671 research outputs found

    Photon-Counting Detector CT Angiography for Endoleak Detection After Endovascular Aortic Repair: Triphasic CT With True Noncontrast Versus Biphasic CT With Virtual Noniodine Imaging

    Full text link
    OBJECTIVES: The aim of this study was to compare image quality and endoleak detection after endovascular abdominal aortic aneurysm repair between a triphasic computed tomography (CT) with true noncontrast (TNC) and a biphasic CT with virtual noniodine (VNI) images on photon-counting detector CT (PCD-CT). MATERIALS AND METHODS: Adult patients after endovascular abdominal aortic aneurysm repair who received a triphasic examination (TNC, arterial, venous phase) on a PCD-CT between August 2021 and July 2022 were retrospectively included. Endoleak detection was evaluated by 2 blinded radiologists on 2 different readout sets (triphasic CT with TNC-arterial-venous vs biphasic CT with VNI-arterial-venous). Virtual noniodine images were reconstructed from the venous phase. The radiologic report with additional confirmation by an expert reader served as reference standard for endoleak presence. Sensitivity, specificity, and interreader agreement (Krippendorf α) were calculated. Image noise was assessed subjectively in patients using a 5-point scale and objectively calculating the noise power spectrum in a phantom. RESULTS: One hundred ten patients (7 women; age, 76 ± 8 years) with 41 endoleaks were included. Endoleak detection was comparable between both readout sets with a sensitivity and specificity of 0.95/0.84 (TNC) versus 0.95/0.86 (VNI) for reader 1 and 0.88/0.98 (TNC) versus 0.88/0.94 (VNI) for reader 2. Interreader agreement for endoleak detection was substantial (TNC: 0.716, VNI: 0.756). Subjective image noise was comparable between TNC and VNI (4; IQR [4, 5] vs 4; IQR [4, 5], P = 0.44). In the phantom, noise power spectrum peak spatial frequency was similar between TNC and VNI (both f peak = 0.16 mm -1 ). Objective image noise was higher in TNC (12.7 HU) as compared with VNI (11.5 HU). CONCLUSIONS: Endoleak detection and image quality were comparable using VNI images in biphasic CT as compared with TNC images in triphasic CT offering the possibility to reduce scan phases and radiation exposure

    Dual- and multi-energy CT: approach to functional imaging

    Get PDF
    The energy spectrum of X-ray photons after passage through an absorber contains information about its elemental composition. Thus, tissue characterisation becomes feasible provided that absorption characteristics can be measured or differentiated. Dual-energy CT uses two X-ray spectra enabling material differentiation by analysing material-dependent photo-electric and Compton effects. Elemental concentrations can thereby be determined using three-material decomposition algorithms. In comparison to dual-energy CT used in clinical practice, recently developed energy-sensitive photon-counting detectors sample the material-specific attenuation curves at multiple energy levels and within narrow energy bands; the latter allows the detection of element-specific, k-edge discontinuities of the photo-electric cross section. Multi-energy CT imaging therefore is able to concurrently identify multiple materials with increased accuracy. These specific data on material distribution provide information beyond morphological CT, and approach functional imaging. This article reviews the principles of dual- and multi-energy CT imaging, hardware approaches and clinical applications

    Frequency and causes of delayed diagnosis of visceral artery pseudoaneurysms with CT: Lessons leraned

    Full text link
    Objective: Visceral artery pseudoaneurysms (VAPA) are associated with a high morbidity and mortality, but sometimes are missed in initial computed tomography (CT) examinations. The aims of this study were to determine the frequency and causes of misdiagnoses of VAPA with CT. Materials and methods: We retrospectively identified 77 patients with VAPA in our database who underwent contrast-enhanced CT. The frequency of delayed diagnosis was determined and the reasons were noted. We identified the etiology of VAPA, measured size, and noted the affected vessels. Results: Forty-five of the 77 patients (58 %) had a delayed diagnosis of VAPA. There was no difference in the rate of missed VAPA in symptomatic compared to asymptomatic patients (p = 0.255). The majority of VAPA were associated with previous surgery or interventions (n = 48/62 %). The major affected vessel was the hepatic (n = 31) followed by the splenic artery (n = 17). The main reasons for misdiagnosis were a missed arterial phase in CT (n = 16/36 %), artifacts masking the aneurysm (n = 9/20 %), overlooked pseudoaneurysm (n = 19/42 %), and misinterpretation by attending radiologists (n = 1/2 %). Missed VAPA were smaller (median 8 mm) than those VAPA that were initially diagnosed (median 13 mm, p < 0.01), but occurred with a similar frequency in larger and smaller visceral arteries (p = 0.601). Conclusions: Our study showed that 58 % of VAPA were diagnosed with delay, with the following four reasons for misdiagnosis: Lack of an arterial contrast phase in CT, no techniques for artifact reduction, and lack of awareness of the radiologists. Avoiding delayed diagnosis will most probably improve outcome of patients with VAPA. Keywords: Computed tomography; Endovascular procedures; Pseudoaneurysm; Visceral artery

    Dual-Source Photon-Counting Computed Tomography-Part III: Clinical Overview of Vascular Applications beyond Cardiac and Neuro Imaging

    Get PDF
    Photon-counting computed tomography (PCCT) is an emerging technology that is expected to radically change clinical CT imaging. PCCT offers several advantages over conventional CT, which can be combined to improve and expand the diagnostic possibilities of CT angiography. After a brief description of the PCCT technology and its main advantages we will discuss the new opportunities brought about by PCCT in the field of vascular imaging, while addressing promising future clinical scenarios

    Design and Characterization of a High-resolution Cardiovascular Imager

    Get PDF
    Fluoroscopic imaging devices for interventional radiology and cardiovascular applications have traditionally used image-intensifiers optically coupled to either charge-coupled devices (CCDs) or video pick-up tubes. While such devices provide image quality sufficient for most clinical applications, there are several limitations, such as loss of resolution in the fringes of the image-intensifier, veiling glare and associated contrast loss, distortion, size, and degradation with time. This work is aimed at overcoming these limitations posed by image-intensifiers, while improving on the image quality. System design parameters related to the development of a high-resolution CCD-based imager are presented. The proposed system uses four 8 x 8-cm three-side buttable CCDs tiled in a seamless fashion to achieve a field of view (FOV) of 16 x 16-cm. Larger FOVs can be achieved by tiling more CCDs in a similar manner. The system employs a thallium-doped cesium iodide (CsI:Tl) scintillator coupled to the CCDs by straight (non-tapering) fiberoptics and can be operated in 78, 156 or 234-microns pixel pitch modes. Design parameters such as quantum efficiency and scintillation yield of CsI:Tl, optical coupling efficiency and estimation of the thickness of fiberoptics to provide reasonable protection to the CCD, linearity, sensitivity, dynamic range, noise characteristics of the CCD, techniques for tiling the CCDs in a seamless fashion, and extending the field of view are addressed. The signal and noise propagation in the imager was modeled as a cascade of linear-systems and used to predict objective image quality parameters such as the spatial frequency-dependent modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). The theoretical predictions were compared with experimental measurements of the MTF, NPS and DQE of a single 8 x 8-cm module coupled to a 450-microns thick CsI:Tl at x-ray beam quality appropriate for cardiovascular fluoroscopy. The measured limiting spatial resolution (10% MTF) was 3.9 cy/mm and 3.6 cy/mm along the two orthogonal axes. The measured DQE(0) was ~0.62 and showed no dependence with incident exposure rate over the range of measurement. The experimental DQE measurements demonstrated good agreement with the theoretical estimate obtained using the parallel-cascaded linear-systems model. The temporal imaging properties were characterized in terms of image lag and showed a first frame image lag of 0.9%. The imager demonstrated the ability to provide images of high and uniform spatial resolution, while preserving and potentially improving on DQE performance at dose levels lower than that currently used in clinical practice. These results provide strong support for potential adaptation of this type of imager for cardiovascular and pediatric angiography

    Image quality of energy-dependent approaches for x-ray angiography

    Get PDF
    Digital subtraction angiography (DSA) is an x-ray-based imaging method widely used for diagnosis and treatment of patients with vascular disease. This technique uses subtraction of images acquired before and after injection of an iodinated contrast agent to generate iodine-specific images. While it is extremely successful at imaging structures that are near-stationary over a period of several seconds, motion artifacts can result in poor image quality with uncooperative patients and DSA is rarely used for coronary applications. Alternative methods of generating iodine-specific images with reduced motion artifacts might exploit the energy-dependence of x-ray attenuation in a patient. This could be performed either by aquiring two or more post-injection images at different x-ray energies or from an analysis of the spectral shape of the transmitted spectrum. The first method, which we call energy-subtraction angiography (ESA), was introduced as a dual-energy alternative to DSA over two decades ago but technological limitations of the time resulted in poor image quality. The second potential method, energy-resolved angiography (ERA), requires energy-resolving photon-counting (EPC) x-ray detectors that are under development in a number of laboratories. The goals of this thesis were to: 1) develop a method of comparing image quality in terms of signal-to-noise ratio (SNR) obtained using ESA and ERA with DSA assuming ideal instrumentation for each; 2) develop a method of describing performance and image quality that can be obtained in practice with photon-counting detectors, and; 3) assess the potential of ESA and ERA by comparing the available iodine SNR with that of DSA including the effects of non-ideal detector performance. It is shown that using ideal instrumentation both ESA and ERA can provide iodine-specific images with SNR equal to that of DSA. However, stochastic x-ray interaction and detection processes will degrade SNR obtained with ERA and ESA to a larger extent than DSA. Energy-resolved angiography will achieve near-ideal performance only with low detector electronic noise levels, high collection efficiency of secondary quanta liberated in the detector, and low Compton cross sections. It is concluded that, when these conditions are satsified, ESA and ERA can provide iodine SNR within 25% of that of DSA for the same patient entrance exposure, and therefore may provide alternatives to DSA in situations where motion artifacts are expected to result in compromised DSA procedures, such as in coronary applications. This could have important applications for subtraction imaging of the coronary arteries in the near future

    Ultraharmonic ivus imaging of mircovascularization

    Get PDF

    Focal Spot, Summer 2001

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1088/thumbnail.jp

    Ultraharmonic ivus imaging of mircovascularization

    Get PDF
    • …
    corecore