7 research outputs found

    Security Pitfalls of a Provably Secure Identity-based Multi-Proxy Signature Scheme

    Get PDF
    An identity-based multi-proxy signature is a type of proxy signatures in which the delegation of signing right is distributed among a number of proxy signers. In this type of cryptographic primitive, cooperation of all proxy signers in the proxy group generates the proxy signatures of roughly the same size as that of standard proxy signatures on behalf of the original signer, which is more efficient than transmitting individual proxy signatures. Since identity-based multi-proxy signatures are useful in distributed systems, grid computing, presenting a provably secure identity-based multi-proxy scheme is desired. In 2013, Sahu and Padhye proposed the first provably secure identity-based multi-proxy signature scheme in the random oracle model, and proved that their scheme is existential unforgeable against adaptive chosen message and identity attack. Unfortunately, in this paper, we show that their scheme is insecure. We present two forgery attacks on their scheme. Furthermore, their scheme is not resistant against proxy key exposure attack. As a consequence, there is no provably secure identity-based multi-proxy signature scheme secure against proxy key exposure attack to date

    Security Analysis and Design of Proxy Signature Schemes over Braid Groups

    Get PDF
    The braid groups have attracted much attention as a new platform of constructing cryptosystems. This paper firstly analyzes the security vulnerabilities of existing proxy signature schemes over braid groups and presents feasible attacks. Then a new proxy signature scheme is proposed based on the difficulty of the conjugacy search problem and the multiple conjugacy search problem. Security analysis shows that the proposed scheme satisfies the security requirements of proxy signature

    An Efficient ID-based Proxy Signature Scheme from Pairings

    Get PDF
    This paper proposes a new ID-based proxy signature scheme based on the bilinear pairings. The number of paring operation involved in the verification procedure of our scheme is only one, so our scheme is more efficient comparatively. The new scheme can be proved secure with the hardness assumption of the k-Bilinear Diffie-Hellman Inverse problem, in the random oracle model

    Designated Verifier Threshold Proxy Signature Scheme without Random Oracles

    Get PDF
    In a (t,n)(t,n) designated verifier threshold proxy signature \, scheme, an original signer can delegate his/her signing power to nn proxy signers such that any tt or more out of nn proxy signers can sign messages on behalf of the original signer but t−1t-1 or less of the proxy signers cannot generate a valid proxy signature. Of course, the signature is issued for a designated receiver and therefore only the designated receiver can validate the proxy signature. In this paper, we propose a new designated verifier threshold proxy signature scheme and also show that the proposed scheme has provable security in the standard model. The security of proposed scheme is based on the GBDHGBDH assumption and the proposed scheme satisfies all the security requirements of threshold proxy signature schemes
    corecore