920 research outputs found

    On Isomorphism of "Functional" Intersection and Union Types

    Get PDF
    Type isomorphism is useful for retrieving library components, since a function in a library can have a type different from, but isomorphic to, the one expected by the user. Moreover type isomorphism gives for free the coercion required to include the function in the user program with the right type. The present paper faces the problem of type isomorphism in a system with intersection and union types. In the presence of intersection and union, isomorphism is not a congruence and cannot be characterised in an equational way. A characterisation can still be given, quite complicated by the interference between functional and non functional types. This drawback is faced in the paper by interpreting each atomic type as the set of functions mapping any argument into the interpretation of the type itself. This choice has been suggested by the initial projection of Scott's inverse limit lambda-model. The main result of this paper is a condition assuring type isomorphism, based on an isomorphism preserving reduction.Comment: In Proceedings ITRS 2014, arXiv:1503.0437

    Toward Isomorphism of Intersection and Union types

    Get PDF
    This paper investigates type isomorphism in a lambda-calculus with intersection and union types. It is known that in lambda-calculus, the isomorphism between two types is realised by a pair of terms inverse one each other. Notably, invertible terms are linear terms of a particular shape, called finite hereditary permutators. Typing properties of finite hereditary permutators are then studied in a relevant type inference system with intersection and union types for linear terms. In particular, an isomorphism preserving reduction between types is defined. Type reduction is confluent and terminating, and induces a notion of normal form of types. The properties of normal types are a crucial step toward the complete characterisation of type isomorphism. The main results of this paper are, on one hand, the fact that two types with the same normal form are isomorphic, on the other hand, the characterisation of the isomorphism between types in normal form, modulo isomorphism of arrow types.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    An Intuitionistic Formula Hierarchy Based on High-School Identities

    Get PDF
    We revisit the notion of intuitionistic equivalence and formal proof representations by adopting the view of formulas as exponential polynomials. After observing that most of the invertible proof rules of intuitionistic (minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms corresponding to the high-school identities, we show that one can obtain a more compact variant of a proof system, consisting of non-invertible proof rules only, and where the invertible proof rules have been replaced by a formula normalisation procedure. Moreover, for certain proof systems such as the G4ip sequent calculus of Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the non-invertible proof rules as strict inequalities between exponential polynomials; a careful combinatorial treatment is given in order to establish this fact. Finally, we extend the exponential polynomial analogy to the first-order quantifiers, showing that it gives rise to an intuitionistic hierarchy of formulas, resembling the classical arithmetical hierarchy, and the first one that classifies formulas while preserving isomorphism

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    Conversion of HOL Light proofs into Metamath

    Full text link
    We present an algorithm for converting proofs from the OpenTheory interchange format, which can be translated to and from any of the HOL family of proof languages (HOL4, HOL Light, ProofPower, and Isabelle), into the ZFC-based Metamath language. This task is divided into two steps: the translation of an OpenTheory proof into a Metamath HOL formalization, hol.mm\mathtt{\text{hol.mm}}, followed by the embedding of the HOL formalization into the main ZFC foundations of the main Metamath library, set.mm\mathtt{\text{set.mm}}. This process provides a means to link the simplicity of the Metamath foundations to the intense automation efforts which have borne fruit in HOL Light, allowing the production of complete Metamath proofs of theorems in HOL Light, while also proving that HOL Light is consistent, relative to Metamath's ZFC axiomatization.Comment: 14 pages, 2 figures, accepted to Journal of Formalized Reasonin

    Diagrammatic Inference

    Full text link
    Diagrammatic logics were introduced in 2002, with emphasis on the notions of specifications and models. In this paper we improve the description of the inference process, which is seen as a Yoneda functor on a bicategory of fractions. A diagrammatic logic is defined from a morphism of limit sketches (called a propagator) which gives rise to an adjunction, which in turn determines a bicategory of fractions. The propagator, the adjunction and the bicategory provide respectively the syntax, the models and the inference process for the logic. Then diagrammatic logics and their morphisms are applied to the semantics of side effects in computer languages.Comment: 16 page

    Theories of analytic monads

    Full text link
    We characterize the equational theories and Lawvere theories that correspond to the categories of analytic and polynomial monads on Set, and hence also the categories of the symmetric and rigid operads in Set. We show that the category of analytic monads is equivalent to the category of regular-linear theories. The category of polynomial monads is equivalent to the category of rigid theories, i.e. regular-linear theories satisfying an additional global condition. This solves a problem A. Carboni and P. T. Johnstone. The Lawvere theories corresponding to these monads are identified via some factorization systems.Comment: 29 pages. v2: minor correction
    corecore