SPECT images. We start by identification of patients with normal MP SPECT test and CAC CT, 

following by image segmentation.  

Step 2: Eliminating non-reproducible and redundant features (feature selection).  

Step 3: Use of machine learning to extract CAC information directly from MP SPECT image radiomics, 

in contrast to the routine use of CT scans.  

  

4.2.2. Methods 

4.2.2.1. Patient collection  

After obtaining approval from the institutional review board (IRB) at Johns Hopkins University, we 

searched for patients with stress myocardial perfusion SPECT scans from 2011 till 2015. In this effort 

which lasted about 4 months, we investigated over 1,800 reports of patients undergone MP stress 

SPECT, out of which n=428 cases were selected. All of these patients had a CT scan for CAC scoring at 

the same time as their MP stress SPECT scan in the PACS database. A nuclear medicine physician 

(NMP) investigated the MP stress SPECT images to be free from i) image artifacts, and ii) 

overcorrection and iii) spillover from nearby liver or stomach. Our NMP also derived detailed CAC 

score for each of the 4 arteries of the heart using a clinical software. 

The dataset consists of mages collected from scanners with different vendors at the Johns Hopkins 

Hospital throughout these years, but all were reconstructed with an “attenuation-corrected iterative 

reconstruction” (AC-IR) algorithm and with a consistent voxel size of 4.8 mm. According to the quality 

factors of radiomics research, this is an important characteristic of a study to have imaging 
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acquisition protocols that are “well described and ideally similar across patients”, and “methodologic 

steps taken to incorporate only images of sufficient quality” [436]. 

We recorded many parameters for each patient, including basic information, clinical factors, scan 

info, and any possible outcome info, as detailed in Table 4-1.  

Table 4-1. Information recorded for every patient during dataset collection. 

Basic statistics Clinical factors Scan info Outcome  

• Age 

• Gender 

• Race 

• Hight  

• Weight (at scan 

time) 

• Smoking  

• Diabetes 

• Hypertension 

• Hyperlipidemia 

• Family history of 

cardiac disease 

• Systolic blood 

pressure (SBP) 

• Diastolic blood 

pressure (DBP) 

 

• Scan date 

• Scan impression 

(normal, fixed 

defect, ischemia)  

• Stress test type 

(Bruce vs. drug) 

• Left ventricle 

ejection fraction 

(LVEF)  

• CAC score (LM, LAD, 

RCA, LCX, Total) 

 

• Death 

• Cardiac-related 

progression 

• Date of 

death/cardiac 

related progression 

• Date of the last 

follow-up 

• Cath lab visit  

 

 

 

4.2.2.2. Image segmentation  

The study involves three different layers of segmentation as applied to MP SPECT images: i) total 

myocardium, ii) three vascular segments, and iii) 17 polar segments. Feature evaluation and 

statistical analysis were performed over all three layers. These three segmentation methods are 

presented in Figure 4-5. The reason we selected two different methods for vascular segmentation is 

that both methods are widely-used in the clinic. The 3 vascular segment method has a more stringent 

segment, while the subsets of the 17 polar segments span the whole heart, as can be observed from 

Figure 4-5.  

We used MIM software® and developed a workflow that automatically draws 3D contours over 21 

regions of the heart, namely: endocardium, epicardium, 3 vascular segments (as depicted in Figure 

4-5.B), and 17 polar segments (as depicted in Figure 4-5.C). The workflow was generating the 



Figure 4-5. Three methods of segmentation used in our study. A) myocardium segment. B) 3 vascular segments of the heart 
(LAD, RCA and LCX), and C) subsets of 17 polar segments of the heart grouped into LAD, LCX and RCA.  

4.2.2.3. Radiomics Framework 
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(section 3.2.2). SERA calculates 487 standardized radiomic features aiming to standardize the 

preprocessing and feature evaluation phases and to meet ISBI’s standards in order to conduct and 

pursue reproducible research [450]. 

Images produced for MP SPECT scan are arbitrary-unit. Therefore, as explained in the last chapter in 

“Intensity discretization” subsection under section 3.1.3.1, we ought to use the fixed bin number 

discretization. We considered and investigated a range of GL discretizations, specifically using 4, 8, 

16, 32, 64, 128, 256, and 512. All the images in our dataset were reconstructed into 3D images with 

identical voxel sizes of 4.8×4.8×4.8 mm3; thus, no resampling and interpolation was needed. We did 

not perform any GL rounding or re-segmentation. The framework was then ready to calculate 487 

features for 8 GLs and 7 segments of the heart. 

 

4.2.2.4. Statistical Analysis 

We used statistical analysis to eliminate non-useful features, including features that are identical, 

non-robust, and redundant. We performed a multistep feature selection to significantly reduce the 

size of our feature-space of 487×8 features. This process was performed completely independent of 

outcome (e.g. CAC score, etc.). The selected feature set was subsequently passed on to univariate and 

multivariate analyses schemes to predict correlate with clinical outcome. We also accounted for false-

discovery by employing false-discovery correction methods such as Benjamini-Hochberg [491].  

 

4.2.3. Analyses and Results  

4.2.3.1. Analysis of dataset statistics 

In this section, we present the data statistics based on variables previously introduced in section 

4.2.3.14.2.2.1. We searched for patients with stress myocardial perfusion SPECT scans from 2011 till 
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2015. In this effort which lasted about 4 months, we investigated over 1,800 reports of patients 

undergone MP stress SPECT, out of which n=428 cases were selected. All these patients had a CT scan 

for CAC scoring at the same time as their MP stress SPECT scan in the PACS database. Our NMP also 

derived detailed CAC score for each of the 4 arteries of the heart using a clinical software. 

The dataset consists of mages collected from scanners with different vendors at the Johns Hopkins 

Hospital throughout these years, but all were reconstructed with an “attenuation-corrected iterative 

reconstruction” (AC-IR) algorithm and with a consistent voxel size of 4.8 mm. According to the quality 

factors of radiomics research, this is an important characteristic of a study to have imaging 

acquisition protocols that are “well described and ideally similar across patients”, and “methodologic 

steps taken to incorporate only images of sufficient quality” [436]. 

We recorded many parameters for each patient, including basic information, clinical factors, scan 

info, and any possible outcome info, as detailed in Table 4-1. 

Basic statistics 

The dataset was comprised of 229 female (49.7%) and 232 male (50.3) subjects. Distributions of 

patient age, height, weight, and body-mass index based on gender is depicted in Figure 4-6. 



Figure 4-6. Distribution of patients’ A) age, B) weight, C) height and D) BMI at the time of scan grouped into male (orange) and 
female (blue) 

Table 4-2. Distribution of the race of the patients 



Clinical factors 

Table 4-3. Distribution of patients’ clinical factors 



Figure 4-7. Distribution of LVEF in the dataset 

et al.

Figure 4-8. Distribution of our patients’ CAC score based on widely-used stratification criteria [486]. 



Patient outcome  

Figure 4-9. Distribution of cardiac-related progression and patients’ death for normal patients in our dataset



175 
 

4.2.3.2. Feature selection  

All 487 features in our SERA software from 11 main categories as mentioned in Table 3-1 were 

initially considered and were calculated for 8 different GLs. In this section, we aim to systematically 

narrow down this large feature set and arrive at a smaller set of meaningful, robust, non-redundant, 

and reproducible features for further investigation of their predictive or prognostic value and, at the 

same time, discourage overfitting. Our feature selection phase can be generally divided into i) pre-

feature calculation and ii) post feature calculation, as explained below. Following feature selection, 

we discuss how to narrow down to an optimum discretization level.  

 

Pre-feature calculation  

In the first step, prior to performing any analysis, we eliminate irrelevant feature families based on 

the nature of our dataset and our knowledge about what each feature captures.  

Removing 2D and 2.5D feature families 

Our dataset originally consists of images with isotropic voxels. Therefore, there would be no 

additional information provided to us from 2D or 2.5D feature families. These feature families would 

have been beneficial when slice thickness (i.e. voxel size in z dimension) was different from the voxel 

size in x and y dimensions. In that case, resizing and interpolating the images to isotropic voxel sizes 

may have resulted in modification of the original voxel distribution, causing possible loss or 

modification of data. In any case, the following feature families were eliminated: 2D and 2.5D GLCM 

(25 features) and GLRLM (16 features) (both merged and averaged), 2D and 2.5D GLSZM (16 

features), GLDZM (16 features), NGTDM (5 features), and (17 features). This removed 272 features, 

narrowing down our feature space to 215. 
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Removing useless feature families  

MP SPECT images have voxels with arbitrary units (they are not quantitative unlike PET or some 

SPECT imaging applications). Therefore, any feature that conveys information regarding the exact 

intensity values of the original ROI is not considered meaningful. As such, intensity-based features 

(18 features) and local intensity features (2 features) were excluded. Furthermore, the seven 

segments were created by an automatic segmentation procedure that generates ROIs with similar 

shapes (all registered to the same reference space). As such, the shape of the segments does not carry 

any differentiating information, and we are interested mainly in the heterogeneity caused by voxel 

intensity variations which carry information about the blood flow in different heart segments. As 

such, morphological features (29 features) were excluded as well. At the end of this step in our 

analysis, we were left with 166 features out of 487, eliminating the majority via our knowledge of the 

underlying nature of the features.  

 

Post-feature calculation  

Removing feature with identical values 

Following this, we searched for features with identical values across all patients for further exclusion. 

In our dataset, these were 4 features with identical values across all patients: histogram minimum, 

maximum, and range, and NGLCM dependence count percentage. We now arrive at 162 features.  

Removing feature families with more than one variety  

In the next step, we calculate the Spearman rank correlation between each feature and all other 

features to explore the relationship of the features with respect to each other and find redundant and 

highly correlated features. At this step, we had one subtype of every higher-order feature class (i.e. 

only 3D, after excluding 2D and 2.5D) except for GLCM and GLRLM, each remaining with two 3D 

subtypes: 3D merged, and 3D averaged. We investigated the correlation between each variety of 
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higher-order 3D calculation, i.e. 3D GLCM averaged vs. merged, and also, 3D GLRLM averaged vs. 

merged. Figure 4-10 shows a heatmap of their correlation. In the diagonal of both heatmaps in Figure 

4-10, we observe very high Spearman correlation (between 0.98 to 1) between all the same features 

within the two feature families, i.e. GLCM-averaged entropy vs. 3D GLCM-merged entropy, etc., 

indicating the redundancy of features calculated in two varieties (merged vs. averaged). Let us 𝑆{𝐴}|{𝐵} 

as the Spearman rank correlation between feature families {𝐴} and {𝐵}. We subtracted 

𝑆{3D GLCM-averaged}|{All feature families except 3D GLCM-merged} from 

𝑆{3D GLCM-merged}|{All feature families except 3D GLCM-averaged}, and did the same for GLRLM, and observed it 

yields values very close to zero, which further indicates that using one variety vs. the other does not 

add additional information to our analysis, suggesting exclusion of one variety from both GLCM and 

GLRLM. Subsequently, to decide which of the two varieties to exclude, we calculated the range of 

features in both varieties and removed the one with a smaller range, which yield to exclusion of the 

3D-merged of both categories and keeping 3D GLCM-averaged and 3D GLRLM-averaged. This further 

reduced the number of features down to 121. This observation is also consistent with findings in 

[425], where the authors reported merged features with tighter distribution in a smaller range, and 

subsequently remove, them from the rest of their study. 



Figure 4-10. Heatmaps of Spearman rank correlation between A) 3D GLCM-averaged vs. 3D GLCM-merged, and B) 3D GLRLM-
averaged vs. 3D GLRLM-merged. The diagonal of both plots have values >0.98 
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Removing redundant features 

After using Spearman correlation to reduce the feature space at the feature-family level, we move on 

to investigate the correlation at the feature level. The next set of features to remove are the feature-

pair with Spearman rank correlation coefficient of 1, indicating their redundancy. These features 

included three pairs: i) “3D GLSZM-zone percentage (ZP)” and “3D GLDZM-ZP”, ii) “3D GLSZM-GL non 

uniformity (NU) normalized” and “3D GLDZM-GL NU normalized”, and iii) “3D GLSZM-GL NU” and 

“3D GLDZM-GL NU”, From each pair, we selected the feature with a lower range for exclusion that 

yielded the removing of the GLDZM features from each pair.  

Removing features with a low dynamic range 

In the next step, we calculated the percent variance of the features (variance/mean) representing 

their dynamic range. Subsequently, we removed features with a very low dynamic range less than 

10-5, which were five: Histogram-skewness, Histogram-kurtosis, Histogram-min gradient, GLCM-

averaged cluster shade, and GLCM-averaged 1st measure of information correlation. Now the dataset 

has 113 features.  

Removing highly-correlated features 

In the last step of this phase, using the Spearman correlation of features with respect to each other 

calculated earlier, we opt to remove highly correlated features as defined by those having a Spearman 

correlation coefficient |𝜌| ≥ 0.95 as suggested in lthe iterature [495]. These feature-pairs are 

considered to be highly correlated and likely to provide redundant rather than complementary 

information. We remove these features through the following recursive operation. 

We use the heatmap of feature-pair Spearman correlation to find features with |𝜌| ≥ 0.95. We 

subsequently record the number of instances a feature fits this criterion. Then, we sort these features 

based on which feature has more instances of |𝜌| ≥ 0.95 with others in a descending order and call 

it ℱ𝑠𝑜𝑟𝑡𝑒𝑑 . We then start from the first feature in this set. We denote this first feature by 𝒻𝑘𝑒𝑒𝑝, i.e. the 
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feature to keep, it and save it to 𝒦 that denotes the set of features we intend to keep. Subsequently, 

we mark the highly correlated features with 𝒻𝑘𝑒𝑒𝑝 and save them to an empty set denoted by ℛ, i.e. 

for removal. We then loop over each feature inside ℛ and find other highly correlated features with 

these features and append them to ℛ. Once the procedure is complete, we update ℱ𝑠𝑜𝑟𝑡𝑒𝑑  by 

removing 𝒻𝑘𝑒𝑒𝑝 and all features inside ℛ. The algorithm then continues recursively with this updated 

ℱ𝑠𝑜𝑟𝑡𝑒𝑑 , letting its first member be 𝒻𝑘𝑒𝑒𝑝 and append it to 𝒦, and find features and add them to ℛ for 

removal. This process continues until ℱ𝑠𝑜𝑟𝑡𝑒𝑑  becomes empty.  

The above algorithm cuts the number of features into a half, removing 57 features from 113, yielding 

56 features remained that are not highly correlated with each other and are more likely to provide 

complementary information.  

  

Selecting the best discretization level (GLs) 

The above procedure reduced the feature set from 487×8 to 56×8 features for 8 GLs. Now we focus 

on discretization levels to systematically remove non-useful GLs.  Firstly, we observe that for the 

three smallest GLs, the number of identical features is higher than the other five GLs. Furthermore, 

features with smaller dynamic range increase by 22%, 4%, 29%, and 29% compared to GL=64 or 

128. Moreover, the two highest GLs have 11% and 22% more feature-pairs with Spearman 

correlation ≥ 0.9. Therefore, we can safely remove all GLs except 64 and 128.  

The procedure in the previous paragraph could have been performed without the analysis of the 

range and Spearman rank correlation of features. We can safely remove the first three GLs since the 

intervals that voxel intensities were discretized into are so large that they do not provide enough 

opportunity to capture the heterogeneity of a region. On the other hand, the two largest GLs produce 

so many bins to discretize voxels into that many bins will be empty or just have very few 

representations in the ROI. For instance, the LAD segment consists of averagely 460 voxels. When it 
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is discretized into 512 GLs, they are actually more bins than voxels, and many bins would be empty 

or just occur very scarcely. In this case, our higher-order matrices such as GLRLM, GLSZM, GLDZM, 

etc. in which the number of columns represents different run-lengths, zone sizes, distance zones, etc., 

would be very long and narrow matrices with very small variability. As a result, these higher GLs 

should be eliminated, too. 

Interestingly, this finding is consistent with our observations and conclusion from the previous 

chapter (section 3.3.3), as well as some previously published studies on radiomics of PET imaging 

[425, 443].  

Finally, out of the remaining two GLs, 64 and 128, we found very similar behavior from both 

discretization levels in terms of the range of the features and number of feature-pairs with high 

Spearman correlation. We decided to choose 64 for the rest of this study, because 1) as mentioned 

GL=128 does not demonstrate different statistical properties, 2) our results in previous chapter 

suggested 64 GLs for the other SPECT study – imaging of renal cell carcinoma with 99mTc, which is the 

same radiotracer as the one used for MP stress SPECT imaging, and 3) some previous studies have 

demonstrated that GL=64 provided higher textural feature reproducibility [496] and robustness 

[443]. 

 

Wrapping up feature selection  

Through the above procedures, we reduced our feature set of 487×8 to 56. One important note is that 

these features were excluded in a completely unsupervised manner without any involvement of the 

clinical outcome (e.g. CAC score, patient survival, etc.). This is an important factor to make our effort 

statistically sound and more believable.  
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4.2.3.3. Outcome prediction 

In this section, we elaborate on our efforts towards outcome prediction using the narrowed down 

feature set. We also included our negative findings and unsuccessful attempts, as we believe 

reporting them helps future researchers, and thus, is of scientific value. 

Univariate analysis 

We define our outcome as the CAC score of each region of the heart calculated from the CT scan, and 

we aim to predict this outcome from the radiomic features extracted from the same region of the MP 

SPECT image, as explained in section 4.2.2.2. We started by investigating whether our selected 

radiomic features (previous section) directly correlate with the outcome, that is the CAC score. We 

adopted two approaches to represent the outcome. In the first approach, the actual CAC score with a 

continuous scale was utilized. In the second approach, we discretized CAC scores of each region of 

the heart based on the 5-scale clinical stratification criteria explained in section “Clinical factors” and 

plotted in Figure 4-8.  Spearman rank correlations between features of every segment with the CAC 

score of the same segment were calculated for both CAC approaches (continuous and discrete). We 

also employed Benjamini-Hochberg false-discovery rate (FDR) correction with q = 0.05 to discourage 

overfitting. None of the features were able to survive FDR correction and still significantly correlate 

with outcome under this univariate scheme. Figure 4-11 shows the absolute value of Spearman 

correlation coefficient values between 56 selected radiomic features and discretized CAC for eight 

segments, where we can observe the mediocre correlation values. Figure 4-12 shows their 

corresponding p-values (not FDR corrected in this plot). Following Benjamini-Hochberg FDR 

correction no feature survives. This emphasizes the difficulty of the task at hand, and that it is 

necessary to adopt a more sophisticated, multivariate algorithm for regression (for continuous CAC 

outcome) or classification (for discrete CAC outcome). 
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Figure 4-11. Spearman rank correlation between a selected feature of each segment (56 selected features) and the CAC of that 
segment. The maximum correlation observed in all plots is 0.15, which is mediocre. 
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Figure 4-12. Spearman rank correlation p-value between a selected feature of each segment (56 selected features) and the CAC 
of that segment. 

  

Multivariate analysis 

We observed from Figure 4-11 that in general, the correlation values between features and CAC score 

are relatively low. But despite their low correlation, these selected features had a relatively-higher 

significance, giving us the hope that while none of these slightly-significant features are highly 

correlated with the outcome, but a certain multivariate combination of them might actually be 

predictive and provide significant prediction information. Thus, we pursue a multivariate approach 

to predicting CAC scores. In this subsection, first we introduce stepwise linear regression, then we 

describe how we handle feature selection. We then explain how our proposed algorithm manages 
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data to produce a fair analysis, and finally we run the analysis for three different configurations: i) 

radiomics features-only, ii) clinical features-only, and iii) radiomic + clinical features and present the 

results. 

Stepwise linear regression  

In this stage, we pursue a multivariate analysis approach employing stepwise linear regression. 

Stepwise regression is a systematic method for adding and removing terms from a linear or 

generalized linear model based on their statistical significance in explaining the response variable. 

The method begins with an initial model, which in our case is a linear model, and then compares the 

explanatory power of incrementally larger and smaller models, which is performed by adding or 

removing terms by stepwise regression and returning the linear model at the end. The initial fit can 

be a linear or a constant (intersect) model. After the initial fit, the function examines a set of available 

features and adds the best one to the model if an F-test for adding the term results in a p-value of 

𝑃𝑒𝑛𝑡𝑒𝑟 , or less. If no terms can be added, it examines the terms currently in the model and removes 

the worst one if an F-test for removing it has a p-value of 𝑃𝑟𝑒𝑚𝑜𝑣𝑒 , or greater. This process is repeated 

until no terms can be added or removed. The constant term (intercept) is never removed from the 

model.  

Feature handling  

At each step, the method searches for terms to add to or remove from the model based on a criterion, 

which we selected it to be AIC, a commonly-used estimator of the relative quality of statistical models 

for a given dataset. AIC estimates the quality of each model relative to other models, providing a mean 

for model selection. It reduces the chance of overfitting and underfitting by providing a balance 

between goodness of fit and having too many parameters [497].  

We can specify the order at which this algorithm starts to add features and later removes them. 

Instead of an unstructured approach of starting from the arbitrary first feature in the list, we 



186 
 

developed a feature selection method to enter those with higher Spearman correlation to the model 

first. For this purpose, the Spearman rank-correlation between each individual feature in the training 

set and the outcome (CAC score of the same segment) was calculated. The Spearman correlation 

coefficients and their corresponding p-values were recorded. Then, merely-significant features with 

a p-value smaller than a certain range (e.g. 0.3) were selected and others were discarded. The selected 

features were then sorted into descending order, based on the value of their Spearman correlation. 

The input dataset is then rearranged based on this subset of Spearman correlation-sorted features to 

enter features with the highest correlation to the stepwise algorithm first.  

Training/cross-validation/testing setup  

The following procedures were performed for each of the cardiac segments separately. First, the 

given dataset was shuffled and 15% of the data was set aside as the “independent test set”. This set 

was not used until at the very end for independent assessment. Then, the following procedure was 

performed 20 times: the remaining 85% of the data “training + dev set” was randomly divided into 

training and cross-validation sets with 75%/25% ratios. The procedure described in the previous 

subsection has already reduced the number of radiomic features to 56. We use the procedure 

described in the previous subsection to further reduce the number of features and input more useful 

features for the regression algorithm first. We subsequently perform stepwise linear regression on 

the training set. We set 𝑃𝑒𝑛𝑡𝑒𝑟  as 0.05 and 𝑃𝑟𝑒𝑚𝑜𝑣𝑒  as 0.2.  

Once the training is over, we perform cross-validation using the dev set. The aim of cross-validation 

is to reduce overfitting to the training set. The cross-validation algorithm is configured the same as 

training, except for the training algorithm the initial fit was a constant (intercept), whereas for cross-

validation the initial fit is the output fit from the training dataset. During the above steps, we recorded 

the model, including the set of features remaining in it, the value of the log-likelihood, p-value and 

the final AIC.  



187 
 

The model fit is typically comprised of several features that survived the stepwise algorithm, and it 

might be possible that only the intercept term survives. If by coincidence the best model consists of 

only the intercept term, we skip that and choose the best fit with more than one term.  

Following the above procedure, we select the model with the highest AIC of the 20 runs to run on the 

independent test set blind to the entire operation. To assess its prediction performance, Pearson’s 

correlation was used to assess the relationship between the two distributions (prediction vs. actual), 

and subsequently recorded the correlation coefficients (𝜌) and their corresponding p-values. The 

above operation was performed for each of the segmented lesions of the heart separately.  

But this is not where we come to conclusion yet. We kept the test set aside during the whole analysis 

to assure a completely independent and blind-to-training assessment; however, our result might still 

be biased to a specific randomly-selected test set chosen. To even further mitigate such a bias, we 

took an extra step and run the entire above operation 50 times. That is, randomly shuffling and 

dividing the dataset into “training + dev” and “test” sets 50 times, then run the stepwise algorithm 20 

times over the “training + dev” set. We subsequently perform 50 predictions on 50 independent test 

sets that give us 50 best regression fits and their p-values, which we subsequently used to derive our 

conclusion. A flowchart of the algorithm is depicted in Figure 4-13. 

Running the multivariate analysis for three configurations 

We performed the above entire operation three times: A) with radiomic features only (imaging), B) 

with clinical features (non-imaging), and C) with both radiomics and clinical features. The ten clinical 

features employed were i) gender, ii) race, iii) age, iv) smoking, v) diabetes, vi) hypertension, vii) 

hyperlipidemia, viii) family history of cardiac disease, ix) BMI, and x) LVEF. We also assured that a 

certain subset of clinical features such as gender, race, diabetes, etc. was treated as “categorical” 

variables, as opposed to continuous, by the algorithm.  



Figure 4-13. A simplistic flowchart of the algorithm.

Results 

p
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squared distribution for a degree-of-freedom of 2×50=100 is 135.81. Table 4-4 shows the result of 

applying Fisher’s method to the three configurations, where significant results are shown in bold. We 

observed that radiomic features were unable to yield a significant model for any of the 

segmentations, and clinical features were able to result in a significant fit for most of the segments. 

But the combined clinical + radiomic features results in significant fit across all segments.  

Table 4-4. The value of chi-squared distribution for each segment and feature configurations. The value of the chi-squared 
distribution with degree-of-freedom of 100 is 135.81, and values above this threshold (shown in bold) are considered significant 
under the null hypothesis.  

 RCAMIM LCXMIM LADMIM Myocardium LAD17 LCX17 RCA17 

Radiomics 95.87 88.02 115.02 111.93 139.25 53.8 53.28 

Clinical 84.12 153.14 253.13 294.43 253.13 153.14 84.12 

Combined 174.53 194.73 348.97 341.39 326.97 189.2 141.6 

 

 

 shows the distribution of the absolute value of Pearson’s correlation coefficient |𝜌| for all seven 

segments. We observe the same pattern across all segments that the combined radiomics + clinical 

features are more correlated to the CAC scores of that region. Moreover, Figure 4-15 shows the 

distribution of p-values of the best fit out of the 50 independent runs of the stepwise regression 

algorithm, each include 20 model fits where the best is selected. This plot shows that adding 

radiomics to the 10 clinical features will enhance the significance of the regression model and 

promising a more robust prediction.  



Figure 4-14. Distribution of absolute value of Pearson’s  of the best fit out of 50 randomized trials of stepwise linear regression 
for radiomics, clinical and combined features, and for all 7 segmentations (the higher, the better). Adding radiomics to clinical 
features increases the correlation to the CAC score of the corresponding ROI.  



Figure 4-15. Distribution of p-values (log-scale) of the best fit out of 50 randomized trials of stepwise linear regression for 
radiomics, clinical and combined features, and for all 7 segmentations (the lower, the better). Adding radiomics to clinical 
features is seen to enhance the regression significance across all segmentations.  
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4.2.4. Discussion  

The current proposal is the first demonstration of employing radiomics of normal MP stress SPECT 

to predict CAC score as derived from the CT scan. To our knowledge, no study has been published on 

radiomics of cardiac SPECT imaging. Moreover, we did not find any study with the same approach as 

ours that incorporate readily-reconstructed 3D images and preserves the voxels intensities. They 

focus on using the polar plot for their analyses, which is a 2D projection of the 3D reconstructed 

image. Recently, few studies have investigated the use of deep learning to predict CAD [499-501]; 

nonetheless, no studies, to our knowledge exist on predicting CAC scores from SPECT scans, which 

is, as indicated earlier, a very challenging task.  

4.2.4.1. Challenges with the proposed idea 

The study of MP stress SPECT radiomics is a challenging task due to several reasons. First, SPECT is 

a low-resolution imaging modality that results in a substantial loss of heterogeneity information that 

had the potential to provide extra knowledge about the blood flow and other functionalities of the 

heart that could have captured by radiomics. Moreover, the lack of quantitation in SPECT imaging 

further causes a major loss of information, resulting in a mostly-qualitative interpretation of the scan. 

Of course, the absence of quantitation prevents the utilization of many useful radiomic features. It 

also impedes performing cross-scan comparisons. Another drawback of non-quantitative SPECT 

images can be explained by an example of a patient that has calcification in all three main arteries 

but has a uniform uptake in his SPECT image reported as normal. This can be due to a condition 

where blood flow is reduced in all three main arteries, resulting in uniformly decreased flow all 

around the heart. But since blood flow is not quantifiable, this effect cannot be noticed. However, 

methods to perform quantitative SPECT scan have been published and even recently been 

commercialized [502, 503]. Quantitative SPECT is shown to carry many clinical implications [504] 

and promises an increased chance of more accurate and impactful radiomics analysis of the heart.  
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One other reason that significantly contributes to the challenges in SPECT radiomics is heterogeneity 

caused by inherent artifacts of SPECT imaging. MP SPECT, specifically, can cause artifacts on the 

reconstructed image that can appear as reduced uptake in the image, an example of which is shown 

in Figure 4-16. This effect is called apical thinning and is a well-known phenomenon in MP SPECT. It 

is often attributed to a reduced myocardial thickness at the apex of the left ventricle. Attenuation 

correction during the reconstruction appears to exaggerate this effect [505]. Moreover, soft tissue 

attenuation artifacts also impact MP SPECT images [506]. These artifacts generally appear as fixed 

defects. Attenuation due to breast tissue usually results in a perfusion defect along the anterior wall 

of the left ventricle, also affecting the lateral wall, septum, and apex [507]. The effect would be similar 

to that in Figure 4-16. During our data collection phase, we observed many cases with this effect 

apparent in their reconstructed image. Undoubtedly, the heterogeneity caused by this effect may be 

captured by the radiomic features, while it is completely irrelevant to calcifications in arteries. 

 

Figure 4-16. A normal MP stress SPECT with apical thinning.  

Figure 4-17 shows an example of an MP stress SPECT scan image in a polar plot form, which a 2D 

projection of the 3D SPECT image into its apex (center circle). This image is interpreted as normal, 

due to the absence of any reversibility and/or defect. But the CT scan of this patient shows an 

enormous calcification in the arteries of this patient, having an outstanding CAC score of 2239 
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Figure 4-17. A normal MP SPECT with severe calcification. This scan is reported as normal due to relatively uniform uptake 
with no reversibility and/or fixed defect, but the CAC CT scan shows an extraordinary CAC score of 2239. The promise of our 
proposed research is to be able to provide assistance in finding such cases with elevated CAC score.  

4.2.4.2. Radiomics intuition  

We mentioned that radiomic features mostly included in the fit were GLSZM GLSZM-small zone large 

GL emphasis, and GLDZM-short distance large GL emphasis. Both features emphasize on higher GLs, 

and higher GLs in a discretized SPECT image depicts higher blood flow.  It is interesting to observe 

and seems intuitive that the radiomic features who capture higher blood flow in each cardiac segment 

end up being in the fit.  

4.2.4.3. Our other efforts  

We wish to also point out that we explored more than 10 other regression methods, including 

different types of regression trees, support vector machine (SVM) regressors, etc., as well as several 

classification techniques (bagging, SVM, K-nearest neighbor, etc.) to find a significant prediction 

model, but our investigation did not return any significant results from the aforementioned 

techniques. Yet we do not exclude the possibility that with further tuning, those algorithms can 

potentially return significant results. 
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4.2.4.4. The significance of the study 

 In the current study, after many feature elimination steps discussed in section 4.2.3.2, and 

significantly reducing the feature space by a factor of 70, univariate analysis was not able to find any 

potential correlation with the outcome. On the other hand, our multivariate analysis carefully 

designed to mitigate the impact of dataset bias on the outcome prediction was able to successfully 

make a prediction for all segments of the heart.  Our statistical analysis in section 4.2.3.1 showed that 

just around 60% of the patients had a non-zero CAC score and one-third of them had a CAC score≥100 

that is shown to progressively increase the chance of myocardial ischemia. As a result, our 

multivariate analysis has the potential to make a prediction of CAC which is the most prevalent type 

of atherosclerosis, showing promise for this study.   

 

4.2.5. Conclusion 

This chapter investigated the hypothesis that heterogeneity in MP stress SPECT images can possibly 

convey information regarding calcification in coronary arteries. Many community settings are 

incapable of providing CAC CT scan for patients, it is not reimbursed by the CMS, and requires 

sophisticated software. We employed our in-house developed standardized SERA package that can 

evaluate 487 radiomic features. We segmented MP SPECT images into LAD, RCA, LCX, each with two 

varieties, as well as the whole myocardium, evaluating features for all 7segments. We also explored 

8 different GLs to find the most appropriate setting for our study that yields higher reproducibility, 

robustness and less redundancy. Our dataset consists of 428 patients with normal (non-ischemic) 

MP stress SPECT images that were verified to be free from artifact or spillover, in addition to their 

detailed CAC score acquired from CT, and other clinical parameters. Our focus was on patients with 

normal stress scan since the possible prediction of coronary artery calcification in those images 

would have been of clinical significance. Through a multi-step blind-to-outcome unsupervised 
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feature selection phase, we significantly reduced the feature space 70 folds from 487×8 to 56 

features. We also performed the entire operation 50 times to randomly divide our dataset into 

“training + dev” and “test” sets to mitigate any bias to a specific set of test data. Our univariate analysis 

using Spearman rank correlation between each feature of the cardiac segment with the 

corresponding CAC score of that segment was not significant. Our multivariate analysis, however, 

was able to significantly predict CAC score of all cardiac segments when combining radiomic features 

with clinical features. Our method has the potential to identify such cases with high coronary artery 

calcification that can be prompted for more appropriate care, suggesting that radiomics analysis adds 

diagnostic and prognostic value to standard MPS for wide clinical usage. 
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5. Summary and Future Work 

This section briefly summarizes the main takeaways from the chapters in this dissertation.  

5.1. Introduction  

Our work aims to advance two frontiers of nuclear medicine imaging, namely image reconstruction, 

and radiomics, with the goal of enhanced quantitation. We devoted the first chapter to introduce the 

basics of these two fields. We started by introducing nuclear medicine and tomographic imaging, PET 

and SPECT, their components, as well as image generation and tomographic reconstruction 

techniques. We briefly discussed the vast applications of each modality. We subsequently elaborated 

12 causes of image degradation. These were required to better illustrate the problem statement of 

chapter 2 since the promise of PSF modeling is to correct for a subset of those image degradations. 

The next part introduced medical image quantitation, where we provided a detailed definition of 

image quantitation, biomarkers, quantitative biomarkers, and provided an example of one of the 

most commonly-used imaging biomarkers in nuclear medicine. We subsequently discussed 

radiomics, the large-scale data-oriented study of radiological images for potential discovery of 

imaging biomarkers that can be used in the clinic and provide additional valuable information to 

radiologists. The promise of radiomics is to enable personalized medicine, which we discussed in 

section 1.4. We provided a roadmap of how radiomics can lead to advancements in personalized 

medicine. We briefly introduced radiomics and mentioned a number of selected applications utilizing 
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radiomics. We then concluded by an overall motivation for our dissertation and a brief summary of 

our published work.  

 

5.2. Chapter 2: Adaptive PSF modeling  

5.2.1. Summary   

This chapter focused on a commonly-used “image reconstruction” technique in PET imaging—PSF 

modeling. The advantages and challenges of PSF modeling were discussed and a new approach was 

proposed with the aim to enhance image quantitation. The new approach stepped beyond the past 

frameworks involving a dichotomy of PSF vs. no-PSF modeling, focusing on a wide-spectrum of PSF 

models for the potential of enhanced quantitation of standardized uptake values (SUVs). Starting 

from a simplistic simulation and reconstruction framework, our proposed method was shown to 

enhance quantitative task performance. Following elaboration of system modeling in PET as well as 

analytical modeling of image degradation effects, a comprehensive PET simulation and image 

reconstruction framework were proposed that considered a range of realistically-modeled 

resolution degradation phenomena that analytically modeled the true PSF. Various measures of noise 

and bias were defined and subsequently used to demonstrate the efficiency of the proposed scheme. 

The results of our study were shown to follow that of our preliminary image-based PSF modeling 

presented earlier in the chapter. Our results demonstrated that for the standard range of iterations 

employed in the clinic (not excessive), edge enhancement due to overestimation counter-intuitively 

lowered SUV bias in small tumors, while inter-voxel correlations suppressed image roughness and 

enhanced uniformity in all tumors, only slightly degrading SUVmean reproducibility in the smallest 

tumors. Unlike what one may at first imagine that overestimating the PSF would lead to higher 

overshoots at the edges, this was only observed at higher iterations. In fact, using an overestimated 

PSF resulted in increased contrast and limited edge overshoot effect at lower iterations, in turn 
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enabling enhanced SUV quantitation. Another important takeaway of this chapter was that the exact 

matched system PSF might not be the optimized option for enhanced image reconstruction 

performance and that slightly overestimated PSF modeling can improve PET image quantitation.  

5.2.2. Future work 

An interesting real-world implication of this work is in PET scanner calibration. Some commercial 

PET scanners use Ge-68 point-sources to characterize the PSF as modeled within PSF reconstruction. 

However, in comparison, the most popular isotope, F-18, has a relatively small positron range. Thus, 

utilizing a PSF kernel obtained from Ge-68 point-sources with a significant positron range to 

reconstruct F-18 PET data is approximately equivalent to an overestimated PSF kernel in the 

reconstruction, because both increase the FWHM of the PSF. It is interesting to note, based on our 

observations with overestimated PSF kernels, that this may not be a problem in fact, and may 

effectively lead to improvements in quantitative performance, though further analysis is required to 

implement the exact model of radiotracers with higher positron range, that is left for future study. 

Our aim during the course of our research was to introduce and explore more groundbreaking ideas, 

as opposed to making slight improvements to existing concepts. Although our comprehensive noise-

bias study demonstrated the effectiveness of our proposed model, it can be further investigated 

against some other important parameters in image reconstruction, including different tumor 

contrast, adding post-smoothing with different filters, adopting penalized reconstruction, and the 

incorporation of analytical modeling of positron range.  
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5.3. Chapter 3: Standardized radiomics 

5.3.1. Summary  

While radiomics was briefly introduced in Chapter 1, Chapter 3 presented a detailed and systematic 

view of standardized radiomics workflows. As a typical workflow contains numerous steps, as 

outlined, including image preprocessing, workflow configuration and feature calculation, the overall 

complex framework was understood to be highly prone to variability, impacting its robustness and 

reproducibility. Certain precautions were also discussed to prevent overfitting and to correct for 

false-discovery rate, which, many past published radiomics efforts suffer from. Our efforts within the 

IBSI collaboration were illustrated, where it was seen that even for centers using the same images 

and ROIs, the computed features were not consistent.  

We introduced our developed standardized environment for radiomics analysis (SERA) consisting of 

487 radiomic features.  SERA was used in multiple projects, including studies at the end of this 

chapter aiming at discovering robust and reproducible radiomic features for two nuclear medicine 

datasets: renal cell carcinoma 99mTc-Sestamibi SPECT and 18F-DCFPyL PSMA PET images of prostate 

cancer. Although both studies were the first demonstration of radiomics for these radiotracers, our 

results were in agreement with past efforts on more commonly-used tracers such as FDG. Our results 

also matched the findings in Chapter 4. This chapter further reported on the importance of GL 

discretization selection, where 64 GLs was seen to convey enough details about image heterogeneity, 

as well as the preference for more sophisticated segmentation to improve reproducibility of features.  

5.3.2. Future work 

Immediate future research from the concepts introduced in this chapter is to assess the reported 

robust and reproducible features in outcome prediction tasks. For our study of radiomics of cold-

uptake in RCC SPECT described in section 3.3.1, we tried to use some machine learning techniques to 

predict benign vs. malignancy of tumors, which were not successful, which we attribute to the 
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relatively small number of datasets that are more appropriate for reproducibility analysis. Many 

radiomic studies have been published, yet some of the details of the feature evaluation setting has 

not yet been carefully studied. For instance, different feature families may be optimized at different 

discretization levels. The assumption in the efforts presented in this dissertation, as well as other 

published studies,  is to consider one GL for all feature families. However, the effect of discretization 

levels in different feature families should be investigated. Even further, the effect of discretization in 

every feature can study too. The concern of the scientific community over radiomics study with 

relatively-low reproducibility as well as the tendency to report positive results require more efforts 

on developing and publishing workflows for performing standardized feature selection, and/or 

standardized feature classification, similar to IBSI that aims at standardized feature evaluation. They 

are not as many studies with feature selection/classification analysis that are statistically sound. For 

instance, how to approach the feature classification at the presence of hundreds of features, many of 

which might not convey any useful information. Or if we are interested to study differentiation of two 

features that can be performed using the widely-used area under the curve (AUC) analysis of the 

receiver operative characteristics (ROC) curve, how can it be compared with a third or more variable; 

i.e. how can we hypothesize ROC analysis of more than two features.  

 

5.4. Chapter 4: Radiomics of Myocardial Perfusion Stress SPECT to predict CAC 

Score as Captured by CT 

5.4.1. Summary 

The final chapter contained an end-to-end application of radiomics in nuclear cardiology. This was 

the first demonstration of utilizing radiomics on cardiac SPECT imaging to derive CT-based CAC 

information that otherwise is absent from conventional analysis.  The importance of MP stress SPECT 

and CAC scoring from CT in the clinic were described. Given that CAC assessment is not commonly 
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performed nor reimbursed in a wide community setting, this project has an important implication in 

the clinic.  

SERA-derived radiomic features were utilized in a multi-step feature selection framework, followed 

by application of machine learning to radiomic feature. Feature selection was completely blind to the 

outcome, and the selected features were subsequently utilized in machine learning efforts. Results of 

this chapter demonstrated the possibility that certain information about CAC scoring can be derived 

from radiomics of MP SPECT, further emphasizing the value of radiomics in extracting visually-

unseen information from radiological images. 446035288325 

5.4.2. Future work 

This was a difficult challenge! And we explained several reasons that contribute to the complexity of 

this problem in section 4.2.4: Discussion. We started with a problem for which univariate analysis 

demonstrated very poor performance. We tried a number of regression and classification techniques 

for outcome prediction in this project. The results demonstrated added value in utilizing extracted 

radiomic features; significantly predicting CAC score of the LAD segment of the heart using a 

combination of radiomic features of MP SPECT and clinical features. There is scope for the use of 

more advanced machine learning techniques for mapping the complex data to the outcome. Our 

dataset consisted of a medium-sized patient population of 428 patients. Larger datasets can be 

collected and applied to deep learning frameworks where features are implicitly extracted, which 

may be better able to handle complex datasets.  

Moreover, we note that CAC scoring is only an intermediate step in clinical decision making, aiming 

to help and improve patient stratification. As such, important future studies can be designed to use 

the radiomics of SPECT to directly predict patient outcome and to enable clinical decision support, 

such as recommendations for procedures such as catheterization.  
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