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ABSTRACT

Digital subtraction angiography (DSA) is an x-ray-based imaging method widely used for diag-

nosis and treatment of patients with vascular disease. This technique uses subtraction of images

acquired before and after injection of an iodinated contrast agent to generate iodine-speci�c images.

While it is extremely successful at imaging structures that are near-stationary over a period of sev-

eral seconds, motion artifacts can result in poor image quality with uncooperative patients and DSA

is rarely used for coronary applications.

Alternative methods of generating iodine-speci�c images with reduced motion artifacts might

exploit the energy-dependence of x-ray attenuation in a patient. This could be performed either

by aquiring two or more post-injection images at di�erent x-ray energies or from an analysis of the

spectral shape of the transmitted spectrum. The �rst method, which we call energy-subtraction

angiography (ESA), was introduced as a dual-energy alternative to DSA over two decades ago

but technological limitations of the time resulted in poor image quality. The second potential

method, energy-resolved angiography (ERA), requires energy-resolving photon-counting (EPC) x-

ray detectors that are under development in a number of laboratories.

The goals of this thesis were to: 1) develop a method of comparing image quality in terms of

signal-to-noise ratio (SNR) obtained using ESA and ERA with DSA assuming ideal instrumentation

for each; 2) develop a method of describing performance and image quality that can be obtained in

practice with photon-counting detectors, and; 3) assess the potential of ESA and ERA by comparing

the available iodine SNR with that of DSA including the e�ects of non-ideal detector performance.

It is shown that using ideal instrumentation both ESA and ERA can provide iodine-speci�c

images with SNR equal to that of DSA. However, stochastic x-ray interaction and detection processes

will degrade SNR obtained with ERA and ESA to a larger extent than DSA. Energy-resolved

angiography will achieve near-ideal performance only with low detector electronic noise levels, high

collection e�ciency of secondary quanta liberated in the detector, and low Compton cross sections. It

is concluded that, when these conditions are satsi�ed, ESA and ERA can provide iodine SNR within

25% of that of DSA for the same patient entrance exposure, and therefore may provide alternatives

to DSA in situations where motion artifacts are expected to result in compromised DSA procedures,

such as in coronary applications. This could have important applications for subtraction imaging of

the coronary arteries in the near future.

Keywords: x-ray angiography, dual energy imaging, energy-resolved imaging, photon counting

detectors, x-ray image quality, x-ray detector performance
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Chapter 1

Burden of coronary artery disease,

limitations of conventional

angiographic approaches, and

research problem

1.1 Burden of coronary artery disease

Cardiovascular diseases (CVDs) are leading causes of hospitalization in Canada (Fig. 1.1.1) and,

while rates of CVD have been decreasing over the past three decades, the number of hospitalizations

continues to increase because of an aging population. [14,140] Coronary artery disease (CAD), caused

by arterial wall thickening and formation of blood clots on walls of the coronary arteries, is the

most common CVD, accounting for approximately 9% of all 2.5-3 million hospitalizations each year

(Fig. 1.1.1). [140]

Arterial wall thickening, known as atherosclerosis, is the end result of a process that starts with

irregular and excessive uptake of lipids, such as cholesterol, by white blood cells in arterial walls.

Through a cascade of other processes, including recruitment of more white blood cells into arterial

walls where they engulf more lipid to form a lipid pool, migration of smooth muscle cells to the intima

of the arterial wall where they combine with connective tissue to form a �brous cap, an atherosclerotic

plaque is formed. [65] In some cases the arterial wall calci�es, hardens, and protrudes into the arterial
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Figure 1.1.1: Percentage of hospitalizations due to all diagnoses (left) and due to cardiovascular
diseases (right). (Data taken from Ref. 14.)

lumen resulting in an obstruction of blood �ow. Depending on the degree of obstruction, [73,74] this

may result in a restriction of blood supply to cardiac muscles, known as myocardial ischaemia, most

often presented as chest pain, known as angina. Angina may be chronic and stable with chest pain

elicited during physical exertion or emotional stress and relieved at rest. [2,66,71,82] In contrast, angina

symptoms may occur at rest indicating a potentially life-threatening cardiac event. When angina

occurs at rest, it is usually the end result of arterial wall damage caused by an unstable atherosclerotic

plaque. Arterial wall damage triggers formation of a blood clot, known as a thrombus, that can

dislodge and partially block the �ow of blood to the myocardium. Depending on the degree and

duration of myocardial ischaemia, this may lead to death of cardiac muscles, known as a myocardial

infarction. In more severe cases, a coronary artery may be completely occluded leading to an acute

myocardial infarction, more commonly known as a heart attack.

Depending on clinical presentation and disease progression, many patients hospitalized for CAD

will undergo vascular imaging procedures for visualization of diseased arteries. [66,71,140,150] The most

common vascular imaging procedure used in diagnosis and assessment of patients suspected of CAD

is x-ray angiography. With this approach, a two-dimensional x-ray projection image is acquired

following injection of contrast agents directly into one or more coronary arteries, as described in

detail in Sec. 1.3.
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1.2 Role of x-ray angiography in diagnosis and assessment of

coronary artery disease

In most cases, initial diagnoses of stable angina, unstable angina, and myocardial infarction are made

on the basis of symptom type and severity, patient history, physical examination, and laboratory

investigations, including tests for glucose and cholesterol levels in the case of stable angina, and tests

for bio-markers of cardiac cell death in the case of unstable angina and myocardial infarction. The

role of x-ray angiography and other cardiac-speci�c investigations is to con�rm diagnosis, assess risk

of cardiac death and myocardial infarction, and evaluate treatment options. As described below,

these goals are usually accomplished simultaneously using a number of diagnostic and prognostic

procedures, with x-ray angiography being particularly important in determining those patients that

may bene�t from revascularization procedures. [66,71,150]

1.2.1 Stable angina

Following an initial clinical investigation, assessment of left-ventricular function using ultrasound

approaches is suggested for all patients suspected of stable angina in Canada, the United States,

and Europe, [66,71,150] for the purpose of ruling out non-CAD causes of chest pain and strati�cation

of patients into low, medium, and high risk of myocardial infarction. [42,66] In addition, follow-up

myocardial perfusion imaging with single-photon-emission computed tomography may be required

for determining the likelihood and extent of myocardial ischaemia. [66,71,150] While an initial inves-

tigation and non-invasive imaging tests are useful in establishing the presence of CAD, they do not

allow for determination of the anatomic location of �ow-obstructing atherosclerotic lesions.

Determining lesion location and severity is important for predicting risk of myocardial infarction

and, therefore, identifying patients that may bene�t from revascularization procedures. [42,66,71,150,207]

In Canada, the United States, and Europe, with the exception of low-risk groups, the majority of

patients suspected of having stable angina will therefore undergo x-ray angiography. [66,71,150] For

this reason, x-ray angiography has been described as ��lter and funnel� for access to revascular-

ization procedures, where �the decision to perform myocardial revascularization [is] clear only after

coronary angiography [has] been performed.� [8] This is also true for patients suspected of unstable

angina and myocardial infarction.
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1.2.2 Unstable angina and myocardial infarction

As described above, unstable angina is characterized by the onset of angina symptoms at rest,

most often as a result of myocardial ischaemia caused by partial occlusion of a coronary artery

by a thrombus. Patients with unstable angina may be at risk of developing an acute myocardial

infarction (heart attack) and require urgent hospitalization for medical treatment and/or assessment

of suitability for revascularization procedures.

Conservative approaches to assessment of unstable angina and myocardial infarction use non-

invasive diagnostic and prognostic tests, such as those described above, to avoid the risk of dislodging

a thrombus during arterial catheterization. The goal of non-invasive procedures is to detect left-

ventricular dysfunction and severe ischaemia that occurs spontaneously or at a low stress threshold.

Patients with these symptoms are immediately referred to coronary angiography for risk strati�cation

and assessment of suitability of revascularization procedures. [13] Alternatively, an early invasive

approach may be implemented where patients undergo immediate or deferred coronary angiography

with the goal of identifying patients without CAD and those with CAD that may bene�t from

either percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG). In a

summary of recent meta-analyses, Anderson et al. [13] conclude that, while conservative approaches

are associated with lower in-hospital mortality rates, early invasive approaches are associated with

lower mortality rates between patient discharge and end of patient follow up. Therefore, while

there are risks and bene�ts associated with conservative and early invasive approaches, similar to

stable angina, x-ray coronary angiography acts as ��lter and funnel� for access to revascularization

procedures for patients su�ering from unstable angina or myocardial infarction.

1.3 Conventional coronary angiography

As described above, the goal of conventional coronary angiography is to visualize diseased coronary

arteries. Like all x-ray-based medical-imaging procedures, the principle behind angiography is that

x rays are di�erentially attenuated by di�erent tissues in the body. [151] At diagnostic x-ray energies

(10-150 keV), the primary methods of attenuation are photoelectric absorption and Compton scat-

tering. The probability of an absorption or scattering event per unit length is described by the linear

attenuation coe�cient, often denoted µ, and depends on x-ray energy and material properties of the

object, including mass density and atomic number. Spatial di�erences in object attenuation prop-

erties and thickness result in di�erences in x-ray transmission factors. A conventional angiographic
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image is generated from measurements of the intensity of a transmitted x-ray spectrum using x-ray

detectors that record the total energy deposited by all photons interacting in each detector element.

Spatial variations in deposited energy provide contrast in x-ray images.

Visualization of coronary arteries is complicated by the fact that the linear attenuation coe�-

cient of blood-�lled arteries is similar to that of cardiac muscles and other surrounding soft tissues,

making it di�cult or impossible to distinguish arteries from surrounding anatomy. Coupled with the

complicated motion of coronary anatomy, this constitutes a unique imaging challenge that requires

x-ray detectors with high spatial and temporal resolution, use of contrast-enhancing agents, and

cardiac catheterization.

1.3.1 Visualizing arteries requires contrast-enhancing agents

In the same year that Wilhelm Roentgen [151] discovered x rays, images showing veins and arteries

of cadavers were obtained by acquiring x-ray images after injection of materials with higher atomic

number than those of surrounding soft-tissue and bone structures. [3] Contrast agents used in these

studies were composed primarily of calcium carbonate. Figure 1.3.1 is a plot of the mass attenuation

coe�cients (equal to the linear attenuation coe�cient divided by density) of calcium carbonate,

water, and bone, and Fig. 1.3.2 is an image showing the vasculature of an amputated hand acquired

in 1896 by E. Haschek and O. T. Lindenthal [80] using a calcium-carbonate contrast agent. While

calcium carbonate is useful in visualizing vascular beds of cadavers, it is not suitable for living

humans.

The decades following publication of Haschek and Lindenthal's image (Fig. 1.3.2) saw the intro-

duction of iodine-based contrast agents. [3] Iodine-based contrast agents are well suited for angiogra-

phy because of distinct di�erences between the mass attenuation coe�cient of iodine and soft-tissue

and bone structures, shown in Fig. 1.3.1. Angiographic images showing passage of an iodine-based

contrast agent from the antecubital vein (a vein in the upper arm) to the pulmonary vessels were pub-

lished by J.A. Sicard and G. Forestier [179] in 1923. While risks associated with early ionic contrast

materials have been greatly reduced with modern non-ionic contrast materials, high doses of iodine-

based contrast materials may impair kidney and left ventricular function. [63,84,85,119,120] Despite this,

iodine-based materials remain the most commonly used contrast agents in x-ray angiography.

Development of iodine-based contrast agents enabled angiographic studies of peripheral vascular

beds but visualization of coronary arteries remained elusive until the development of sophisticated

cardiac catheterization techniques that enabled selective injection of contrast material into coronary

5



20 40 60 80 100 120
10

−1

10
0

10
1

10
2

10
3

Photon energy (keV)

M
as

s 
at

te
nu

at
io

n 
co

ef
fic

ie
nt

 (
gc

m
−

2 )

 

 
Iodine
Calcium carbonate
Bone
Water

Figure 1.3.1: A plot of the linear attenuation co-
e�cients of bone, water, and calcium carbonate.
Also plotted is the mass attenuation coe�cient
of iodine, the most commonly used contrast ma-
terial for x-ray angiography.

Figure 1.3.2: An x-ray angiogram of an ampu-
tated hand acquired in 1896 using a contrast
agent composed primarily of calcium carbonate.
(Image taken from Ref. 3. Permission to repro-
duce is in Appendix G.)

arteries.

1.3.2 Contrast-material injection requires cardiac catheterization

In 1929, Dr. Werner Forssmann [64] published an x-ray image of a catheter extending from the antecu-

bital vein of his right arm to his right atrium. However, later attempts at contrast-material injection

to coronary arteries by way of venous catheterization resulted in insu�cient contrast between coro-

nary arteries and surrounding anatomy. Catheterization of the aorta through peripheral arteries was

developed in the 1940s and, combined with the development of specially-designed catheters, enabled

selective opaci�cation of coronary arteries. [3,40] In 1958, Sones and Shirey [183] obtained the �rst

coronary angiogram (Fig. 1.3.3) using selective intra-arterial catheterization. Catheterization tech-

niques have evolved since the early work of Sones and Shirey and there are now a variety of catheters

speci�cally designed for imaging the coronary arteries. Common cardiac catheterization approaches

now involve puncturing the femoral artery, inserting a sheath, guiding a catheter through the sheath

into the femoral artery, and then guiding the tip of the catheter to a coronary artery by way of the

aorta. Figure 1.3.4b is an example of a modern intra-arterial coronary angiogram showing coronary

artery stenosis of the left anterior descending artery. Conventional coronary angiography, illustrated

in Fig. 1.3.4a, is generally de�ned as a procedure where an x-ray image of the cardiac anatomy is

acquired after selective injection of a contrast agent, usually iodine-based, into one or more coronary
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Figure 1.3.3: A frame from the �rst coronary angiogram acquired in 1958 using selective injection
of iodine-based contrast agents into the coronary arteries. (Image taken from Ref. 40. Permission
to reproduce is in Appendix G.)

arteries using a specially-designed catheter. While there is risk of dislodging a thrombus during ar-

terial catheterization, overall it is generally accepted that the bene�ts of intra-arterial angiography

outweigh acute risks. Intra-arterial contrast injection enables opaci�cation of coronary arteries but

projection of over and under-lying anatomical structures causes image intensity variations that can

obscure arterial visualization.

1.3.3 The need for subtraction approaches

Image intensity variation caused by projection of soft-tissue and bone structures (with di�erent

densities and thicknesses) onto a two-dimensional image plane is commonly referred to as anatomic

noise. [19,27,162,163] E�ects of anatomic noise on disease detection in radiography were recognized as

early 1974 by Revesz et al. [147] who showed that increased complexity of anatomic backgrounds

in radiographic images results in decreased probability of detecting, for example, lung nodules in

thoracic imaging. Samei et al. [163] arrived at a similar conclusion when they showed that projection

of the ribs and pulmonary vessels impairs lung-nodule detection using chest radiography. A similar

problem is encountered in coronary angiography where coronary arteries, cardiac muscles, lungs,

and ribs are superimposed on a two-dimensional image plane. O'hara et al. [141] demonstrated that

detection of stenoses in the presence of anatomic noise requires higher contrast between vasculature

and surrounding tissues than in the case of a uniform background. Adequate visualization of diseased

vasculature with conventional angiography therefore requires high doses of iodine-based contrast

material that, when used in excess, can impair kidney and left ventricular function. [63,84,85,119,120]
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Figure 1.3.4: a) An illustration of a conventional coronary angiography procedure showing a catheter
extending from the femoral artery to the heart by way of the aorta and x-ray projection onto a two-
dimensional x-ray detector. b) A coronary angiogram acquired in 2011 showing luminal narrowing
of the left anterior descending artery (arrow). (Image taken from Ref. 160. Permission to reproduce
is in Appendix G.)

Temporal subtraction techniques [34,35,38,50,51,56,132,133,149] that suppress soft-tissue and bone struc-

tures in angiographic images were introduced in the 1970s with the goal of improving visualization

of diseased vasculature and reducing contrast-material doses. Because this approach was made pos-

sible by the introduction of digital imaging technology, it is most commonly referred to as digital

subtraction angiography (DSA).

1.4 Digital subtraction angiography

Digital subtraction angiography requires subtraction of an x-ray image acquired prior to contrast

injection, known as a mask image, from a post-injection image. [96,132,133] Assuming there is no

motion between mask and contrasted images, all non-iodinated anatomic features are removed from

subtracted images, as illustrated in Fig. 1.4.1. During a DSA procedure it is common to acquire

a sequence of both mask and contrasted images and choose the pair that better suppresses non-

iodinated structures. When background structures are adequately suppressed, DSA images are free

of anatomic noise sources resulting in improved contrast sensitivity.
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a b c

Figure 1.4.1: An example of mask (a), contrasted (b), and subtracted (c) images from a DSA
examination of the popliteal artery acquired using intra-arterial injection of an iodine-based contrast
material. Non-iodinated structures are removed from the subtracted image. (Image taken from
Ref. 23. Permission to reproduce is in Appendix G.)

1.4.1 Increased contrast-sensitivity compared to non-subtraction angiog-

raphy

Because of its high contrast sensitivity, DSA was initially introduced with the goal of replacing intra-

arterial angiography with less-invasive intra-venous approaches. [32,34,35,37,38,93,96] Early attempts at

intra-venous DSA of the coronary arteries included the use of 5-cm long catheters placed in the

antecubital vein and 55-cm long catheters placed at the superior vena cava. [133] However, intra-

venous approaches often result in contrast enhancement of non-cardiac vessels, such as the pulmonary

vessels, that obscure visualization of coronary anatomy. [119] In addition, because contrast materials

dilute as they travel through the circulatory system, contrast-enhancement levels achieved in early

intra-venous DSA studies were 10-20 times lower than intra-arterial injections and only reduced

iodine doses by one half. [96,119,133] Because of this ine�cient use of contrast material, DSA procedures

are almost always performed using intra-arterial injections. While DSA has not eliminated the need

for intra-arterial injections, intra-arterial DSA procedures can be performed using up to 40% less

iodine than conventional non-subtraction approaches. [96]

Digital subtraction angiography is very successful at providing high-contrast images of vascula-

ture that is stationary over a period of several seconds, such as the cerebral arteries, and arteries

in the arms and legs (Fig. 1.4.1). However, because of the need to subtract a mask image acquired

many seconds before or after contrasted images, DSA procedures are often compromised by motion

artifacts. [37,47,96,119]
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a b c

Figure 1.4.2: An example of motion artifacts encountered in cerebral angiography. Improper regis-
tration of the mask image (a) and contrasted image (b) results in motion artifacts in the subtracted
image (c). Motion artifacts appear as streaks at the edges of high-contrast structures. (Image taken
from Ref. 23. Permission to reproduce is in Appendix G.)

b

c

a

Figure 1.4.3: An example of mask (a), contrasted (b), and subtracted (c) images from a DSA
examination of the left coronary arteries. Attempt to subtract mask and contrasted images results
in severe motion artifacts. (Image taken from Ref. 23. Permission to reproduce is in Appendix G.)
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1.4.2 Motion compromises DSA studies of coronary arteries

Motion artifacts often appear as light and dark streaks at the edges of high contrast structures that

are not properly registered in pre and post-injection images, such as in Fig. 1.4.2, and may be pro-

duced in a number of di�erent ways. Involuntary motions such as swallowing after injection into the

carotid artery and movement of extremities degrade visualization of peripheral arteries, [37,75,188,200]

and respiratory and bowel motions degrade DSA studies of the aorta. [32] While there are no large

studies on the frequency of motion artifacts, smaller studies by Chilcote et al. [47] suggest that motion

artifacts can compromise up to 30% of peripheral DSA procedures.

Motion artifacts constitute a major problem for coronary imaging. A number of techniques for

minimizing motion artifacts in coronary studies were proposed in the 1980s, [95,119,149] most of which

involved weighted averages of series of mask and contrasted images, but none adequately removed

motion artifacts and therefore never gained widespread use. Post-processing approaches have been

helpful for retrospective registration, particularly for simpler motion of peripheral arteries, [23,122,123]

but have been unsuccessful in coronary imaging (Fig. 1.4.3). Instead, as described above, high

quality images of coronary arteries require relatively high contrast-material doses to ensure that

arteries are clearly distinguished over background structures.

Alternative methods of generating iodine-speci�c images with reduced motion artifacts might

exploit the energy-dependence of x-ray attenuation in a patient. This could be performed either by

acquiring two or more post-injection images at di�erent x-ray energies or from an analysis of the

spectral shape of the transmitted spectrum. We call these methods energy-subtraction angiography

(ESA) and energy-resolved angiography (ERA), respectively, and both would eliminate the need for

a pre-injection mask image.

1.5 Energy-dependent angiography

Energy-dependent approaches were introduced in the late 1970s as an alternative approach to DSA.

Early e�orts implemented an ESA approach using subtraction of two or three post-injection im-

ages acquired with x-ray spectra having di�erent average energies. [36,39,75,88,149] When images are

acquired in rapid succession after contrast-material injection, it is possible to obtain �DSA-like�

images that are less susceptible to motion artifacts than DSA.
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1.5.1 Energy-subtraction angiography (ESA)

Energy subtraction for enhancement of iodinated vasculature was attempted as early as 1953 by

Jacobson [92] and was further developed in the 1970s and 1980s by researchers at the University of

Wisconsin, including Mistretta et al., [88,130,131] Kelcz et al., [97,98] and Van Lysel et al. [112,113,115,116]

Early ESA researchers used dual-energy methods that exploit the K-edge discontinuity of the iodine

attenuation coe�cient (Fig. 1.3.1).

1.5.1.1 K-edge subtraction angiography

Because the attenuation coe�cients of soft tissue and bone are smoothly varying functions of photon

energy, subtraction of two images acquired using energies directly above and below the K-edge energy

of iodine (≈33 keV) has the potential to suppress soft-tissue and bone structures. Jacobson [92] iso-

lated characteristic emissions from target materials with absorption edges above and below 33 keV to

generate monoenergetic exposures. This approach was revisited by Zhong et al. [222] using emissions

from barium and cerium targets and is successful at imaging stationary objects but is not suitable for

imaging coronary arteries because of the time required to generate su�cient x-ray exposure levels.

Building on the work of Jacobson, [92] Mistretta et al. [88,130,131] developed a �quasi-monoenergetic�

approach using narrow x-ray spectra with average energies above and below 33 keV, such as those

illustrated in Fig. 1.5.1. These approaches used a �xed applied tube voltage, usually between 50

and 70 kilovolts (kV), in combination with rapid switching of iodine and cerium �lters to generate

low and high-energy x-ray spectra, respectively. [37,88,130] Because low and high-energy images can

be acquired within a few milliseconds, this approach is less susceptible to motion artifacts than

DSA. In 1979, Houk et al. [88] acquired K-edge-subtraction images of the left and right ventricles

of a dog with minimal motion artifacts. However, despite initial enthusiasm, K-edge subtraction

approaches are rarely used in modern peripheral or coronary angiography because of a number of

practical limitations.

Limitations of early K-edge subtraction studies

Suppression of soft-tissue and bone structures is optimal when using mono-energetic exposures

with energies directly above and below 33 keV. In this case, soft tissue and bone can be completely

removed from subtracted images. However, generation of mono-energetic x-ray spectra is imprac-

ticable in a clinical setting. Quasi-mononergetic K-edge subtraction is an alternative approach but

requires heavy �ltration of low-kV x-ray spectra. With this approach, suppression of soft-tissue and
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Figure 1.5.1: Examples of x-ray spectra used in early K-edge subtraction (top), triple-energy sub-
traction, and dual-energy subtraction (bottom) studies, respectively.
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bone structures improves with decreasing spectral width. [130,131] However, because x-ray tubes are

limited in the number of photons they can generate per unit time, decreasing spectral width by

increasing �lter thicknesses comes at the cost of decreased number photons used to generate K-edge-

subtracted images. This, coupled with ine�cient production of x-rays at low applied tube voltages,

often results in a severe reduction in the number of photons incident on the x-ray detector, sometimes

as low as 1/60th that of DSA. [88] Early attempts were therefore limited to imaging peripheral vascu-

lature where the x-ray path is much shorter than in coronary applications. Furthermore, balancing

bene�ts of soft-tissue and bone suppression with detriments of low photon-�ux rates requires use

of sub-optimal x-ray spectra that result in incomplete tissue suppression and reduced image signal-

to-noise ratio (SNR) compared to DSA. [39,88,97,98,131] To overcome these problems, approaches that

better suppress soft-tissue and bone structures were proposed. Because these approaches use three

x-ray exposures at di�erent average energies to estimate contributions of soft-tissue, bone, and iodine

to the total attenuation of an incident x-ray beam, they are referred to as triple-energy approaches.

1.5.1.2 Triple-energy approaches

As described in Sec. 1.3, x-ray photons in the diagnostic energy range interact primarily through

photoelectric absorption and Compton-scattering. Alvarez and Macovski [11] demonstrated that con-

tributions of photoelectric and Compton interactions to total attenuation can be estimated from two

x-ray images acquired at di�erent average energies. With this approach, the linear attenuation co-

e�cient of an object is represented as a sum of photoelectric and Compton attenuation coe�cients,

called basis functions. Lehman et al. [107] generalized this approach and showed that, because atten-

uation in soft tissue and bone is uniquely characterized by the relative contributions of photoelectric

and Compton scatter, attenuation coe�cients of water and bone can also be used as basis functions.

Subtracting low and high-energy images therefore enables decomposition of an image into soft-tissue

and bone components and is particularly helpful in removing lungs from chest radiographs. [11,36,208]

However, using water and bone basis materials assumes that x rays do not travel through materials

with absorption edges in the diagnostic energy range [11,36,107] and is therefore not suitable for sub-

traction angiography where the goal is to separate iodinated vasculature from surrounding soft-tissue

and bone structures.

Application of basis-material-decomposition approaches to angiography requires including a third

basis function equal to the mass attenuation coe�cient of iodine. [97,98,153,165] Complete suppression

of soft-tissue and bone variations using a three-material approach requires estimation of the con-

tributions of soft tissue, bone, and iodine to the total attenuation of an incident x-ray beam and
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therefore requires three exposures acquired using x-ray spectra with di�erent average energies. [97,98]

Early triple-energy e�orts by Kelcz et al. [97,98] used a three-�lter, three-kV approach and substan-

tially reduced pixel-intensity variations caused by residual soft-tissue and bone variations. However,

like K-edge subtraction approaches, triple-energy approaches are rarely used in coronary angiogra-

phy.

Limitations of early triple-energy studies Similar to K-edge subtraction angiography, early

triple-energy e�orts implemented thick �lters to produce non-overlapping x-ray spectra. Kelcz et

al. [97,98] implemented a three-spectrum approach with 46-kV, 54-kV, and 62-kV x-ray spectra �ltered

with iodine, cerium, and lead, respectively (Fig. 1.5.1). While this approach suppressed soft-tissue

and bone from angiographic images, because of power limitations of x-ray tubes, iodine-speci�c

images su�ered from severely reduced SNR. In some cases there were so few photons reaching the x-

ray detector that iodine-speci�c images were severely compromised by noise associated with detector

electronics. [97,98] Subsequently, dual-energy approaches that use thinner �lters and higher-energy x-

ray spectra were developed.

1.5.1.3 Dual-energy approaches

The goal of dual-energy approaches is to suppress either soft-tissue or bone from angiographic

images by subtracting two images acquired with x-ray spectra having di�erent average energies.

This is most commonly performed using applied tube voltages of 50-70 kV and 120-130 kV for

low and high-energy spectra, respectively, with 2-2.5 mm of copper �ltration on the high-energy

spectrum. [75,76,112�116,134�136] Because movement of soft tissue, for example, cardiac, bowel, and

pulmonary motion, is the primary source of motion artifacts, most two-material approaches aim

to suppress soft-tissue structures. Since bone is not suppressed from these images, early investiga-

tors subtracted pre-injection dual-energy images from post-injection dual-energy images to remove

overlying bone structures. [75,76,114,135] Guthaner et al. [75,76] demonstrated that in cooperative pa-

tients this approach combines the bene�ts of bone suppression o�ered by DSA with the bene�ts of

soft-tissue suppression and reduced motion artifacts o�ered by dual-energy subtraction. Molloi et

al. [135] used a dual-energy approach to quantify canine coronary arteries and, while bone was not

suppressed from images, soft-tissue suppression resulted in superior iodine visualization compared

to non-subtraction approaches. Similar approaches have been useful in quantifying left-ventricular

ejection fraction. [115,136] Dual-energy approaches use thinner �lters than K-edge subtraction and

three-material approaches, but early studies still su�ered from reduced SNR compared to DSA,
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sometimes by a factor of 2-5. [75,76,121,135,136]

Limitations of early dual-energy studies Similar to K-edge subtraction and triple-energy ap-

proaches, when limited by the output of x-ray generators, early dual-energy studies had severely

reduced SNR compared to DSA and non-subtraction approaches [75,76,112,113,115,116,134�136] due to

the combination of ine�cient production of low-energy x-ray spectra and �ltering of high-energy

spectra. In addition, early dual-energy studies used x-ray detectors consisting of image intensi�ers

that convert x-ray energy to photons with wavelengths in the visible range in combination with

a video camera used to detect visible photons. Cameras used in many of these systems su�ered

from substantial read-out lag that decreased the dual-energy iodine signal by 30-50% in some stud-

ies. [112,130,131,134] Read-out lag, however, has minimal a�ect on DSA image signal because pre and

post-contrast exposures are acquired many seconds apart. In addition, because many of these sys-

tems were initially designed for DSA studies where pre and post-injection images are acquired using

the same x-ray exposure levels, early studies were often performed using equal exposures for low and

high-energy images which could have resulted in an SNR reduction of up to a factor of 4 compared

to optimal exposure ratios. [113]

1.5.1.4 Current state of energy-subtraction angiography

As described above, early ESA e�orts were compromised by poor image SNR compared to DSA,

sometimes by a factor of 2 to 5. For this reason, it is generally accepted that ESA provides sub-

optimal image quality, and this approach is not currently used for imaging coronary arteries. How-

ever, early studies assessed ESA using technology of the time and it is therefore unclear whether

reduced image quality was a result of technological limitations or of the fundamental physics of ESA.

X-ray source and detector technologies have improved substantially over the past three decades and

the limitations described above may no longer apply, suggesting that it may be the right time to

revisit ESA for coronary imaging with a focus on the image quality that can be achieved for a given

radiation dose to the patient and how this compares to DSA. However, since this approach requires

two images, it may still be suceptible to motion artifacts although to a much lower extent than DSA.

Energy-resolved approaches that extract the iodine signal from analysis of the spectral shape of a

single post-injection transmission would be insensitive to motion artifacts.
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1.5.2 Energy-resolved angiography

Advances in x-ray detector technology are leading to the development of a new generation of x-ray

detectors that are capable of measuring the energy of each x-ray photon interacting in each x-ray

detector element with the goal of estimating the spectrum of interacting photons, which may en-

able implementation of energy-resolved angiography. Energy-resolving photon-counting (EPC) x-ray

imaging was conceived as early as 1976 be Alvarez et al. [11] who was a pioneer of energy-dependent

approaches for computed tomography. However, until recently, this concept never gain widespread

interest for medical imaging applications because of limitations of x-ray detector technology. Recent

advances in EPC x-ray detector technology has revived interest in this approach and these detectors

may become available for medical imaging applications in the near future.

1.5.2.1 State-of-the-art energy-resolving photon-counting x-ray detectors

Modern digital x-ray detectors typically consist of a conversion layer, such as a phosphor or photo-

conductor, that converts x-ray energy into secondary quanta, such as optical photons or electrical

charges, and a sensor that measures the number of liberated secondaries. In large-area direct-

conversion approaches, x-ray energy is converted to electrical charges in a photoconductive convertor

material, such as amorphous selenium (a-Se), that is electrically coupled to a capacitive element.

Charge integrated by the capacitive element is ampli�ed by a semiconductor device, usually a thin-

�lm transistor (TFT), located in each detector element and read out by peripheral electronics to

generate a two-dimensional image. [129,157,216] In conventional energy-integrating systems, many x-

ray photons interact in the convertor material during the integration time, which is determined

by the x-ray exposure time, producing an image signal proportional to the total energy deposited

by all interacting x-ray photons. Recent development of fast low-noise electronic readout systems

equipped with thresholding circuits are capable of identifying signals generated from individual x-ray

interactions. [12,15,18,102,110,111,206,215]

Single photon-counting (SPC) systems produce an image signal proportional to the number of

interacting photons by incrementing a counter when the signal from a detector element is greater

than electronic noise levels. This approach has been used in positron emission tomography (PET)

and single photon emission tomography (SPECT) since the 1970s but, until recent developments,

higher count rates and stricter spatial-resolution requirements have restricted their use in x-ray

imaging. Detector technology has advanced and there are now a number of prototype x-ray detec-

tors [44,70,89,91,102,103,110,124] and systems [16,61,67,68,90,109,165,173,174,177] equipped with photon-counting
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technology. State-of-the-art readout electronics are capable of counting 107-108 photons per sec-

ond per detector element which may be adequate for some applications including mammogra-

phy [30,68,168] and breast computed tomography [173,175,176,181] but may not yet be adequate for gen-

eral CT applications. [7,15,91,165,174,205,210,211,220] In addition, charge sharing between neighboring

detector elements causes a substantial degradation of image quality [4,5,31,126] and spectral infor-

mation. [31,44,70,101,102,110,174,178] Techniques that sum charge from neighboring elements and assign

a count to the element with the largest signal, such as those discussed by Bornefalk et al. [31] and

implemented in the MEDIPIX3 prototype [18] may mitigate this e�ect. We call these methods �adap-

tive binning� which will almost certainly be required to achieve high-quality images. When these

approaches are implemented, it may be possible to estimate the total energy deposited by each

interacting x-ray photon. [18,31]

Since the number of liberated secondary quanta is proportional to deposited photon energy,

use of multiple thresholds enables estimation of the number of interacting photons having ener-

gies within in a speci�ed energy range. Incrementing a counter for one of a number of energy

bins following each interaction yields an estimate of the spectrum of interacting photon ener-

gies. [15,18,24,91,101,102,128,129,198] There are now a number of prototype mammography, [16,67,68] com-

puted tomography, [61,165,173,176,177] and micro-computed-tomography [81,205] systems with energy-

resolving capabilities. Schlomka et al. [165] used EPC measurements to generate iodine-speci�c CT

images of a PMMA phantom containing bone-mimicking material and an iodinated contrast agent.

Wang et al. [205] performed a similar experiment using a micro-CT system equipped with a cad-

mium telluride (CdTe) EPC x-ray detector. Fredenberg et al . [67] demonstrated that energy-resolved

mammography has the potential to remove unwanted background variations and improve conspicu-

ity of small low-contrast breast lesions. While EPC detectors used in these systems are single-line

scanning detectors that are not suitable for angiography, area detectors such as the MEDIPIX pro-

totypes [18,44,70,102,110,124] may enable energy-resolved angiography.

1.5.2.2 Potential advantages of energy-resolved angiography

Energy-resolved angiography would use energy-bin data acquired using EPC x-ray detectors to es-

timate contributions of iodine, soft tissue, and bone to the total attenuation of an incident x-ray

spectrum with the goal of producing an image showing only the distribution of iodinated contrast

material. This approach would have the advantage that iodine-speci�c images could be generated

from a single x-ray exposure and therefore would be less susceptible to motion artifacts that com-

promise DSA procedures. In addition, because this approach would not require the use of thick
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�lters, it may not be limited by generator output restrictions that compromised early ESA studies.

Furthermore, this approach would enable rejection of electronic noise through the use of threshold-

ing techniques, which is important at low x-ray exposure levels. In summary, the advent of EPC

detectors may enable high-SNR subtraction images of the coronary arteries that are not degraded

by electronic noise sources or motion artifacts.

1.6 Research problem

While ERA and ESA are exciting angiographic approaches that may overcome limitations of DSA, it

is unclear whether iodine-speci�c images obtained with these approaches will provide image quality

equal to or better than conventional subtraction approaches. In addition, EPC x-ray detectors are

at an early stage in their development and present a number of new imaging challenges that will

need to be overcome before routine energy-resolved x-ray imaging is possible. These issues lead to

the following research questions:

1. What are the fundamental signal and noise limits of energy-resolved and energy-subtraction

angiography and how do they compare with temporal-subtraction approaches for the same

radiation and iodine dose?

2. How will the random nature of x-ray interaction and detection processes a�ect the performance

of energy-resolving photon-counting x-ray detectors?

3. How can we optimize the performance of both EPC and conventional energy-integrating sys-

tems to maximize ERA and ESA image quality?

These questions are important because they indicate how much research e�ort should be invested

in design and development of ERA and ESA systems for coronary angiography. Answering these

questions requires a thorough understanding of image formation in photon-counting and material-

speci�c imaging and how various image forming processes a�ect ERA and ESA image quality.

1.7 Research goal

The goal of this thesis is to determine the potential of energy-dependent approaches to provide

equal or better image quality than conventional subtraction approaches, in terms of iodine signal-

to-noise ratio, and to identify the impact of non-ideal detector performance on ERA and ESA image

quality. The results of this thesis will provide imaging scientists and system manufacturers with (i)
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knowledge of the ultimate potential of ERA and ESA; (ii) knowledge of the fundamental signal and

noise limitations of energy-resolving photon-counting x-ray detectors; and (iii) tools necessary for

design and optimization of ERA and ESA systems.

1.8 Research objectives

The objectives of this thesis are:

1. To develop a method of comparing image quality in terms of iodine signal-to-noise ratio (SNR)

obtained using ESA and ERA with DSA assuming ideal instrumentation for each.

2. To develop a method of describing detector performance and image quality that can be obtained

with photon-counting detectors.

3. To assess the potential of ESA and ERA by comparing the available iodine SNR with that of

DSA including the e�ects of non-ideal detector performance.

1.9 Thesis outline

The goal of this thesis is addressed in a series of 4 papers (Chapters 2 to 5) that have either been

submitted for publication or are in preparation for publication. Each paper corresponds to a speci�c

thesis objective as described in the following sections.

Chapter 2: A theoretical comparison of x-ray angiographic image quality

obtained with energy-dependent and conventional subtraction methods

While many researchers have investigated image quality in energy-resolved mammography, [29,30,67]

general radiography, [174] and computed tomography, [172,173,176,205] a direct image-quality comparison

of ERA and ESA with DSA has not been performed. It is therefore unknown whether or not energy-

dependent methods will generate iodine-speci�c images with image quality comparable to DSA.

Comparing these techniques is di�cult because currently there is no general theoretical framework

for estimating signal and noise in x-ray subtraction angiography.

Chapter 2 describes a theoretical framework for characterizing angiographic image quality ob-

tained with energy-resolved, energy-subtraction, and temporal-subtraction approaches. Inspired by

Cardinal and Fenster's [43] power series expansion of log-transmission signals, it is demonstrated

20



that iodine-speci�c images can be generated by weighted-log subtraction of x-ray transmission mea-

surements acquired using energy-resolved, energy-subtraction, or temporal-subtraction approaches.

Pixel values in log-subtracted images are proportional to estimated iodine area density (g cm−2).

Large-area quantum noise, expressed in terms of the pixel variance in an iodine-speci�c image, is

calculated using an error propagation technique. This formalism is used to compare ERA and ESA

with DSA for the task of isolating large iodine objects embedded in uniform water-only objects, with

the surprising result that in some situations both ERA and ESA can provide iodine SNR within

10% that of DSA for the same patient entrance exposure, assuming ideal instrumentation for each

method.

[This chapter was published as the article �A theoretical comparison of x-ray angiographic image

quality using energy-dependent and conventional subtraction methods� by J. Tanguay, Ho Kyung

Kim, and Ian A. Cunningham, published in Medical Physics 2012; 39(1): 132.]

Chapter 3: Fundamental signal and noise limits of photon counting x-ray

detectors

Chapter 2 demonstrated the potential of ERA to provide angiographic image quality equal to DSA

for the same patient entrance exposure. However, this comparison was based on the assumption

of ideal EPC detector technology and therefore did not consider the e�ects of stochastic energy-

deposition and conversion to secondary quanta in an x-ray convertor material, collection of secondary

quanta by collecting electrodes, and additive electronic read-out noise, all of which are known to

degrade detector performance in conventional energy-integrating x-ray detectors. X-ray detector

performance is commonly characterized in terms of the Fourier-based detective quantum e�ciency

(DQE), [54,169,170] which is a measure of how e�ciently an x-ray detector converts incident x-ray

quanta to a �nal image signal. Over the past three decades, a cascaded-systems approach has been

developed to describe how image-forming processes, such as those described above, a�ect the DQE

of conventional energy-integrating x-ray detectors. While this approach has been successful in the

development of theoretical models that describe the DQE of many current systems, cascaded-systems

analysis (CSA) of single-photon-counting systems is still preliminary and does not account for many

factors known to degrade image quality in conventional approaches.

Chapter 3 describes an extension of CSA to include a description of the DQE of photon-counting

x-ray detectors. Point-process theory is used to develop a method of propagating the mean image

signal and noise, expressed in terms of the Wiener noise power spectrum (NPS), through a thresh-
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olding stage required to identify x-ray interaction events. It is demonstrated that under certain

conditions, the CSA approach can be applied to SPC systems with the additional requirement of

propagating the probability density function describing the total number of image-forming quanta

through each stage of a cascaded model. The new transfer relationships are used to describe the

zero-frequency DQE of a hypothetical SPC detector including the e�ects of stochastic conversion to

secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results

are compared with Monte Carlo calculations.

It is demonstrated that in some situations DQESPC (0) = αISPC where α represents the quantum

e�ciency and ISPC is a new SPC noise factor equal to the true positive fraction of counting inter-

acting photons and accounts for degradation in image quality due to stochastic energy deposition,

conversion, and collection processes, electronic noise, and thresholding. A CSA analysis demon-

strates that in some situations there is a narrow range of acceptable thresholds required to avoid

reduced ISPC values.

[This chapter was published as the article �The detective quantum e�ciency of photon-counting

x-ray detectors using cascaded systems analyses� by J. Tanguay, Ho Kyung Kim, and Ian A. Cun-

ningham, published in Medical Physics 2012; 40(4): 041913-1.]

Chapter 4: Modeling signal and noise propagation in energy-resolving

photon-counting x-ray detectors

The formalism developed in Chapter 3 was useful in understanding the importance and utility of

using a PDF-transfer approach, but is restricted to the simplistic case where all the energy of an

interacting photon is deposited at a primary interaction site, ignoring photoelectric and Compton

emission/scatter photons that escape the detector or are reabsorbed at a remote interaction site.

The goal of Chapter 4 is to extend the capabilities of PDF transfer theory to include the e�ects

x-ray reabsorption on the PDF of image-forming quanta to enable a description of the zero-frequency

DQE of SPC systems. This is accomplished by developing a general expression for the PDF of the

total number of image quanta for a parallel cascade of quantum processes. The utility of the parallel

cascades approach is demonstrated in an analysis of the zero-frequency DQE and imprecision in

measurements of photon energy of hypothetical selenium-based photon-counting x-ray detectors.

A CSA model of the SPC Swank factor ISPC using an x-ray interaction and detection model that

incorporates stochastic energy deposition through photoelectric and Compton interactions, liberation

and collection of secondary quanta, electronic noise, and thresholding shows that the DQE can be
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degraded by each of these processes. It is demonstrated that there is a narrow range of acceptable

thresholds that depends on photon energy, the energy required to liberated an electron-hole pair,

collection e�ciency, and electronic noise level. For Se-based systems with thresholds that adequately

suppress electronic noise without thresholding out interaction events, the DQE is approximately

equal to the quantum e�ciency. In this case, as expected, the DQE is not compromised by Swank

noise or electronic noise. However, it is demonstrated that in some cases this condition cannot be

satis�ed, such as at lower mammography energies, higher levels of additive noise, and poor collection

e�ciencies.

Chapter 5: Cascaded-systems analysis of angiographic image quality obtained using

energy-dependent and conventional subtraction approaches

Chapter 5 describes a theoretical comparison of angiographic image quality that could be achieved

using energy-dependent and conventional subtraction approaches including the e�ects of electronic

noise sources and stochastic energy-depositing, conversion, and collection processes in real x-ray de-

tectors. Iodine SNR is determined for energy-resolved, energy-subtraction, and digital subtraction

angiography using cascaded-systems analysis developed in Chapters 3 and 4 in combination with

the linearized noise propagation approach developed in Chapter 2. This enables a direct comparison

of ERA image quality that could be achieved using state-of-the-art photon-counting x-ray detectors

with energy integrating approaches, including ESA and DSA. It is demonstrated that under certain

conditions, both ERA and ESA could result in image quality within 25% of that of DSA at angio-

graphic exposure levels. Requirements for successful implementation of ERA systems that use novel

cadmium-zinc-telluride-based EPC x-ray detectors are discussed.

23



Chapter 2

A theoretical comparison of x-ray

angiographic image quality obtained

with energy-dependent and

conventional subtraction methods

This chapter is adapted from a manuscript entitled �A theoretical comparison of x-ray angiographic
image quality using energy-dependent and conventional subtraction methods� by Jesse Tanguay, Ho
Kyung Kim, and Ian A. Cunningham, published in Medical Physics 2012; 39: 132-142.

2.1 Introduction

Cardiovascular diseases (CVDs) are the leading causes of death worldwide. [117] In 2004, an estimated

17.1 million people died from CVDs, representing 29% of all global deaths. Of these, an estimated

7.2 million were due to coronary heart disease (CHD) and 5.7 million to stroke. Accurate imaging

of CVD patients is critical for clinical decision making such as guiding and planning surgical in-

terventions, where disease classi�cation requires arterial lesions be categorized based on length and

location. [87,104,159] Carotid luminal stenoses can be an indicator of an unstable (�vulnerable�) plaque

with increased risk of thrombosis and stroke. [62]

Investigations for diagnosis and treatment planning may include x-ray digital subtraction an-

giography (DSA), magnetic resonance angiography (MRA), computed tomography angiography
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(CTA), or duplex ultrasonography (DU). DU is often used as a screening tool and follow-up DSA,

CTA, or MRA investigations are usually performed to con�rm diagnosis and plan surgical interven-

tions. [142,189,190] CTA and MRA have seen increased use due to improvements in spatial and temporal

resolution made over the past decade. [144,160,190] In spite of these great advances, DSA, developed

over two decades ago, [34,56,96,133,149] remains the reference standard for imaging near-stationary

vasculature such as the peripheral and the neuro-vasculature. [144,190] With this technique, an image

acquired prior to injection of an iodinated contrast agent is subtracted from a series of post-injection

images, thereby largely removing overlapping anatomical structures. However, the need for both pre

and post-injection exposures, often many seconds apart, can result in severe motion artifacts and

failed or compromised diagnostic procedures. [200]

Although large movements during image acquisition are largely avoided with a cooperative pa-

tient, respiratory and cardiac motions are common. Involuntary motions such as swallowing after a

carotid injection can impair image quality [37,47,200] and movement of extremities can degrade visual-

ization of peripheral arteries. [75,188] In coronary angiography, subtraction methods are almost never

employed, and high quality images are obtained using relatively high radiation exposures and iodine

concentrations to ensure that both large and small arteries are clearly distinguished over background

structures. Image processing techniques have been helpful for retrospective registration, particularly

for simpler motions. [23,122,123]

An alternative approach may come from the development of a new generation of x-ray detectors

capable of estimating the energy of each interacting x-ray photon. An exciting aspect of energy-

resolved photon-counting (EPC) imaging is the potential to generate �DSA-like� images from a single

exposure that are not susceptible to motion artifacts. Energy-resolved angiography (ERA) would

use measurements of the spectrum of interacting x-ray energies in each pixel to estimate the iodine

attenuation along each path. [61,165]

Many technical barriers must be overcome before EPC detectors are ready for use in ERA.

For example, they must operate at very high count rates that cannot be achieved at present. In

addition, angiography requires high spatial resolution but the use of small detector elements will

result in reabsorption of characteristic and Compton-scatter x rays and therefore charge sharing in

near-by elements. This may result in increased image noise [5,18,31,126,178,191,201,203] although fast

coincidence detection algorithms, such as that implemented in the Medipix-3 prototype detector, [18]

may prevent these e�ects.

Another approach, originally proposed in the 1980s, is the use of dual-energy methods to produce

an iodine-speci�c image [75,113,115,116,121,136] based on two (or more) x-ray images acquired at di�erent
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average energies to enhance or suppress materials of a particular atomic number. [43,107,154] While

not in use at present, energy-subtraction angiography (ESA) could be implemented using fast kV-

switching to generate �DSA-like� images with reduced or eliminated motion artifacts.

While early dual-energy studies suggested that iodine signal-to-noise ratio (SNR) would be much

less than that of DSA (by a factor of 2 to 5), [112,113,115,135] these studies did not speci�cally address

whether reduced SNR was a result of technological limitations or the fundamental physics of dual-

energy imaging. For example, early dual-energy cardiac studies used smaller x-ray tubes with low

heat capacity that forced operation at lower patient exposures and could not control exposure times

independently. These limitations resulted in decreased SNR but may be less restrictive at present.

While ERA and ESA are exciting alternatives, their potential success depends largely on the

image quality that can be achieved for a given exposure (or e�ective dose) to the patient. In this

article, we use linearized expressions of image signal and noise to develop a theoretical framework

to enable this comparison, with the unexpected result that both ERA and ESA have the potential

to produce similar image quality to DSA.

2.2 Theory

We consider the task of isolating contrast agents (iodine) embedded in a soft-tissue and/or bony

environment. The goal is to produce an image showing only the spatial distribution of the contrast

agent. The attenuation of x rays through a patient is determined from the line integral of the linear

attenuation coe�cient µ (s;E) along the x-ray path which we express as a linear combination of

basis-material mass-attenuation coe�cients: [11,43,152,165]

ˆ
µ (s;E) ds =

m∑
b=1

µ

ρ
b (E)Ab = AT µ

ρ
(E) , (2.2.1)

where b identi�es the basis material, m is the number of basis materials, s represents position along

the x-ray path as shown in Fig. 2.2.1, E is the photon energy, and

A =


A1

...

Am

 and
µ

ρ
(E) =


µ

ρ
1 (E)

...

µ

ρ
m (E)

 . (2.2.2)

The coe�cients of the expansion, Ab, represent the area densities of each basis material such as soft

tissue (AS), bone (AB), and iodine (AI). The mass-attenuation coe�cients of possible basis materials
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Figure 2.2.1: Schematic showing x-ray
paths through iodinated and background
regions of a patient for the incident spec-
trum q̄0(E).

Figure 2.2.2: Plots of the mass-attenuation coe�-
cients for potential basis materials for angiographic
applications.

are shown in Fig. 2.2.2. An image showing any of the basis materials can be generated by estimating

A at each pixel location. In the following subsections we provide a general mathematical formalism

for estimating A from x-ray transmission measurements acquired using either energy-integrating or

photon-counting x-ray detectors. We use an over-head tilde (eg. x̃i) to represent random variables

(RVs) and E(x̃i), Var(x̃i), and Cov(x̃i, x̃j) to represent the expected value, variance, and covariance,

respectively.

2.2.1 Angiographic image signal

The angiographic image signal AI is derived from two or more images where, for linear detectors,

the expected pixel value measured in image i, is given by

E
(
M̃i

)
= ka

ˆ kVi

0

Si (E) q̄i (E) e−A
T µ

ρ (E)dE; i = 1..n (2.2.3)

where k is a constant of proportionality, q̄i (E) and kVi describe the spectral distribution of x-ray

photons incident on the patient [mm−2 keV−1] corresponding to image i, and Si(E) is a weighting

function describing the detector response associated with image i. The form of S(E) requires some

explanation. For a conventional detector that produces a single image with a signal proportional

to absorbed energy, S(E) = α(E)Eab(E) where α and Eab are the detector quantum e�ciency and

absorbed energy respectively for a photon of energy E. For an ideal photon counting detector,

Si(E) = α(E) for energies within bin i and is zero otherwise. For the dual-energy approach, n = 2
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and Si (E) corresponds to the conventional detector described above where i indicates the spectrum.

Attenuation of the spectral distribution of x rays q̄i (E) through a patient is determined from

the log signal, l̃i, given by

l̃i = − log
M̃i

M̃i0

; i = 1..n, (2.2.4)

where M̃i/M̃i0 is an image of x-ray transmission values and M̃i0 = M̃i|A=0 (corresponding to no

patient). The above relationship represents a system of n non-linear equations in the m unknowns

A1 . . . Am. The solution to Eq. (2.2.4) provides an estimate of the area density of each basis material.

However, in general, Eq. (2.2.4) has no analytic solution. We apply a simple linearization technique

similar to Le and Molloi [105] and Cardinal and Fenster [43] to obtain an approximate analytic solution.

We let A0 = [A10...Am0] represent the point about which we expand the log signal l̃i and l̃i0 =

l̃i|A=A0
. In the appendix we show that the linearized version of Eq. (2.2.4) about A = A0 is given

by

L− L0 = J (A−A0) (2.2.5)

where

L− L0 =


l̃i − l̃i0

...

l̃n − l̃n0

 (2.2.6)

and J is the Jacobian matrix with elements given by

Jib =
µ̄

ρ
ib; i = 1..n, b = 1..m (2.2.7)

where µ̄
ρ ib denotes the average value of the mass-attenuation coe�cient of basis material b weighted

by Si (E) q̄i (E) e−A
T
0

µ
ρ (E):

µ̄

ρ
ib =

ˆ kVi

0

µ

ρ
b (E)Si (E) q̄i (E) e−A

T
0

µ
ρ (E)dE

ˆ kVi

0

Si (E) q̄i (E) e−A
T
0

µ
ρ (E)dE

. (2.2.8)

In practice L0 could be determined from either theoretical calculations or a series of calibration

scans. Equation (2.2.5) has a unique solution for n = m and no solution for n > m, which occurs,

for example, when using EPC x-ray detectors with more energy bins than basis materials. In

the latter case, we use a simple least-squares technique similar to that of Le and Molloi. [105] The
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estimated area-density vector is then expressed as

A = A0 + W (L− L0) (2.2.9)

where

W =

 J−1 for n = m(
JTJ

)−1
JT for n > m

. (2.2.10)

Equations (2.2.9) and (2.2.10) give an estimate of the area density of each basis material for all

three techniques considered in this study. They may also be used to determine area densities

from hybrid detectors that use some combination of energy-resolving, photon-counting, and energy-

integrating measurements, such as those described by Alvarez. [9] For A0 = 0, this result is equivalent

to commonly used expressions for linear dual-energy, [108] temporal-subtraction, [59,209] and energy-

resolved [105] approaches. An angiographic image is obtained by solving for the iodine-speci�c signal

ÃI.

2.2.2 Angiographic image noise

Random variations in the number of interacting photons, the energy deposited by each photon, and

the number of secondary quanta collected in a detector element will result in random variations in M̃i

and therefore noise in the material-speci�c images. Roessl et al. [152,154] and Wang and Pelc [201,203]

both used error propagation techniques and the Cramér Rao lower bound to estimate large-area

basis-image noise for EPC detectors. In this article, we generalize the error-propagation approach

used by Roessl et al. [154] to describe the signal-to-noise ratio in basis-material images for both

energy-integrating and EPC detectors to allow for a direct comparison of image SNR.

The covariance matrix of the basis-material images V (A) is related to the covariance matrix of

the log signals V (L) by: [49,154,202]

V (A) = WV (L) WT (2.2.11)

where W is given by Eq. (2.2.10) and

Vij (L) =

 Cov
(
l̃i, l̃j

)
i 6= j

Var
(
l̃i

)
i = j

, (2.2.12)

with a similar result for V (A).
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We separate our analysis of basis-image noise into two cases, corresponding to independent

and cross-correlated measurements M̃i. While in most cases M̃i will correspond to independent

measurements and will therefore be statistically uncorrelated, cross correlations may occur when,

for example, an x-ray detector records both the total energy deposited and the total number of

photons interacting in a detector element from the same exposure. [9,154] Note that these correlations

are not spatial correlations within a single image - they are cross correlations between the two or

more measurements used to derive A.

2.2.2.1 General case: Cross-correlated measurements

In the Appendix A (�Supplemental material for Chapter 2�) we show that

Cov
(
l̃i, l̃j

)
=

Cov
(
M̃i, M̃j

)
E
(
M̃i

)
E
(
M̃j

) (2.2.13)

and

Var
(
l̃i

)
=

Var
(
M̃i

)
E
(
M̃i

)2 =
1

SNR2
Mi

(2.2.14)

where SNRMi
represents the signal-to-noise ratio (SNR) for M̃i. The analytical form of Var(M̃i) has

been extensively described in the literature, for example, see Swank [184] or Alvarez and Macovski. [11]

For each of the three methods considered in this article Cov(M̃i, M̃j) = 0. We refer the interested

reader to Roessl et al . [154] or Alvarez [9] for details on calculating Cov(M̃i, M̃j) in the case that it is

non zero.

Combining Eqs. (2.2.11)-(2.2.14), the covariance between material-speci�c images for basis ma-

terials b and b′ is given by

V cor
b b′ (A) =

n∑
i=1

n∑
j=1

Wb iCov
(
M̃i, M̃j

)
Wb′ j

E
(
M̃i

)
E
(
M̃j

) . (2.2.15)

The above equation gives the variance (b = b′) and covariance (b 6= b′) of the material-speci�c images

for the general case of cross-correlated measurements M̃i.
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2.2.2.2 Special case: Independent measurements

For the case of independent measurements M̃i, Cov{M̃i, M̃j} = δijVar{M̃i} where δij is the Kro-

necker delta equal to one for i = j and zero otherwise. Therefore:

V indep
b b′ (A) =

n∑
i=1

Wb iWb′ i

SNR2
Mi

. (2.2.16)

The above equation gives the variance and covariance of basis-material estimates when the measured

(raw) image signals M̃i and M̃j are statistically independent, including the three methods compared

in this article. This calculation accommodates cross correlations between material-speci�c images

as described by the b 6= b′ case, such as may occur with dual-energy methods or between calcium

and soft-tissue images using EPC detectors as described by Wang and Pelc. [201�203]

2.2.3 Iodine Detectability

The ability to visualize iodinated vasculature is related to the iodine signal-to-noise ratio (SNR),

and this ratio is di�erent for each of the methods compared in this work. We compare the three

methods in terms of a performance metric related to the detectability index, [1] de�ned as the iodine

SDNR per square-root of patient entrance exposure:

PI =
SNRI√
X

=
1√
X

E
{
ÃI − ÃN

I

}
√

Var
{
ÃI − ÃN

I

} , (2.2.17)

where X is the patient entrance exposure, [17] and ÃI and Ã
N
I are the iodine signals from iodinated

and non-iodinated regions of the images, respectively. In this study we ignore spatial correlations in

an image, in which case
√

Var{ÃI − ÃN
I } =

√
Var{ÃI}+ Var{ÃN

I }.

2.3 Methods and materials

2.3.1 Theoretical comparison of energy-resolved, energy-subtraction and

digital-subtraction angiography

The method described above was used to theoretically compare image quality that can be obtained

with each of the three methods for the same exposure. For each method we consider the task of

isolating iodine embedded in water. In all cases, our model assumes ideal energy resolution and unity
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quantum e�ciency. Non-ideal energy resolution will likely increase the variance of basis-material

estimates for each of the techniques considered. This e�ect may be more pronounced in the case

of ERA, where non-ideal energy resolution may result in �cross-talk� (correlations) between energy

bins. All sources of noise apart from Poisson quantum noise are considered negligible, and an ideal

anti-scatter grid (ie. complete transmission of primary photons and complete rejection of scattered

photons) is assumed. Our analysis therefore represents an optimistic estimate of image quality

achievable with each method.

In the following sections, all x-ray spectra are generated using an in-house MATLAB routine

that implements algorithms published by Tucker and Barnes [199] for a tungsten-target x-ray tube.

2.3.1.1 Digital subtraction angiography, DSA

DSA requires subtraction of a post-injection image from a pre-injection (mask) image. For each, the

expected signal from a conventional energy-integrating detector element is proportional to the total

energy deposited by the x-ray spectrum incident on the detector:

E
(
M̃pre

)
= ka

ˆ kV

0

E q̄0 (E) e−
µ
ρW(E)AWdE (2.3.1)

E
(
M̃post

)
= ka

ˆ kV

0

E q̄0 (E) e−
µ
ρW(E)AW−µρ I(E)AIdE (2.3.2)

where AW is the area density of water. We theoretically calculated image signal (Eqs. (2.2.9) and

(2.2.10)), noise (Eq. (2.2.16)) and PI (Eq. (5.2.28)) for applied-tube voltages ranging from 50 to

100 kV with an additional 2 mm of aluminum �ltering.

2.3.1.2 Energy-subtraction angiography, ESA

We consider a dual-energy approach that makes use of two post-injection images with di�erent high

and low average energies to isolate the iodine signal from background:

E
(
M̃L

)
= ka

ˆ kVL

0

Eq̄L (E) e−
µ
ρW(E)AW−µρ I(E)AIdE (2.3.3)

E
(
M̃H

)
= ka

ˆ kVH

0

Eq̄H (E) e−
µ
ρW(E)AW−µρ I(E)AIdE. (2.3.4)

Previous studies suggest that optimal SNR is obtained when the low-energy applied tube voltage is in

the range of 50-60 kV and the high energy applied tube voltage is in the range of 100-130 kV. [113,135]

These studies also suggest that �ltering the output of the high-energy applied tube voltage with and
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Imaging Technique DSA ERA ESA
Applied tube voltage [kV] 63 150 50/130
Al �ltration per image [mm] 2/2 2 2/2
Cu �ltration per image [mm] 0/0 0 0/2.1
Tube current per image [mAs] 9.25/9.25 3 28.5/11.1
Heat units [mAs×kV] 1166 450 2733
Entrance exposure per image [mR] 20/20 40 28.7/11.3

Table 2.1: Exposure parameters used for the Monte Carlo study.

addition 2-2.5 mm of copper (Cu) provides optimal SNR. We therefore �xed the low-energy applied

tube voltage at 50 kV and varied both the high-energy applied tube voltage and low-to-high-energy

mAs ratio to maximize PI. For each spectral combination, both the low and high-energy spectra

were �ltered with 2 mm of Al with an additional 2.1 mm of Cu on the high energy spectrum. For

each combination of exposure parameters the theoretical technique developed in the theory section

was used to calculate image signal, noise and PI.

2.3.1.3 Energy-resolved angiography, ERA

ERA requires only a single post-contrast-injection transmission and binning of x-ray photons into

pre-speci�ed energy bins to isolate the iodine signal from background. The signal from each energy

bin is given by:

E
(
M̃i

)
= ka

ˆ Ei+1

Ei

q̄i (E) e−
µ
ρW(E)AW−µρ I(E)AIdE; i = 1 . . . n (2.3.5)

where n is the number of energy bins. We calculated image signal and noise for 2 and 3-bin ERA

approaches (using a least-squares solution for the 3-bin method). For both approaches we varied

the applied tube voltage from 50 to 150 kV and applied a numerical optimization using Matlab's

patternsearch function to determine the location of the energy thresholds that maximize P I. For

each combination of exposure parameters, the theoretical technique developed in the theory section

was used to calculate image signal, noise, and PI.

2.3.2 Monte Carlo Validation

The theoretical formalism developed in Section II was validated with a simple Monte Carlo calcula-

tion. The number of incident x-ray photons in each energy interval (1 keV) was determined for the

desired exposure using a Poisson random number generator. A virtual phantom with iodine area

densities of 0, 10, 20, 30, 40, and 50 mg cm−2 embedded in 20 cm of water was used for numerical
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Imaging technique DSA ESA
Applied tube voltage [kV] 63 50/130
Cu �ltration per image [mm] 0/0 0/2.1
Tube current per image [mAs] 4/4 10/4
Heat units [mAs×kV] 504 1020
Entrance exposure per image [mR] 9/9 11/4

Table 2.2: Exposure parameters used for the experimental study.

comparison with theoretical results. A second virtual phantom consisting of iodinated vasculature

with diameters of 0.2 and 0.5 cm �lled with 0.10 g cm−3 of iodine embedded in 20 cm of water with

an extra 2 cm of water placed over the right half of the image was used to compare the background

removal capabilities of each technique. For each virtual phantom, a 128 × 128 grid of 0.2 × 0.2-mm

detector elements was simulated, giving a 2.56 × 2.56-cm image. Transmissions were calculated

using tabulated values of the mass-attenuation coe�cients for water and iodine. For each technique,

we used the exposure parameters (summarized in Table 2.1) that maximized P I.

To simulate energy-integrating images, we weighted each transmitted x-ray photon by its energy

and then summed over the entire spectral distribution. To simulate EPC images, we summed the

number of transmitted photons between the lower and upper energy thresholds for each energy bin.

Iodine-speci�c images for DSA, ESA and ERA were then generated using the contrast separation

technique developed in the theory section.

2.3.3 Visual comparison of ESA with DSA

A visual comparison of ESA with DSA was obtained experimentally using a simple static vascular

phantom consisting of two tubes of variable inner diameters (steps of 0.15, 0.4 and 0.8 cm) �lled

with 0.10 g cm−3 of iodine. The tubes were placed in 20 cm of water with an extra thickness of

2.5 cm of PMMA placed over the left tube to provide background (non-iodinated) contrast.

We acquired a series of contrasted and mask images (with and without the tubes). For the ESA

experiment we also acquired open-�eld images at both kV values required for the log-transform in

Eq. (2.2.4). Ten open-�eld images were acquired (at lower mAs values to prevent detector saturation

and then scaled to match the mAs of the contrast images) and averaged. The contrast separation

technique developed in the theory section was then used to generate iodine-speci�c images for both

DSA and ESA. In all cases we linearized the image signals about zero water thickness. We were

unable to perform an ERA experiment because our laboratory currently does not have access to an

EPC x-ray detector.

All images were acquired using a General Electric Revolution XR/d x-ray system with a 1 m
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Figure 2.4.1: Dependence of iodine SNR on exposure parameters. The top row illustrates the de-
pendence of DSA and ERA on the applied tube voltage. The bottom row illustrates the dependence
of ESA on both the high-energy applied tube voltage and the low-to-high-energy mAs ratio.

source-image distance. This system uses a conventional x-ray tube (General Electric MX-100, Gen-

eral Electric Medical Systems) and generator (General Electric SCPU-80, General Electric Medical

Systems) with a CsI based �at-panel detector. Exposure parameters are shown in Table 2.2.

2.4 Results

2.4.1 Dependence on imaging parameters

2.4.1.1 Exposure technique

Figure 2.4.1 illustrates the dependence of iodine signal, noise ×
√

X, and the performance metric PI

for each of the three methods on exposure parameters for 20 cm of water and 20 mg cm−2 of iodine.

In all cases, the log signals were expanded about 20 cm of water. In general, there is little variation

in signal with variable exposure parameters for each of the three techniques.

In the case of DSA, the performance metric reaches a maximum when the applied tube voltage is

approximately equal to 63 kV. This is consistent with previous studies. See, for example, Gkanatsios

et al . [72] Pre and post-injection x-ray spectra for 20 cm of water and 40 mg cm−2 of iodine are
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Figure 2.4.2: X-ray spectra for DSA, ERA, and ESA. The pre-injection DSA spectrum has been
transmitted through 20 cm of water and all post-injection spectra have been transmitted through
20 cm of water and 40 mg cm−2 of iodine. The total entrance exposure for each spectral combination
is 40 mR.

illustrated in Fig. 2.4.2 for a 40 mR entrance exposure.

In the case of ERA, there is little di�erence in PI between the 2 and 3-bin approaches. This is

consistent with the �ndings of Shikhaliev [177] who demonstrated that there is little change in iodine

contrast-to-noise ratio (CNR) between 2 and 5-bin approaches. For both approaches, iodine SNR

reaches a minimum when the applied tube voltage is in the range of 55-65 kV and then increases

with increasing applied tube voltage. Because there is little di�erence between the 2 and 3-bin

approaches, from this point forward we present the results of the 2-bin approach in comparison with

ESA and DSA. We used a 150 kV applied tube voltage with an energy threshold at 59 keV which

was determined to be optimal and is consistent with that found by Nik et al . [138] The post-injection

transmitted x-ray spectrum is illustrated in Fig. 2.4.2 for a 40 mR entrance exposure.

In the case of ESA, applied-tube voltages of 50 and 130 kV (with the high-energy spectrum

additionally �ltered by 2.1 mm of Cu) with a low-to-high-energy mAs ratio of 2.3 provided the

highest SNR of the spectral combinations considered. These parameters are similar to those used in

previous studies. [113,135] Post-injection high and low-energy spectra are illustrated in Fig. 2.4.2 for

a 40 mR entrance exposure.

2.4.1.2 Taylor-expansion point

Figure 2.4.3 illustrates the dependence of iodine signal and PI on the Taylor-expansion point A0 =

[AI0, AW0] for 20 cm of water and iodine concentrations of 20 mg cm−2 and 50 mg cm−2 of iodine.

In all cases we expanded about AI0 = 0. In general, iodine signal becomes more inaccurate as the

expansion point increases or decreases from the true area densities for all three techniques. This
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Figure 2.4.3: Dependence of iodine signal (left) and performance index P I (right) on the Taylor-
expansion point A0 = [AI0, AW0] for 20 cm of water and iodine area densities of 20 mg cm−2 and
50 mg cm−2. For each technique we have expanded about zero iodine area density, ie. AI0 = 0.

e�ect could likely be reduced by using more energy bins in the ERA approach. While the image

signals show variation with expansion point, PI for all three techniques shows very little dependence

on AW0. In the case of DSA, PI is independent of AW0. For all remaining theoretical and simulation

results presented, the log signals were expanded about 20 cm of water.

2.4.1.3 Iodine concentration

Iodine-speci�c images, generated using the exposure parameters in table I for various iodine concen-

trations in 20 cm of water, are shown in Fig. 2.4.4. The iodine signal ÃI for each concentration is

given by the pixel value in these images. The iodine signal and performance metric PI, determined

using Eq. (5.2.28) is compared with theoretical predictions in Fig. 2.4.5. Excellent agreement was

obtained between our theoretical method and the Monte Carlo calculations.

All three methods show a linear response with near-unity slope with increasing iodine concentra-

tion as illustrated in the upper plot of Fig. 2.4.5. Surprisingly, for this particular choice of exposure

parameters, the performance metric PI for ESA is slightly higher than that of ERA and both are

within 5-10 % of DSA under these conditions.

2.4.1.4 Water thickness

The upper plot of Fig. 2.4.6 demonstrates that there is little variability in iodine signal with increasing

water thickness for each of the three methods. However, as described earlier, as the actual water

thickness increases or decreases from the expansion point (A0 = [0, 20]) the signals become slightly

inaccurate.
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Figure 2.4.4: Simulated iodine-speci�c im-
ages of various iodine concentrations in
20 cm of water generated by Monte Carlo
calculations.

Figure 2.4.5: Illustration of iodine signal and PI

for 20 cm of water and various iodine concentra-
tions. Solid lines represent theoretical calculations
and symbols represent Monte Carlo calculations.
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Figure 2.4.6: Illustration of the dependence of iodine signal and PI on water thickness for 20 g cm
−2 of

iodine. Solid lines represent theoretical calculations and symbols represent Monte Carlo calculations.
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a) Iodinated image
 

 

b) DSA image

c) ERA image d) ESA image

88 62 36 10 −16 mg cm−2114

Figure 2.4.7: Comparison of simulated iodine-speci�c images containing 20 cm of water with two
horizontal vessels having diameters of 0.2 and 0.5 cm �lled with 0.1 g cm−3 of iodine and two circular
vessels with diameters of 0.2 and 0.5 cm. A 2-cm thick layer of water is overlayed on the right half
of the image to provide background contrast.

The lower plot of Fig. 2.4.6 shows that all three methods have similar P I values over a wide

range of water thickness values, although DSA is slightly better below 20 cm. However, it must

be emphasized that the spectral methods shown here are not necessarily optimized and may be

improved further. The important observation is to note how similar they are to each other.

2.4.2 Background suppression

The ability of each method to suppress (non-iodinated) background structures is illustrated in

Fig. 2.4.7 where an extra 2 cm of water was placed in the right half of each image in the Monte

Carlo calculation. All three methods show excellent suppression with only minor noise modulation

caused by reduced x-ray transmission through the additional water thickness.
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a) Iodinated image a) DSA image a) ESA image

Figure 2.4.8: Visual comparison of ESA with DSA using a vascular phantom consisting of two tubes
of variable inner diameter (steps of 0.15, 0.4 and 0.8 cm) containing 0.1 g cm−3 of iodine in 20 cm
of water. An extra 2.5 cm of PMMA was placed over the left tube to provide background (non-
iodinated) contrast. a) Iodinated image (63 kV, 9 mR). b) DSA image (63 kV, 18 mR). c) ESA
image (50/130 kV, 15 mR).

2.4.3 Visual comparison of ESA with DSA

Experimental DSA and ESA images are shown in Fig. 2.4.8. The background PMMA structure has

been e�ectively removed and a series of very small air bubbles, adhering to the top section of each

vessel, appear as increased brightness in the DSA image but do not appear at all in the ESA image

(ESA is a true iodine-speci�c method). The ESA image appears slightly noisier than the DSA image

for two reasons: 1) the x-ray exposure used to acquire the ESA image was 17% lower than that used

to acquire the DSA image; and 2) the ESA method requires an open-�eld image to determine M̃i0 as

described in Sec. III.C and an insu�cient number of images were averaged (10 at a reduced mAs) to

avoid adding noise to the iodine image. In practice, it would be necessary to average a large number

of open images (no patient) to ensure maximal iodine SNR.

2.5 Discussion

Energy-resolved and energy-subtraction angiography are exciting alternatives to DSA and their

potential success depends largely on the image quality that can be achieved for a given exposure

(or e�ective dose) to the patient. We have presented a theoretical framework for such a comparison

based on linear estimates of basis-material area densities. It is su�ciently general to include either

energy-integrating or energy-resolving photon-counting x-ray detectors, or a combination such as

that described by Alvarez. [9]

While the tube heat load for ESA was higher than that of DSA by 2x to 4x, and photon-counting
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detectors are not yet ready for angiographic imaging, the available iodine SNR for both methods as

tested is within 10% of that of conventional DSA for the same patient exposure over a wide range

of patient thicknesses and iodine concentrations. This was an unexpected result as it is generally

regarded that image quality (iodine SNR) obtained with ESA is less than that of DSA. Early dual-

energy studies may have su�ered from technological limitations that are less of an issue now.

It must also be noted that the results shown here apply only to the methods as tested. There

may be alternative approaches that could improve each method, such as increasing the number of

energy bins used for decomposition in ERA, or using a weighted linear least-squares approach to

estimate iodine signal that takes into consideration the statistics of the energy bins. Also, while

the linearized methods compared in this study are commonly used in energy-subtraction, [58,108,213]

temporal-subtraction, [59] and energy-resolved [67,105,166,167] approaches, we have not compared non-

linear iterative methods such as those of Lehmann et al . [107] and Schlomka et al . [165] Suppression

of more than one material (such as bone and soft tissue) might require additional images for ESA

or energy bins for ERA and likely reduce SNR, but has not been compared.

For each technique considered in this study we assumed ideal x-ray detector technology for both

theoretical and simulation studies. For example, in the case of ERA, pulse pile up will likely reduce

SNR but was not considered. In addition, the random processes of x-ray interactions (eg. conversion

to secondary quanta, characteristic escape, etc.) that degrade the detective quantum e�ciency (and

SNR) of all x-ray detectors [60,77,78,221] will reduce image quality for DSA, ESA, and ERA, and have

not been addressed.

2.6 Conclusions

The linearized noise-propagation analysis described here provides a framework for optimizing and

evaluating iodine SNR that may be obtained using novel energy-based methods. Using this frame-

work, energy-resolved photon-counting angiography and dual-energy angiography were compared

with conventional digital-subtraction angiography. Theoretical models were validated with Monte

Carlo calculations, and a qualitative comparison of dual-energy angiography with DSA showed

similar image quality. While the energy-based methods are not necessarily optimized and further

improvements are likely, it is concluded that both dual-energy and photon-counting approaches have

the potential to provide similar iodine SNR to DSA for the same x-ray exposure.
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Chapter 3

Fundamental signal and noise limits

of photon counting x-ray detectors

This chapter is adapted from a manuscript entitled �The detective quantum e�ciency of photon-
counting x-ray detectors using cascaded-systems analyses� by Jesse Tanguay, Seungman Yun, Ho
Kyung Kim, and Ian A. Cunningham, published in Medical Physics 2013; 40(4): 041913-1.

3.1 Introduction

Innovative advances in x-ray detector technology are leading to the development of single-photon-

counting (SPC) energy-resolving x-ray detectors. [5,15,18,28,41,91,118,129,198,215,216] These have the po-

tential for advanced spectroscopic applications such as energy-resolved angiography using measure-

ments of the x-ray spectrum to generate angiographic images from a single exposure [192] with re-

duced risk of motion artifacts, and improved image quality by reducing detector noise from stochas-

tic conversion gain, poor collection e�ciency, additive noise, and broad-spectrum imaging (Swank

noise). [129]

There are many challenges that must be overcome before the full bene�ts of SPC imaging can be

achieved. These include materials engineering, count rate limitations, [155,186,197] detector-element

size [18,212] and others. [15,24] However, direction must also come from signal and noise considerations

to ensure the performance of these new systems will produce superior image quality. For example,

variability in deposited photon energy due to random escape of Compton scatter and characteristic

emissions will degrade the precision of energy measurements. [191] Scatter reabsorption and spreading

of secondary image quanta (e.g.. charge pairs in a photoconductor or optical quanta in a phosphor)
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may result in cross-talk between detector elements [178] and a decrease in the detective quantum

e�ciency (DQE). [5] Adaptive binning approaches that sum signals from a number of elements sur-

rounding each primary interaction to determine the total deposited energy, such as one implemented

in the Medipix-3 prototype, [18,139,198] may mitigate this e�ect, although use of broad x-ray spec-

tra, statistical variations in conversion to secondary quanta, optical or charge collection e�ciency,

additive noise and other considerations may still compromise SPC detector performance.

Over the past several years, a cascaded-systems approach has been developed to describe how

these considerations a�ect the DQE of conventional energy-integrating detectors. By propagating

metrics of signal and noise through a cascade of fundamental image-forming processes [6,53,54,125,146,164,214,218]

the DQE [170] of a complex cascade is given by [52]

DQE (k) =
d̄2T2 (k)

q̄oNPS (k)
(3.1.1)

where k = (u, v) [cycles/mm] represents a spatial-frequency vector with components in x and y

directions, q̄o [mm-2] represents the mean distribution of incident x-ray quanta, d̄ represents the

mean detector signal, T (k) represents the modulation transfer function (MTF), and NPS (k) [mm2]

represents the image Wiener noise-power spectrum (NPS). Since the DQE is a Fourier-based metric,

it is applicable for linear and shift-invariant (LSI) systems having wide-sense stationary (WSS) or

wide-sense cyclo-stationary (WSCS) noise processes. [33,52,143]

Cascaded-systems analysis (CSA) has been successful in the development of theoretical models

that describe the DQE of many current systems and identify physical processes that determine

detector performance and image quality. [77,78,148,180,218] However, while the success of SPC detectors

will depend in part on how the DQE compares with that of conventional systems, existing methods

of analysis for SPC detectors remain preliminary and do not account for many factors known to be

important in conventional systems including secondary quantum sinks [53] and the statistical nature

of other imaging-forming processes. In this �rst contribution on CSA methods and the DQE of SPC

detectors, we describe stochastic conversion of incident photons to secondary quanta, collection of

secondary quanta into detector elements, secondary quantum sinks, additive noise, and thresholding.

It is shown that the DQE of SPC systems can be determined using the CSA approach by cascading

the probability density function (PDF) of the number of image-forming quanta through each process

in addition to conventional metrics of signal and noise. This gives rise to the necessary conditions

on these design parameters to ensure an optimal DQE.
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Figure 3.2.1: One-dimensional schematic representation of the process of converting a distribution
of incident x-ray quanta (q̃o) to secondary quanta such as liberated charges in a photoconductor
(q̃sec) incident on the sensors, to the detector presampling signal d̃, and then to the thresholded
signal s̃† from one detector readout. The superscript † indicates a function consisting of a uniform
sequence of delta functions scaled by discrete detector values and superscript j has been omitted for
simplicity.

3.2 Theory

3.2.1 Signal and noise in SPC detectors

Photon-counting detectors are essentially conventional detectors operating with very low noise and

fast electronic readout such that there is little chance of more than one photon interacting in any one

detector element in each readout. Images are generated by acquiring multiple readouts and counting

the number of photons interacting in each element. Our CSA model of the SPC detector is therefore

based on a conventional (energy-integrating) detector consisting of converter (e.g.. photoconductor or

phosphor/scintillator) and sensor (e.g.. CMOS) layers with fast readout and thresholding electronics
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as illustrated in Fig. 3.2.1. The following sections describe signal and noise transfer through this

model assuming WSS/WSCS conditions.

3.2.1.1 Incident x-ray quanta, q̃o

The description starts with a sparse distribution of x-ray quanta incident during the jth readout,

represented by the random point process q̃jo (r) [mm−2] consisting of non-overlapping Dirac δ im-

pulses [20,22,214] (Fig. 3.2.1a). Therefore,

q̃jo (r) =

Ñjo∑
i=1

δ
(
r− r̃ji

)
(3.2.1)

where overhead tilde denotes a random variable (RV), Ñ j
o is an integer-valued RV giving the number

of quanta incident during readout j and {r̃ji , i = 1..Ñ j
o} is the set of independent and identically-

distributed RVs indicating quanta coordinates in image space. The mean is given by q̄jo = N̄ j
o/A =

¯̇qoat [mm−2] where A [mm2] is the detector area, ¯̇qo [mm−2s−1] is the mean rate of x-ray quanta

incident on the detector, and at [s] is the integration time of one readout assuming no dead time

between readouts. The NPS is given by NPSjo (k) = q̄jo [mm-2]. [20,52]

3.2.1.2 Conversion to secondary image-forming quanta, q̃sec

Deposited x-ray energy will liberate secondary image quanta (charge pairs or optical quanta) in the

converter layer at the primary interaction site and possibly at a nearby location if a scatter/emission

photon is reabsorbed. We let q̃jsec (Fig. 3.2.1b) represent the resulting spatial distribution of sec-

ondary quanta incident on the sensor layer with associated MTF and NPS given by Tsec(k) and

NPSsec(k).

3.2.1.3 Collection of secondary quanta by sensor elements

The readout signal from each detector element is proportional to the number of secondary quanta

collected in the element plus a random contribution from readout electronics. In the CSA approach,

this is represented by a selection of those secondaries that contribute to the sensor signals followed

by the collection of these secondaries into a signal from each element. These are described as a

quantum-selection process with probability γ (the sensor quantum e�ciency) and convolution with

a rectangular aperture function respectively (Fig. 3.2.1c). Therefore,

d̃j (r) = k γ̃ q̃jsec (r) ∗Π
( r

a

)
+ ẽ(r) (3.2.2)
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where k is a constant of proportionality, γ̃ is a Bernoulli RV with mean γ and sample values 0 or 1

for each secondary describing whether the secondary contributes to sensor signal or not, and Π (r/a)

represents a two-dimensional rectangular aperture function having area a and dimension ax×ay in x

and y directions respectively de�ning the active area of a sensor element centered at (x, y) = (0, 0).

Additive noise ẽ is represented as a WSS zero-mean noise density with the property that the NPS

integral over all frequencies is equal to the variance σ2
e . The presampling readout signal corresponds

to an element centered at position r but is physically meaningful only at locations corresponding to

the centers of the elements. The corresponding presampling NPS is given by [52]

NPSd(k) =
[
γ2 (NPSsec(k)− q̄sec) + γq̄sec

]
a2
xa

2
ysinc2(axu)sinc2(ayv). (3.2.3)

3.2.1.4 Detector-element signals, d̃†

The process of determining signals from each element is represented as multiplication with a series

of Dirac δ functions (Fig. 3.2.1d) and the sampled signal d̃†j (r) is given by

d̃†j (r) = d̃j (r)

∞∑
n=−∞

∞∑
m=−∞

δ (r− rnm) (3.2.4)

where rnm = (n∆x,m∆y) and ∆ = (∆x,∆y) represents the center-to-center element spacing (pixel

pitch).

3.2.1.5 Thresholded signal, s̃†

Photon counting is achieved by applying a threshold to distinguish interaction events from noise in

each readout. Ideally, each readout interval is short such that the probability of multiple photon

interactions in the same element is small (i.e.. at � 1/¯̇qoa). Pile-up occurs when this condition

is not satis�ed and the detected count rate will be decreased. [100,217] In either case, the result is a

Bernoulli RV s̃jnm having sample values of 1 or 0 (Fig. 3.2.1e) where

s̃jnm =

 1 for d̃jnm ≥ t

0 for d̃jnm < t
(3.2.5)
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in the jth readout for threshold t. We assume a lag-free detector such that s̃jnm and s̃inm are

independent RVs for i 6= j and de�ne s̃†j(r) [mm−2] as the sampled and thresholded image signal:

s̃†j (r) = s̃j (r)

∞∑
n=−∞

∞∑
m=−∞

δ (r− rnm) (3.2.6)

where s̃j (r) is a continuous presampling representation of s̃jnm. An SPC image is produced after M

readouts using s̃jnm to increment a counter for each element, resulting in image c̃† (r):

c̃† (r) =

M∑
j=1

s̃†j(r) (3.2.7)

represented as a sequence of scaled δ-functions.

3.2.1.6 Mean SPC signal, c̄:

The mean SPC image signal is given by

E
(
c̃† (r)

)
=

∞∑
n=−∞

∞∑
m=−∞

E (c̃ (r)) δ (r− rnm) . (3.2.8)

Following the notation of Papoulis, [143] we let pc(c; r) represent the PDF of c̃(r) and therefore

E(c̃ (r)) =
´ +∞
−∞ c pc (c; r) dc. Since c̃ is equal to the summation of M Bernoulli RVs, the binomial

distribution gives [143]

pc (c; r) =

M∑
i=0

 M

i

 ζi (1− ζ)
M−i

δ (c̃ (r)− i) (3.2.9)

where ζ is equal to the probability that d̃j ≥ t and is the same for each readout. Therefore,

E {c̃ (r)} =

M∑
i=0

i

 M

i

 ζi (1− ζ)
M−i

(3.2.10)

= M P
(
d̃ (r) ≥ t

)
(3.2.11)

where P ( ) represents the probability of observing the speci�ed event. Since d̃ is WSS, it has the

PDF pd(d; r) = pd(d), and thus while d̃ is a function of r, its PDF is not, giving

E (c̃ (r)) = c̄ = M

ˆ ∞
t

pd (d) dd. (3.2.12)
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Equation (3.2.12) is a key intermediate result of this work. It shows that the mean signal from an

SPC detector is shift invariant and, more importantly, can be determined simply from the PDF of d̃.

In Sec. 3.2.4 it will be shown that this PDF can be determined by propagating the PDF for the total

number of image-forming quanta through each process in a cascade of image-forming processes.

3.2.1.7 SPC autocovariance and Wiener noise power spectrum:

The sampled SPC signal c̃† (r) has an autocovariance given by [52,143]

Kc† (r, r + τ ) =

∞∑
n=−∞

∞∑
m=−∞

∞∑
n′=−∞

∞∑
m′=−∞

Kc (r, r + τ ) δ (r− rnm) δ (r + τ − rn′m′) (3.2.13)

where Kc represents the autocovariance of c̃:

Kc (r, r + τ ) = Rc (r, r + τ )− c̄2 (3.2.14)

where Rc (r, r + τ ) = E(c̃ (r) c̃ (r + τ )) is the autocorrelation of c̃ given by:

Rc (r, r + τ ) = E

 M∑
i=1

M∑
j=1

s̃i (r) s̃j (r + τ )

 (3.2.15)

=

M∑
j=1

Rjs (r, r + τ ) +

M∑
i=1

M∑
j=1
j 6=i

E
(
s̃i (r) s̃j (r + τ )

)
(3.2.16)

where we have separated the double summation into terms for which i = j and i 6= j, [22] E(s̃i (r) s̃j(r+

τ )) = s̄2, and Rjs is the autocorrelation of s̃j :

Rjs (r, r + τ ) =

ˆ +∞

−∞

ˆ +∞

−∞
sjs′jps

(
sj , s′j ; r, r + τ

)
dsj ds′j (3.2.17)

where ps
(
sj , s′j ; r, r + τ

)
represents the joint PDF [143] for sj (r) and s′j (r + τ ) = sj (r + τ ) and is

the same for all j:

ps
(
sj , s′j ; r, r + τ

)
=

1∑
i=0

1∑
l=0

ζilδ
(
sj (r)− i

)
δ
(
sj (r + τ )− l

)
(3.2.18)

48



where ζil represents the probability that s̃ (r) equals i and s̃ (r + τ ) equals l. Therefore

Rjs (r, r + τ ) = P
{
d̃ (r) ≥ t and d̃ (r + τ ) ≥ t

}
(3.2.19)

=

ˆ ∞
t

ˆ ∞
t

pd (d, d′; r, r + τ ) dddd′. (3.2.20)

Similar to the PDF for d̃, the joint PDF is a function of separation τ and independent of r, [143] and

can be expressed as pd (d, d′; τ ) . Combining this with Eqs. (3.2.14) and (3.2.16) yields

Kc (r, r + τ ) = Kc (τ ) = M

ˆ ∞
t

ˆ ∞
t

pd (d, d′; τ ) dddd′ −M
[ˆ ∞

t

pd (d) dd

]2

. (3.2.21)

The above expression shows that the presampling SPC image signal c̃ is WSS and, therefore, the

sampled signal c̃† is a WSCS sequence of scaled δ-functions. Therefore, [52,143]

Kc† (r, r + τ ) = Kc† (τ ) =

∞∑
n=−∞

∞∑
m=−∞

Kc (τ ) δ (τ − rnm) . (3.2.22)

This is the second important result of this work and shows that the SPC autocovariance is determined

by the joint PDF of d̃ (r) and d̃ (r + τ ).

In general, the presampling NPS is given by the Fourier transform of the autocovariance, NPSc (k) =

F{Kc (τ )}, and the NPS including the e�ects of sampling (noise aliasing) is given by

NPSc† (k) = NPSc (k) +

∞∑
n=1

∞∑
m=1

NPSc (k± knm) (3.2.23)

where knm = (∆x/n,∆y/m). Therefore, for LSI systems with only WSS or WSCS noise processes

(discussed further below), the DQE of SPC systems is given by

DQESPC (k) =
c̄2T2 (k)

q̄oNPSc† (k)
(3.2.24)

where c̄ and NPSc† are the mean pixel value and NPS in an SPC image as given by Eqs. (3.2.12) and

(3.2.23), respectively. This is equivalent in form to the DQE of a conventional detector in Eq. (3.1.1)

after substituting c̄ with d̄, although the NPS of c̃ is di�erent to that of d̃ since they are determined

by statistical �uctuations in the number of interacting photons (a Poisson RV) and deposited energy

for each photon, respectively.
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3.2.2 Special Case: Low count rates and no charge sharing

As a special case, we consider a low-count-rate limit where the probability that two photons deposit

energy in the same element during a single readout is negligible (no pulse pile-up) and no charge

sharing between elements. This may be a good assumption for photoconductor-based detectors such

as Se, but possibly not for CsI-based systems where optical scatter will share x-ray quantum energy

between more than one element. However, if adaptive binning is implemented to sum signals from

elements surrounding a primary interaction, this assumption may also be valid as discussed in the

Discussion section. The signal d̃j therefore corresponds either to the case of all deposited energy

from one photon, or no deposited energy. We continue to assume WSS/WSCS noise processes.

3.2.2.1 Mean signal, c̄

The mean signal c̄ is obtained by combining Eqs. (3.2.12) with pd(d) which is calculated in Ap-

pendix B:

c̄ = q̄oaξ1 (t)

[
1 +

1− λ
λ

ξ0 (t)

ξ1 (t)

]
, (3.2.25)

where λ = ¯̇qoaTa and

ξ0 (t) =

ˆ +∞

t

pd (d|0) dd (3.2.26)

ξ1 (t) =

ˆ +∞

t

pd (d|1) dd (3.2.27)

representing the probability that d̃ is greater than the threshold for the case of zero or one photons

incident on an element, respectively. The second term in brackets in Eq. (3.2.25) corresponds to

false-count events.

This result shows that for fast readouts and negligible secondary scatter, calculation of c̄ re-

quires the PDF for d̃ given one and zero incident photons. In addition, unlike conventional energy-

integrating detectors but consistent with expectation, this result shows how zero-mean additive

electronic noise may result in an increase in the mean SPC image signal.

3.2.2.2 Wiener noise power spectrum

The Wiener NPS requires calculation of the joint PDF for d̃(r) and d̃(r + τ ) as described by

Eq. (3.2.16). In Appendix B we show that for our special case it can be expressed in terms of the
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PDF for the case of zero and one incident photons. The presampling NPS is derived Appendix B

and is given by

NPSc (k) = σ2
ca sinc2 (axu) sinc2 (ayv) (3.2.28)

where σ2
c is the variance in the number of counts from a single element, given by

σ2
c = q̄oaξ1 (t)

[
1 +

(1− λ)
2

λ

(
1

1− λ − ξ0 (t)

)
ξ0 (t)

ξ1 (t)
− 2 (1− λ) ξ0 (t)

]
. (3.2.29)

3.2.3 PDF transfer through elementary processes

In this section, we show that the PDF of d̃ can be determined by cascading the PDF through

elementary image-forming processes and describe the transfer relationships for each. This is a

key result as it means the cascaded approach can be applied to photon-counting systems with the

additional step of cascading the PDF of the total number of image quanta at each stage.

We let pin(Nin) and pout(Nout) represent the PDFs of the total number of input quanta Ñin and

output quanta Ñout, respectively. In general, the PDF of Ñout is given by

pout (Nout) =

ˆ ∞
0

pout (Nout|Nin) pin (Nin) dNin (3.2.30)

where pout(Nout|Nin) is the PDF for Ñout given Ñin. Since Ñin and Ñout assume integer values only,

pout(Nout) can be expressed as point processes:

pout (Nout) =
∞∑
n′=0

prout (Nout = n′) δ (Nout − n′) (3.2.31)

where

prout (Nout) =

∞∑
n′′=0

prout (Nout|Nin = n′′) prin (Nin = n′′) (3.2.32)

is the PMF for Ñout. This is a general result that we now use to determine PDF transfer relationships

for the elementary processes of quantum selection, quantum gain, and quantum scatter.
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Figure 3.2.2: Schematic illustration of transfer of the PDF describing the total number of image
quanta through a quantum selection stage. The PDF for Ñout is shifted to the left relative of that
for Ñin and approaches a Poisson distribution for small α.

3.2.3.1 Quantum selection

A quantum selection stage describes the process of randomly selecting quanta from a distribution

and can be used to describe a quantum e�ciency or collection probability. [52] The total number of

quanta following a quantum selection stage is given by

Ñout =

Ñin∑
i=1

α̃i (3.2.33)

where α̃i is a Bernoulli RV that assumes values of either 1 (with probability α) or zero (with

probability 1 − α). Since Ñout is equal to the summation of Ñin Bernoulli RVs, the mean total

number of quanta following a quantum selection stage is given by αN̄in. The PDF describing

Ñout is therefore shifted towards the origin (relative to pin(Nin)) as illustrated in Fig. 3.2.2, and

prout(Nout = j|Nin = i) is given by the binomial distribution: [143]

prout (Nout = n′|Nin = n′′) =



 n′′

n′

αn
′
(1− α)

n′′−n′
n′ ∈ {0, 1, .., n′′}

0 otherwise

. (3.2.34)

Combining Eqs. (3.2.31), (3.2.32) and (3.2.34) gives the PDF transfer relationship for quantum

selection.

3.2.3.2 Quantum gain

Quantum gain represents the process of replacing the ith quantum in an input distribution with

g̃i quanta in the output, such as liberation of electron-hole pairs in a semiconductor by an x-ray
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Figure 3.2.4: Schematic illustration of PDF transfer through a quantum relocation stage where the
PDFs for Ñout and Ñin are always the same.

interaction, giving

Ñout =

Ñin∑
i=1

g̃i. (3.2.35)

Since Ñout is the sum of Ñin RVs and the set {g̃i, i = 1..Ñin} are independent and identically-

distributed RVs, N̄out = ḡN̄in. The PDF describing Ñout is therefore right-shifted relative to pin(Nin),

as illustrated in Fig. 3.2.3, and the PMF for Ñout given Ñin is [143]

prout (Nout = n′|Nin = n′′) =
(

prg ∗(n
′′−1) prg

)∣∣∣ g=n′ (3.2.36)

where prg (g) is the PMF for g̃ and (prg∗(n
′′−1)prg)|g=n′ represents the discrete convolution of prg(g)

with itself n′′− 1 times evaluated at g̃=n′. Combining Eqs. (3.2.31), (3.2.32) and (3.2.36) yields the

PDF transfer relationship for a quantum gain stage.

3.2.3.3 Quantum relocation

Quantum relocation represents the process of randomly relocating quanta in an input distribution.

This does not change the total number of image quanta and therefore (Fig. 3.2.4):

prout (Nout = n′|Nin = n′′) = δ (n′ − n′′) (3.2.37)
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Figure 3.2.5: Schematic representation of the CSA model used to describe transfer of signal, noise
and PDF of image quanta through an SPC x-ray detector. Letters a) to e) correspond to labels in
Fig. 3.2.1. Figures in bottom row represent PDFs at output of each stage.

3.2.4 Application to simple SPC detector model

We apply the theoretical formalism developed above to the description of the simple SPC detector

illustrated in Fig. 3.2.5. We assume mono-energetic x-rays, no pile-up and negligible secondary

quanta relocation as described above. Limitations of this model for describing prototype SPC

detectors in a clinical environment are addressed in the Discussion.

Stage 1: Interaction of incident x-ray quanta in convertor. Each incident x-ray photon

interacts in the convertor material with probability α equal to the detector quantum e�ciency.

The PDF of the total number of interacting x-ray photons Ñ1 is obtained using Eq. (3.2.32) with

prN1
(N1|N0 = 1) given by Eq. (3.2.34) and p0(N0) = δ(N0 − 1):

pr1 (N1 = n′|N0 = 1) = αn
′
(1− α)

n′′−n′
. (3.2.38)

The PDF describing the number of interacting x-ray photons given one incident is given by

p1 (N1|N0 = 1) = (1− α) δ (N1) + αδ (N1 − 1) . (3.2.39)

The above expression is illustrated schematically in Fig. 3.2.5.
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Stage 2: Liberation of secondary quanta in convertor. We assume that the ith interacting

x-ray photon liberates g̃i secondary quanta (e-h pairs or optical quanta) and that this process obeys

Poisson statistics. The PDF for g̃i is then given by the Poisson distribution and Eq. (3.2.36) becomes

pr2 (N2 = n′|N1 = n′′) =

 1 n′′ = 0

prg (n′) n′′ = 1
. (3.2.40)

The PDF describing the number of liberated secondaries given one incident photon is

p2 (N2|N0 = 1) = (1− α) δ (N2) + α

∞∑
n′′=0

prg (N2) δ (N2 − n′′) . (3.2.41)

Stage 3: Coupling of secondary quanta to sensor elements. A fraction β of liberated

secondaries are coupled to the sensor elements. This could re�ect losses due to charge recombination

in a photoconductor [83,94,100] or optical attenuation in a phosphor/scintillator. [52,86,157,180,182,221] We

assume β is independent of depth, giving

pr3 (N3 = n′|N2 = n′′) =


1 n′′ = 0 n′′

n′

βn
′′

(1− β)
n′′−n′

n′′ ≥ 1
(3.2.42)

and

p3 (N3|N0 = 1) = (1− α) δ (N3) + α

∞∑
n′′=0

n′′∑
n′=1

prg (g = n′′)

 n′′

n′

βn
′
(1− β)

n′′−n′
δ (N3 − n′) .

(3.2.43)

Stage 4: Collection of secondary quanta in detector elements and additive noise.

a) Each secondary incident on the sensor elements has a probability γ of contributing to the mea-

sured signal, accounting for sensor quantum e�ciency. [52,86,157,180,182,221] The PMF of Ñ4 given Ñ3
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has a form similar to Eq. (3.2.42) with the substitution of γ for β, giving

p4 (N4|N0 = 1) =

∞∑
n′′=0

n′′∑
n′=0

 n′′

n′

 γn
′
(1− γ)

n′′−n′
pr3 (N3 = n′′|N0 = 1) δ (N4 − n′) (3.2.44)

b) The readout signal d̃ is proportional to the number of secondaries that are collected in each detec-

tor element plus an additive component due to the detector electronics as described in Appendix B,

giving [143]

pd (d|1) =
1

k
p4

(
d|1
k

)
∗ pe (d|1) (3.2.45)

where pe(d|1) represents the PDF of ẽ evaluated at d|1. In all cases we assume that ẽ is a zero-mean

normally-distributed RV with variance σ2
e .

Stage 5: Sampling of detector elements. Generating a discrete output signal for each element

is represented as a sampling process (Fig. 3.2.1) and does not change the PDF for d̃.

Stage 6: Thresholding of sampled detector signals. Calculation of both the mean signal

and NPS following a thresholding stage requires the integral of pd(d|1) and pd(d|0) from t to in�nity,

represented by ξ1 (t) and ξ0 (t), respectively:

ξ1 (t) = (1− α) ξF (t) + αξT (t) (3.2.46)

ξ0 (t) = ξF (t) (3.2.47)

where ξT and ξF represent contributions from true-count and false-count events, respectively, as

developed in Appendix B.

3.2.4.1 Mean signal, c̄

Combining Eqs. (3.2.25), (3.2.46), and (3.2.47) yields

c̄ = q̄oaαξT (t)

[
1 +

1− λα
λα

ξF (t)

ξT (t)

]
, (3.2.48)
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demonstrating that false counts due to additive noise will increase average image signal. This can

be avoided by choosing a threshold that satis�es the inequality:

ξT (t)

ξF (t)
� 1− λα

λα
. (3.2.49)

3.2.4.2 Noise power spectrum and individual element noise

Combining Eqs. (3.2.28), (3.2.46), and (3.2.47) yields the presampling NPS and integrating over all

spatial frequencies gives the image pixel variance: [143]

σ2
c =

ˆ
R2

NPSc (k) d2k (3.2.50)

= q̄oaαξT (t)

[
1 +

ξF (t)

ξT (t)

(
1− λα
λα

− (1− λ)
2

λα
ξF(t)

)
− 2 (1− λ) ξF (t)

(
1− α
α

ξF (t)

ξT (t)
+ 1

)]
(3.2.51)

≈ q̄oaαξT (t)

[
1 +

ξF (t) (1− ξF(t))

ξT (t)λα
− 2ξF (t)

(
1− α
α

ξF (t)

ξT (t)
+ 1

)]
(3.2.52)

where we used λ� 1 in the approximation. This demonstrates that the SPC pixel variance is equal

to the variance in the number of true-count events plus the variance in the number of false-count

events.

3.2.4.3 Photon-counting DQE(0)

Combining Eqs. (3.2.24), (3.2.28), and (3.2.48), and assuming a threshold that satis�es Eq. (3.2.49),

the zero-frequency DQE for the model considered in this work is given by

DQE (0) =
c̄2

NPSc† (0)
= αξT (t) (3.2.53)

where ξT (t) ∈ [0, 1]. This is an important result and demonstrates that the zero-frequency DQE of

an SPC detector with no pile-up is given by the product of the detector quantum e�ciency and a new

noise factor equal to the true-count probability given by the probability that the signal generated

by one interacting x-ray photon is greater than the threshold t.
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3.3 Monte Carlo Validation

A simple Monte Carlo analysis was performed to test the theoretical derivation described above.

Using the same assumptions and assumed values of α, β, γ, ḡ, and σe, x-ray images were simulated

using the following seven-step algorithm:

1. For each readout, generate the total number of incident Poisson-distributed photons.

2. Select photons that interact in the detector with probability of interaction α.

3. Randomly determine the position of each interacting photon in the image plane.

4. Generate the number of secondary quanta liberated per-interaction by randomly sampling the

Poisson distribution with mean ḡ.

5. Select the subset of liberated secondaries that are collected by sampling the binomial distri-

bution with number of trials equal to the number of generated secondaries and probability of

success equal to βγ.

6. Simulate additive noise by adding or subtracting normally-distributed secondary quanta with

zero mean and variance σ2
e .

7. If the number of secondaries collected in each element and readout is greater than t, increment

the element signal by one.

We performed the above calculations for each element in a 32×32-element image and then calculated

DQE (0) using the expression DQE (0) = SNR2
det/SNR2

ideal where SNRdet is the detected signal-to-

noise ratio calculated from the mean and variance of the �nal image and SNRideal is the ideal

signal-to-noise ratio calculated from the mean and variance of the distribution of incident photons

per detector element.

3.4 Results

3.4.1 Optimal threshold t

Figures 3.3.1 and 3.3.2 illustrate the dependence of normalized average pixel value c̄o = c̄/q̄0a [counts

per incident photon] and normalized pixel variance σ2
o = σ2

c/q̄0a on threshold t for selected values

of βγḡ, σe, and λ = ¯̇q0aTa for α = 1. In all cases, theoretical results are consistent with observed

statistical �uctuations in the MC calculations. For example, the average di�erences between MC
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Figure 3.3.1: Graphical illustration of the dependence of normalized pixel value c̄o (counts per
incident photon) on threshold t for selected values of βγḡ, σe, and λ = ¯̇q0ata. The detector quantum
e�ciency has been set to unity for all calculations. Lines and symbols represent theoretical and MC
calculations, respectively.
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Figure 3.3.2: Graphical illustration of the dependence of σ2
c normalized by q̄oa (number of incident

quanta) on threshold t for selected values of βγḡ, σe, and λ = ¯̇q0ata. The detector quantum
e�ciency has been set to unity for all calculations. Lines and symbols represent theoretical and MC
calculations, respectively.
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Figure 3.3.4: DQE(0) as a function of coupling
and collection e�ciency βγ for selected values
of σe/ḡ. The detector quantum e�ciency has
been set to unity for all calculations. Lines and
symbols represent theoretical and MC calcula-
tions, respectively.

and theory in the top left plot of Fig. 3.3.1 are 1-3%. For the top left plot of Fig. 3.3.2, the average

di�erences are 4-7%.

It is shown that low threshold values result in false counts and an increase in mean pixel value

due to additive noise. While this may increase pixel SNR, it is not desirable and corresponds to

a non-linear response (analogous to a conventional detector saturating at high exposure levels).

High threshold values will cause missed true counts and hence a decrease in SNR. The acceptable

range of threshold values is therefore strongly dependent on the number of collected secondaries per

interacting photon relative to additive noise levels, and this range can be fairly small depending

on the PDF of d̃ as illustrated in Fig. 3.3.3. In general, higher mean gain results in a wider range

of acceptable thresholds and higher additive noise results in a smaller range. From Fig. 3.3.3, the

threshold t must satisfy the condition

3σe < t < d̄|int − 3σd|int (3.4.1)

where d̄|int represents the mean readout signal given one interaction and σd|int is the corresponding

standard deviation. For the speci�c SPC detector described here, d̄|int = kβγḡ and σd|int is calculated

from the PDF for d̃ (Eq. 3.2.45), giving

3σe < t < kβγḡ − 3k

√
βγḡ

(
1 +

σ2
e

kβγḡ

)
(3.4.2)
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which simpli�es to

3σe < t < kβγḡ

(
1− 3√

βγḡ

)
(3.4.3)

for the case of high collection e�ciencies and/or large gain (kβγḡ � σ2
e). When this expression is

satis�ed, the inequality in Eq. (3.2.49) is also satis�ed. However, for low gains or high additive noise

levels, there may be no acceptable threshold value.

3.4.2 DQE(0) dependence on additive noise, collection e�ciency, and

mean gain

Figure 3.3.4 illustrates the dependence of the zero-frequency DQE value on collection and coupling

e�ciencies βγ for selected values of σe/ḡ for α = 1. For each curve, the threshold has been set equal

to t = 3σe to avoid false additive-noise counts. It is shown that in general, detectors with high levels

of additive noise will require higher collection e�ciencies to ensure a high DQE(0) value. In the

worst-case scenario when the additive noise is on the same order of magnitude as the mean gain, the

DQE is close to zero because the threshold required to avoid false counts is greater than the signal

generated by the interacting photons. For detectors with low levels of additive noise (σe ≤ ḡ/100),

a collection e�ciency greater than approximately 5 % will be required so that the DQE(0) is not

degraded by the combination of additive noise and thresholding. This can be achieved by satisfying

the inequality in Eq. (3.4.3).

3.5 Discussion

A theoretical framework is presented for describing propagation of the mean signal and Wiener

NPS through elementary image forming processes for SPC x-ray detectors including a thresholding

stage that converts the detector signal (proportional to absorbed energy) to sample values of 1 or

0 (counts) in each readout. While thresholding is generally non-linear, the mean SPC image signal

maintains a linear relationship with the mean number of incident x-ray quanta for the case of fast

readouts, negligible image lag, and thresholds chosen to avoid false electronic noise counts.

Under these conditions, CSA can be applied to the description of signal and noise propagation

in SPC x-ray detectors with the additional requirement for the PDF of detector-element signals and

the joint PDF describing spatial correlations between elements. While general expressions for these

quantities may be di�cult to compute, for the limiting case of fast readouts and negligible secondary-

quantum relocation, the joint PDF simpli�es to the PDF which is easily determined for elementary
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processes. General PDF-transfer relationships are developed for quantum selection, quantum gain,

and quantum scatter processes.

We apply the new CSA concepts to the description of a simple SPC x-ray detector assuming fast

readouts and negligible quantum scatter. While this ignores possible spatial correlations between

neighboring elements due to charge sharing, charge sharing is known to reduce the DQE substantially

if not addressed [5] and it is believed that any successful design will implement some form of adaptive

element binning to determine total absorbed energy. In addition, pulse pile-up is known to cause

spectral distortion artifacts, [155,186] reduce image quality in energy-resolved applications, [204] and,

if not corrected, will likely reduce the DQE. The model presented here will be valid only when

pile-up e�ects can be avoided, with typical count-rates dependent on the application. For example,

the readout interval in some state-of-the-art silicon-based SPC detectors is approximately 200 ×

10−9 sec [68] which would result in negligible pile-up in mammography applications where count

rates are relatively low (<5× 107 mm−2sec−1). [15] However, in computed tomography applications

where count rates are much higher (1-10×108 mm−2sec−1) pulse pile-up may result in substantial

DQE degradation despite the shorter readout interval (30 × 10−9 s) [91] of cadmium telluride and

cadmium-zinc-telluride convertor materials. Our model also did not consider the e�ects of broad x-

ray spectra, but these are easily incorporated by averaging mono-energetic results over given spectra.

It is expected the model will correctly show DQE improvements that real SPC systems will have

over conventional energy-integrating systems due to reduced Swank noise.

3.6 Conclusions

A signal and noise analysis is described that provides a framework for optimizing and evaluating the

DQE that may be achieved using novel SPC x-ray detectors for medical imaging applications. The

main change required to apply a cascaded-systems approach to SPC detectors is the need to compute

the probability density function describing signals generated by individual detector elements for each

readout of the x-ray detector. Using this framework, the zero-frequency DQE of a hypothetical SPC

x-ray detector was calculated including the e�ects of stochastic conversion gain, poor collection

e�ciency, additive noise, and thresholding. It was demonstrated that in some cases there is a

narrow band of allowable thresholds t (3σe < t < kβγḡ− 3k
√
βγḡ + σ2

e) for high-DQE performance

and that secondary quantum sinks will still degrade the DQE of SPC systems.
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Chapter 4

Modeling signal and noise transfer in

photon-counting and energy-resolving

photon-counting x-ray detectors

This chapter is adapted from a manuscript entitled �Energy precision and detective quantum e�-
ciency of photon-counting x-ray detectors using a cascaded-systems approach: Large elements with
x-ray reabsorption� by Jesse Tanguay, Seungman Yun, Ho Kyung Kim, and Ian A. Cunningham, in
preparation for submission to Medical Physics.

4.1 Introduction

Advances in x-ray detector technology are leading to the development of energy-resolving photon-

counting (EPC) x-ray detectors [5,15,18,28,41,91,102,118,129,198,215,216] with the ability to estimate the

energy of each interacting x-ray photon. The resulting spectral-distribution of energy-depositing

events may enable advanced spectroscopic procedures such as energy-resolved angiography [192] and

other applications. [28,30,61,174] Even for general radiography, EPC methods are expected to improve

image quality by reducing image noise from random physical processes including Swank and additive

detector readout noise. [15,129]

While photon-counting methods are receiving a great deal of interest, EPC detectors are at

an early stage in their development and there remain many challenges to overcome before the

full bene�ts can be achieved. State-of-the-art readout electronics are capable of count rates of

107-108 photons s−1 mm−2 which may be adequate for some applications including mammogra-
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phy [30,68,168] and breast computed tomography [173,175,176,181] but may not yet be adequate for gen-

eral CT applications. [7,15,91,165,174,205,210,211,220] In addition, charge sharing between neighboring

detector elements can cause substantial degradation of image quality [4,5,31,126] and loss of spectral

information. [31,44,70,110,174,178] This e�ect is mitigated with techniques that sum charges in neigh-

boring elements and assigns them to the element with the largest signal, such as those described

by Bornefalk et al. [31] and implemented in the MEDIPIX3 prototype. [18] We call these methods

�adaptive binning� and some form of adaptive binning will almost certainly be required to achieve

high-quality images. In addition, it is also true that these systems will produce the best possible

images only when they are optimized to produce the best possible detective quantum e�ciency

(DQE).

Cascaded-systems analysis [6,52�54,77,78,125,146,148,180,218] (CSA) has been successful in the devel-

opment of theoretical models of the DQE, important in the development of new conventional energy-

integrating systems, and has recently been extended to include a description of the zero-frequency

DQE of single-photon-counting (SPC) detectors that implement adaptive binning. [193�195] In par-

ticular, we showed that DQE(0) can be expressed in terms of the mean photon-counting signal and

associated Wiener noise power spectrum (NPS) and that both can be obtained from the probability

density function (PDF) of detector signals resulting in the zero-frequency DQE of SPC systems given

by [195]

DQE (0) = αISPC (4.1.1)

where α represents the detector quantum e�ciency and ISPC (≤ 1) is a noise factor equal to the

probability that a true photon count is observed by the system given an interaction event (the

true-positive fraction). This form has a pleasing symmetry to the Swank noise factor [184,185] for

conventional energy-integrating systems with ISPC being the SPC Swank factor accounting for degra-

dation in image quality due to stochastic energy deposition, conversion, and collection processes.

Equation (4.1.1) is a good description of SPC detector performance when e�ective adaptive bin-

ning approaches are implemented and a threshold is chosen such that false counts due to additive

electronic noise are suppressed.

A formalism for determining ISPC from the PDF of the total number of detected image quanta

per interaction was described in which the PDF of image-forming quanta is propagated through each

stage in a serial cascade of quantum processes, enabling a description of DQE(0) using Eq. (4.1.1). [195]

This result was useful in understanding the importance and utility of using a PDF-transfer approach,

but is restricted to the simplistic case where all the energy of an interacting photon is deposited
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at the primary interaction site, ignoring photoelectric and Compton emission/scatter photons that

escape the detector or are reabsorbed at a remote interaction site. In the case of reabsorption,

photon energy is converted to secondary quanta at both primary-interaction and reabsorption sites

resulting in a complicated energy response function. [219] Also, liberation of secondary quanta is a

stochastic process and the PDF when energy is deposited at one site di�ers to that when the same

energy is deposited at multiple sites. Furthermore, generation and reabsorption of emission/scatter

photons is only one of many possible energy-depositing processes and a description of the PDF of

image-forming quanta must consider all important events.

The purpose of this chapter is to extend the capabilities of PDF transfer theory to include the

e�ects x-ray reabsorption on the PDF of image-forming quanta to enable a description of the zero-

frequency DQE of SPC systems and energy imprecision of EPC systems. This is accomplished by

developing a general expression for the PDF of the total number of image quanta for a parallel

cascade of quantum processes. It is shown that a relatively simple closed-form expression for the

PDF exists under conditions of importance for SPC and EPC imaging. The utility of the parallel

cascades approach is demonstrated in an analysis of the zero-frequency DQE and imprecision in

measurements of photon energy of hypothetical selenium-based detectors.

4.2 Theory

4.2.1 SPC noise factor and energy response function

The factor ISPC is equal to the true-positive fraction of counting interaction events. [194,195] For

an interacting photon having energy E, the detector signal after adaptive binning and prior to

thresholding d̃ is used to determine the estimated photon energy ẽ where, for a linear x-ray detector,

ẽ = κd̃ for some constant κ. It is convenient to characterize the system response in terms of the

energy response function R (ε, E) which is equal to the probability density of ẽ given interacting

energy E. Letting pd (d|E) represent the PDF of d̃ given an interaction yields

R (ε, E) =
1

κ
pd (d|E)|d=ε/κ (4.2.1)

showing how the energy-response function and PDF of d̃ are related. The SPC noise factor is then

given by [195]

ISPC =

ˆ ∞
κt

R (ε, E) dε =

ˆ ∞
t

pd (d|E) dd (4.2.2)

66



where t is a threshold used to separate x-ray interaction events from additive electronic noise. This

result shows that ISPC can be determined from a knowledge of the PDF of binned detector signals.

4.2.2 EPC energy imprecision and energy response function

When photon counting detectors are equipped with multiple thresholds, it is possible to bin photons

based on estimated photon energy ẽ. The relative root-mean-square (RMS) energy measurement

imprecision is given by the coe�cient of variation of ẽ: [191]

σrel =
σε
ε̄

=

√
R2 (E)

R2
1 (E)

− 1 (4.2.3)

where Rn (E) is the nth energy moment of the energy response function:

Rn (E) =

ˆ ∞
0

εnR (ε, E) dε = κn
ˆ ∞

0

dnpd (d|E) dd (4.2.4)

The above equation shows that the moments of ẽ are directly related to moments of d̃ which can be

determined from the PDF of d̃.

4.2.3 Determining the energy response function from the PDF of image

quanta

Equations (4.2.2) to (E.2.1) demonstrate that both the SPC noise factor and EPC energy imprecision

can be determined from the energy response function which, in turn, requires the PDF of d̃. Recently,

Yun et al. [219] described R (ε, E) for selected x-ray convertor materials including the e�ects of random

x-ray energy depositing processes. This approach is useful in describing the situation of deterministic

conversion of x-ray energy to secondary quanta for negligible pulse pile up. [155,186,204] In the following

sections we describe a method of obtaining R(ε, E) from the PDF of d̃ that includes the e�ects of

stochastic conversion and collection processes, and x-ray reabsorption. We start by summarizing

existing PDF transfer relationships and then extend to include a description of x-ray reabsorption.

4.2.3.1 PDF of image quanta following a cascade of quantum processes

Letting Ñi represent the total number of image quanta after the ith stage of a serial cascade of

quantum gain or selection processes, the PDF of Ñi is given by [195]

pNi (Ni) =

ˆ
pNi (Ni|Ni−1) pNi−1

(Ni−1) dNi−1 (4.2.5)
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Figure 4.2.1: Schematic representation of PDF transfer (describing total number of image quanta)
through a cascade of quantum gain or loss processes. Each PDF consists of a series of δ-functions
describing the probability of integer-only number of quanta.

where pNi(Ni|Ni−1) represents the conditional PDF of Ñi given Ñi−1. The speci�c form of pNi(Ni|Ni−1)

depends on the process and has been described for quantum gain, selection, and scatter processes. [195]

A serial cascade of n elementary processes is represented schematically in Fig. 4.2.1 with each

process characterized by a conditional PDF pNi(Ni|Ni−1). Recursive application of Eq. (4.2.5) yields

the PDF after n processes:

pNn (Nn) =

ˆ
pNo

(No)

ˆ
pN1

(N1|No) . . .

. . .

ˆ
pNn−1 (Nn−1|Nn−2) pNn (Nn|Nn−1) dNn−1 . . . dN1dNo (4.2.6)

where pNo
(No) is the PDF describing the number of incident (x-ray) quanta Ño.

a) Poisson gain Quantum gain represents the process of replacing the jth quantum in an input

distribution with g̃j quanta in the output, such as liberation of electron-hole pairs in a semiconductor

by an x-ray interaction. In the case of Poisson-distributed gain with mean ḡj , the conditional PDF

pNi(Ni|Ni−1) is given by

pNi (Ni|Ni−1) =
∑
j

prNi (Ni = j|Ni−1) δ (Ni − j) (4.2.7)

where the summation is over all possible values of Ni, δ( ) represents the Dirac delta function,

and [194]

prNi (Ni = j|Ni−1) =
1

j!

Ni−1∑
j′=1

ḡj′

j

exp

−Ni−1∑
j′=1

ḡj′

 . (4.2.8)

The above expression demonstrates that prNi(Ni|Ni−1) is equal to the Poisson distribution with

mean
∑Ni−1

j=1 ḡj .
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b) Gaussian gain We let G(g̃; ḡ, σg) represent a Gaussian distribution describing all possible gain

values g̃ with mean ḡ and variance σ2
g . Then

[143,195]

pNi (Ni|Ni−1) =
(
G ∗Ni−1−1 G

)
(Ni) . (4.2.9)

where (G ∗Ni−1−1 G)(Ni) denotes a convolution of G(g̃; ḡ, σg) with itself Ni−1 − 1 times and is a

function Ni. Only integer values of g̃ are allowed which may require re-normalization of pNi(Ni|Ni−1)

for small gain values.

c) Deterministic gain For the special case that σg → 0, Eq. (4.2.9) becomes

prNi (Ni|Ni−1) = δ(Ni − ḡ) ∗Ni−1−1 δ(Ni − ḡ) = δ(Ni − ḡNi−1) (4.2.10)

where we have used the translation property of the delta function.

Equation (4.2.6) provides a complete description of the PDF of the total number of quanta when

there is only one possible path of energy deposition. However, Eq. (4.2.6) will be inadequate when

there are multiple possible paths, in which case a parallel-cascades approach is required.

4.2.3.2 PDF of image quanta from parallel cascades

In the case of multiple energy-depositing paths, the total number of quanta contributing to an image

signal is equal the total number of quanta from all paths. [214] Each path may, for example, represent

conversion to secondary image quanta through one of a number of energy-depositing processes as

required to describe scatter reabsorption.

We consider a sum from two paths (illustrated in Fig. 4.2.2) and let ÑA+B = ÑA + ÑB represent

69



p
N   

(N
A,1

|N
A,1

)

N
A,0

N
o

p
N

  
(N

A
,0
)

N
B,0

N
B,n

N
A,n

N
o

N
A,1

N
B,1

N
A

N
B

ξ
A

ξ
B

A
,0

p
N

  
(N

A
,1
)

A
,1

p
N

  
(N

A
,n
)

A
,n

A,1

p
N  

(N
A,1

|N
A,n-1

)
A,n

p
N

  
(N

B
,0
)

B
,0

p
N

 (
N

B
,1
)

B
,1

p
N

  
(N

B
,n
)

B
,n

p
N   

(N
B,1

|N
B,1

)
A,1

p
N  

(N
B,1

|N
B,n-1

)
B,n

p
N

 (
N

o
)

o

Figure 4.2.3: Schematic representation of PDF transfer through parallel cascades of quantum gain
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process.

the sum of input paths A and B. The PDF of ÑA+B is given by [143]

pNA+B (NA+B) =

ˆ +∞

−∞
pNA,NB (NA+B −NB, NB) dNB (4.2.11)

where pNA,NB(NA, NB) is the joint PDF for paths A and B describing the probability of observing ÑA

quanta from path A and ÑB quanta from path B. The above expression demonstrates that calculation

of the PDF of a sum of quanta from parallel paths requires the joint PDF pNA,NB
(NA, NB) of ÑA

and ÑB.

Special case: ÑA independent of ÑB In the case that ÑA and ÑB are independent RVs,

pNA,NB
(NA, NB) = pNA

(NA)pNB
(NB) and Eq. (4.2.11) simpli�es to

pNA,NB
(NA+B) = pNA

(NA+B) ∗ pNB
(NA+B) (4.2.12)

where ∗ represents the convolution operator.

Equations (4.2.11) and (4.2.12) give the PDF of a sum of quanta from two correlated or uncor-

related paths, respectively. Of particular importance is when the input to each path is a subset of

a common input distribution, as illustrated in Fig. 4.2.2. The process of selecting quanta for each

path is called branch point.

a) Joint PDF and branch points A branch point, illustrated in Fig. 4.2.2, represents a sequence

of independent trials where each trial is a random selection of one point of an input distribution
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to follow paths A and/or B with probabilities ξ̄A and ξ̄B, respectively, that are the same for each

trial. [214] This process may, for example, represent separation of incident x-ray photons that interact

through either the photoelectric or Compton e�ect. The number of trials is equal to the number

of quanta in the input distribution and is therefore a RV. Each trial is described in terms of the

two Bernoulli RVs ξ̃j,A and ξ̃j,B where each can have a value of either 0 or 1. Each trial is indepen-

dent of all others but correlations may exist between ξ̃j,A and ξ̃j,B as described by the joint PDF

pξj,A,ξj,B(ξj,A, ξj,B) which is the same for each trial and is given by [143]

pξj,A,ξj,B (ξj,A, ξj,B) =

1∑
k=0

1∑
l=0

P (ξj,A = k and ξj,B = l) δ (ξj,A − k) δ (ξj,B − l) (4.2.13)

where P(ξj,A = k and ξj,B = l) represents the probability that ξ̃j,A = k and ξ̃j,B = l. Noting that

pξj,A,ξj,B(ξj,A, ξj,B) = pξA,ξB(ξA, ξB) is the same for all trials, we show in Appendix C that following

a branch point the joint PDF of ÑA and ÑB given Ño input quanta is given by

pNA,NB

(
NA, NB| Ño

)
=
(
pξA,ξB ∗Ño−1 pξA,ξB

)
(NA, NB) (4.2.14)

where (pξA,ξB ∗No−1 pξA,ξB)(NA, NB) denotes a two dimensional convolution of pξA,ξB(ξA, ξB) with

itself No − 1 times where the result is a function of NA and NB. Averaging over Ño yields

pNA,NB
(NA, NB) =

ˆ (
pξA,ξB ∗No−1 pξA,ξB

)
(NA, NB) pNo

(No) dNo. (4.2.15)

The above expression shows that the joint PDF of the number of quanta in two random subsets of

the same common input distribution is completely described by the joint PDF of selection variables

ξ̃j,A and ξ̃j,B.

b) Joint PDF following cascades of elementary processes A more general case involves the

joint statistics of the number of quanta in two paths after undergoing serial cascades of elementary

processes, as illustrated in Fig. 4.2.3. The RVs ÑA,i and ÑB,i in Fig. 4.2.3 represent the number of

quanta after the ith elementary process of each path and ÑA and ÑB represent the two outputs. In

all cases the elementary processes of each path must be independent of the other.
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In Appendix C we show that the joint PDF of ÑA and ÑB given Ño is given by

pNA,NB

(
NA, NB| Ño

)
= 〈pNA (NA| ξA) pNB (NB| ξB)〉ξA,ξB

∗Ño−1 〈pNA
(NA| ξA) pNB

(NB| ξB)〉ξA,ξB (4.2.16)

where 〈〉ξA,ξB represents an average over all possible values of ξ̃j,A and ξ̃j,B:

〈pNA
(NA| ξA) pNB

(NB| ξB)〉ξA,ξB =

¨
pNA

(NA| ξA) pNB
(NB| ξB) pξA,ξB (ξA, ξB) dξAdξB (4.2.17)

where pNA(NA|ξA) and pNB(NB|ξB) represent the PDFs of ÑA and ÑB given ξ̃j,A and ξ̃j,B for one

trial and are obtained using Eq. (4.2.6):

pNA
(NA|ξ̃A) =

ˆ
pNA,0

(NA,0|ξA)

ˆ
pNA,1

(NA,1|NA,0) . . .

. . .

ˆ
pNA,n−1 (NA,n−1|NA,n−2) pNA,n (NA,n|NA,n−1) dNA,n−1 . . . dNA,1dNA,0

(4.2.18)

and similarly for pB(NB|ξ̃B). Averaging Eq. (4.2.16) over all possible values of Ño yields

pNA,NB
(NA, NB) =

ˆ [
〈pNA

(NA| ξA) pNB
(NB| ξB)〉ξA,ξB

∗Ño−1 〈pNA (NA| ξA) pNB (NB| ξB)〉ξA,ξB
]
pNo (No) dNo. (4.2.19)

The above equation is a generic PDF transfer relationship between pNA,NB(NA, NB) and po(No) and

demonstrates that the joint statistics of ÑA and ÑB depend on how ξ̃A and ξ̃B are correlated, the

elementary processes involved in each path, and the input PDF.

c) Special case: One incident quantum, No = 1 An important situation occurs when the

number of input quanta is equal to either 0 or 1. In this case, Ño may represent the number photons

interacting in a detector element (after adaptive binning) during one integration period. For No = 1,

the PDF of input quanta can be represented as po(No) = δ(No− 1). Equation (4.2.19) then reduces

to

pNA,NB
(NA, NB) = 〈pNA

(NA| ξA) pNB
(NB| ξB)〉ξA,ξB . (4.2.20)

The above equation demonstrates that pNA,NB
(NA, NB) 6= pNA

(NA)pNB
(NB) and therefore the

number of quanta from each path are dependent RVs.
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Two important situations are when each input quantum is selected for either path A or B, called

a Bernoulli branch, and when each input quantum is selected for both paths A and B, called a

cascade fork . [214]

Bernoulli branch A Bernoulli branch may, for example, describe separation of photoelectric inter-

actions that produce a characteristic emission from those that do not. [77,148,214,218] Equation (4.2.13)

for the joint PDF of selection variables ξ̃j,A and ξ̃j,B is given by

pξA,ξB (ξA, ξB) = ξ̄Aδ (ξA − 1) δ (ξB) + ξ̄Bδ (ξA) δ (ξB − 1) . (4.2.21)

Combining the above equation with Eq. (4.2.20) yields the joint PDF of ÑA and ÑB following a

Bernoulli branch for one input quantum:

pNA,NB (NA, NB) = ξ̄A pA (NA| ξA = 1) pB (NB| ξB = 0) + ξ̄BpA (NA| ξA = 0) pB (NB| ξB = 1)

(4.2.22)

where pNA
(NA|ξA = 0) = δ(NA) and pNB

(NB|ξB = 0) = δ(NB). Combining Eqs. (4.2.11) and

(4.2.22) yields

pNA+B
(NA+B) = ξ̄A pA (NA+B| ξA = 1) + ξ̄B pB (NA+B| ξB = 1) . (4.2.23)

The above expression describes the expected result that when an input quantum is selected for only

one path or the other, the PDF of the total number of output quanta is equal to the summation of

PDFs of quanta for each path weighted by the probability of selection for each path.

Cascade fork A cascade fork may, for example, describe the situation where a photon that has

interacted through the Compton e�ect deposits energy the site of primary interaction and at a

remote site following reabsorption of a Compton-scatter x ray. In this case, the joint PDF of

selection variables is given by

pξA,ξB (ξA, ξB) = δ (ξA − 1) δ (ξB − 1) (4.2.24)

and the joint PDF of ÑA and ÑB for one incident quantum is given by

pNA,NB
(NA, NB) = pNA

(NA| ξA = 1) pNB
(NB| ξB = 1) . (4.2.25)
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Figure 4.2.4: Schematic illustration of the CSA model describing PDF transfer of the total number
of secondary quanta through photoelectric and incoherent interactions using parallel cascades. The
RV Ño is the total number of incident x-ray quanta in one readout and is chosen to be unity. The
RVs Ñpe and Ñinc describe the total number of secondary quanta collected from photoelectric and
incoherent interactions.

Equations (4.2.22) and (4.2.25) demonstrate that for the special case of one incident quantum, the

joint PDF of parallel cascades of elementary processes following a Bernoulli branch or cascade fork

is described in terms of pNA(NA|ξA = 1) and pNB(NB|ξB = 1) both of which are be obtained using

Eq. (4.2.18). Combining Eqs. (4.2.11) and (4.2.25) yields

pNA+B
(NA+B) = pNA

(NA+B| ξA = 1) ∗ pNB
(NA+B| ξB = 1) . (4.2.26)

In the following section we use these results to determine the energy response function and in turn

the energy imprecision and zero-frequency DQE of hypothetical selenium-based EPC and SPC x-ray

detectors.

4.2.4 Liberation of secondary quanta in x-ray convertor

Figure 4.2.4 is a schematic representation of the parallel cascade model we use to describe energy-

deposition in an x-ray convertor material including the e�ects of stochastic energy deposition through

either photoelectric or incoherent scattering, conversion to secondary quanta, and collection of sec-

ondary quanta, similar to that described by Yun et al. [218] Our goal is to describe the PDF of the

total number of secondary quanta Ñtot collected by detector elements per interacting x-ray photon.

We therefore let pNo
(No) = δ(No−1). In all cases, we assume large pixels such that the probability of

reabsorption of characteristic or Compton-scatter x rays in neighboring elements is negligible. This

may be a good approximation for systems that use an adaptive binning approach to sum signals

from neighboring pixels to get the total energy deposited for every interacting x-ray photon.
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The output from each path is the total number of quanta collected from either photoelectric

or incoherent interactions. From Eq. (4.2.11), the total number of collected secondaries Ñtot =

Ñpe + Ñinc is given by

pNtot
(Ntot) =

ˆ +∞

−∞
pNpe,Ninc

(Ntot −Npe, Npe) dNpe (4.2.27)

where pNpe,Ninc(Npe, Ninc) is the joint PDF of Ñpe and Ñinc. From Eq. (4.2.20), pNpe,Ninc(Npe, Ninc)

is given by

pNpe,Ninc
(Npe, Ninc) =

¨
pNpe

(
Npe| ξ̃pe

)
pNinc

(
Ninc| ξ̃inc

)
pξpe,ξinc (ξpe, ξinc) dξpedξinc. (4.2.28)

Since each photon interacts through either photoelectric or incoherent scattering, the branch point

in Fig. 4.2.4 represents a Bernoulli branch. Therefore, from Eq. (4.2.22),

pNtot
(Ntot) = ξ̄pe pNpe

(Ntot| ξpe = 1) + ξ̄inc pNinc
(Ntot| ξinc = 1) (4.2.29)

where ξ̄pe and ξ̄inc represent the probabilities of photoelectric absorption and incoherent scattering,

respectively:

ξ̄pe =
µpe (E)

µpe (E) + µinc (E)
and ξ̄inc =

µinc (E)

µpe (E) + µinc (E)
(4.2.30)

Equation (4.2.29) shows that a description of pNtot(Ntot) requires the PDFs of the number of collected

secondaries resulting from photoelectric and incohorent interactions. These processes are similar in

that they both may result in emission of a �uorescent/scatter photon. It is therefore convenient to

describe photoelectric and incoherent interactions as two special cases of a generalized interaction

process.

4.2.4.1 Generalized interaction process

Each shaded box in Fig. 4.2.4 is a special case of a generalized interaction process illustrated in

Fig. 4.2.5. The subscript t in Fig. 4.2.5b represents the interaction type, photoelectric (pe) or

incoherent (inc). As illustrated in Fig. 4.2.5a, an incident photon interacts at depth z̃1 in the x-ray

convertor material and may generate a scatter photon with probability St at scatter angle θ̃ and

azimuthal angle φ̃ that may be reabsorbed at depth z̃2. Secondary quanta (electron-hole pairs in a

photoconductor) are liberated at both primary-interaction and reabsorption sites unless the scatter
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photon escapes the detector. While this model is similar to that presented by Yun et al., [218] it also

allows for depth-dependent collection e�ciency.

Depth-dependent collection e�ciency Electrons and holes may recombine in the x-ray con-

vertor material prior to collection by collecting electrodes. We assume the collection e�ciency β has

a depth dependence given by the Hecht relationship. [83] Therefore, the average fraction of charge

collected given an interaction at depth z is given by [83,94,100]

β (z) =
µeτeε

L

(
1− e− L−z

µeτeε

)
+
µhτhε

L

(
1− e−

z
µhτhε

)
(4.2.31)

where L [cm] represents the convertor thickness, µeτe and µhτh [cm2 V−1] are mobility-lifetime

products for electrons and holes, respectively, ε [V cm−1] is the applied electric �eld, and we have

assumed that the electrons travel towards the entrance surface and holes travel towards the exit

surface. The collection e�ciency of Se-based detectors with material properties listed in Tab. 4.1 is
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Figure 4.2.6: Collection e�ciency β as a function of interaction depth z for a Se x-ray convertor
material with material properties listed in Tab. 4.1.

illustrated in Fig. 4.2.6. We show below that depth-dependent collection of secondaries may result

in substantial broadening of the distribution of detected photon energies and reduced DQE.

PDF of number of quanta The collection e�ciency βA of path A in Fig. 4.2.3 is a function the

depth of primary interaction z̃1, which is a RV. The concept of gain and/or selection variables that are

themselves functions of random variables was �rst introduced by Van Metter and Rabbani [125] who

called these input-labelled random processes. We adopt this idea to describe the depth-dependent

collection e�ciency in the top shaded path of Fig. 4.2.5 where we let the interaction depth z̃1 be

a RV with the appropriate exponential PDF. However, in the lower shaded box of Fig. 4.2.5 all

processes are functions of either depth z̃1 and/or scatter angle θ̃. In addition, these processes are

coupled because they are dependent on the same z̃1 and θ̃ for each individual interacting photon. In

Appendix C we generalize the previous derivation of the PDF of the total number of image quanta

from parallel cascades to include a description of these input-labelled parallel processes. The result

is used to calculate the PDF of the number of quanta for the generic interaction model in illustrated

in Fig. 4.2.5. Letting Ñt represent the total number of image quanta for the generic interaction

model, it is shown that

pNt (Nt) = (1− St) 〈BA (Nt;β)〉z1 + St 〈(1− ft)BB (Nt;β)〉θ,z1
+St

〈
ft BB (Nt;β) ∗ 〈BC (Nt;β)〉z2

〉
θ,z1

(4.2.32)
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where 〈〉θ,z1 denotes an average over z̃1 and θ̃, ft = ft(z̃1, θ̃) represents the �uorescent/scatter

reabsorption proabability for interaction type t, given by

ft

(
z̃1, θ̃

)
=


ˆ (L−z̃1)/|cos(θ̃)|

0

pl (l) dl 0 ≤ θ ≤ π/2
ˆ z̃1/|cos(θ̃)|

0

pl (l) dl π/2 < θ ≤ π
(4.2.33)

where pl (l) = µ (Es) exp[−µ(Es)l] where Es represents �uorescent/scatter photon energy, and

BtA (Nt;β) =

ˆ
B (Nt; gA, β (z1)) pgA (gA) dgA (4.2.34)

BtB (Nt;β) =

ˆ
B (Nt; gB, β (z1)) pgB (gB; θ) dgB (4.2.35)

BtC (Nt;β) =

ˆ
B (Nt; gC, β (z2)) pgC (gC; θ) dgC (4.2.36)

where pgA(gA; θ) represents the PDF of g̃A which may depend on angle θ, B (Nt; gA, β(z1)) represents

the binomial distribution with number of trials equal to gA and probability of success β(z1) given

by Eq. (4.2.31).

The average over z̃2 in Eq. (4.2.32) requires the PDF of z̃2 given z̃1 and θ̃ which is derived in

Appendix C. Averages over z̃1 and θ̃ require the joint PDF ptz1,θ(z1, θ) of z̃1 and θ̃, which for a given

incident photon energy is given by [143]

ptz1,θ (z1, θ) = pz1 (z1) ptθ (θ) (4.2.37)

where ptθ(θ) depends on the interaction type and has been described in detail by Hajdok et al. [79]

and Yun et al. [218,219] for both photoelectric and incoherent interactions, and pz1(z1) is given by

pz1 (z1) =
µ (E) e−µ(E)z1

1− e−µ(E)L
. (4.2.38)

The �rst term in Eq. (4.2.32) represents the PDF of image quanta for those events that do not

result in production of �uorescent/scatter x rays. The second term represents the PDF of image

quanta for events that result in production of a �uorescent/scatter photon that escapes the detector,

and the third term represents the PDF of image quanta for events that result in production of a

�uorescent/scatter photon that is reabsorbed within the detector.

In the following sections we apply the above equations to the description of the PDFs of the

total number of quanta for photoelectric and incoherent interactions. Table 4.2 gives mean values
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Table 4.1: Physical and electrical properties including mass density, electron and hole mobility-
lifetime products, e�ective ionization energy, K-�uorescent energy, K-shell participation fraction,
and K-�uorescence yield for a-Se. Mobility-lifetime products for Se are taken from Ref. 94 and
e�ective ionization energies are taken from Ref. 157.

Symbol Se

Mass density (g cm−3) ρ 4.3
K-�uorescent energy EK 11.2
K-shell participation fraction ρK 0.864
K-�uorescence yield ωK 0.589
Average ionization energy (eV) w 45
Electron mobility-lifetime
product [cm2V−1]

µeτe 3×10−7

Hole mobility-lifetime product
[cm2V−1]

µhτh 1.2×10−5

Table 4.2: Random variables and PDFs de�ning the type of x-ray interaction used in the generic
model shown in Fig. 4.2.5.

Photoelectric Incoherent
RV Mean PDF Mean PDF

S̃t ωKYK Bernoulli 1 δ-function
g̃A E/w Poisson
g̃B (E − EK)/w Poisson (E − E′)/w Poisson
g̃C EK/w Poisson E′/w Poisson

β̃A β (z1) Bernoulli β (z1) Bernoulli

β̃B β (z1) Bernoulli β (z1) Bernoulli

β̃C β (z2) Bernoulli β (z2) Bernoulli

and PDFs used for selection and gain variables for each interaction type, where ρK, ωK, EK, E
′,

w, and ft represent the K-shell participation fraction, K-�uorescence yield, K-�uorescence photon

energy, incoherent-scatter energy, e�ective energy required to liberate one electron-hole pair, and

scatter/emission reabsorption probability, respectively.

4.2.4.2 Photoelectric interactions

In a photoelectric event, path A of Fig. 4.2.5 corresponds to those events that do not produce a

�uorescent photon, and incident energy E is assumed to be completely absorbed at the primary

interaction site liberating g̃A secondaries with PDF pgA(gA) (see Table 4.2). Paths B and C describe

events that produce a �uorescent photon, resulting in g̃B secondaries emitted locally and g̃C liberated

remotely with probability fpe = fpe(z1, θ) given by Eq. (4.2.33) with Es = EK. From Eq. (4.2.32),
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the PDF of Ñpe is given by

pNpe (Npe) = (1− ρKωK) 〈Bpe
A (Npe;β)〉z1 + ρKωK 〈(1− fpe)Bpe

B (Npe;β)〉θ,z1
+ ρKωK

〈
fpe Bpe

B (Npe;β) ∗ 〈Bpe
C (Npe;β)〉z2

〉
θ,z1

(4.2.39)

where ppe
z1,θ

(z1, θ) is given by Eq. (4.2.37) with ppe
θ (θ) = sin (θ) /2. [77,218] The �rst and third terms

in Eq. (4.2.39) contribute to the photo peak and the second term contributes to the K-escape peak.

4.2.4.3 Incoherent interactions

In an incoherent event, an incident photon interacts with a loosely bound (free) electron producing

a Compton photon and recoil electron. The energy of the Compton photon E′ is a function of both

incident photon energy and scatter polar angle θ: [17]

E′ =
E

1 + α (1− cos (θ))
(4.2.40)

where α = E/moc
2 represents the incident photon energy in units of the electron rest-mass energy

(moc
2 = 511 keV). The recoil electron deposits its energy at the primary interaction site with mean

conversion gain ḡB = (E−E′)/w. The scatter photon is reabsorbed with probability finc = finc(z1, θ)

given by Eq. (4.2.33). From Eq. (4.2.32), the PDF of Ñinc is given by

pNinc
(Ninc) =

〈
(1− finc)Binc

B (Ninc;β)
〉
θ,z1

+
〈
finc Binc

B (Ninc;β) ∗
〈
Binc

C (Ninc;β)
〉
z2

〉
θ,z1

(4.2.41)

where pinc
z1,θ

(z1, θ) is given by Eq. (4.2.37) with pinc
θ (θ) described in detail by Hajdok et al. [79] and

Yun et al. [218,219] The �rst term in Eq. (4.2.41) represents the distribution of secondaries collected

from energy deposition by the recoil electron and the second term contributes to the photo-peak.

80



4.2.4.4 PDF of detector element signal d̃

Combining Eqs. (4.2.27), (4.2.39), and (4.2.41) yields the PDF of Ñtot = Ñpe + Ñinc:

pNtot

(
Ñtot

)
= ξ̄pe (1− ρKωK) 〈Bpe

A (Ntot;β)〉z1 + ξ̄peρKωK 〈(1− fpe)Bpe
B (Ntot;β)〉θ,z1

+ ξ̄peρKωK

〈
fpe Bpe

B (Ntot;β) ∗ 〈Bpe
C (Ntot;β)〉z2

〉
θ,z1

+ ξ̄inc

〈
(1− finc)Binc

B (Ntot;β)
〉
θ,z1

+ ξ̄inc

〈
finc Binc

B (Ntot;β) ∗
〈
Binc

C (Ntot;β)
〉
z2

〉
θ,z1

. (4.2.42)

The above equation describes the PDF of the number of collected secondary quanta not including

the e�ects of additive electronic noise. The PDF of d̃ given interacting photon energy E including

the e�ects of additive electronic noise is obtained by convolving the above equation with the PDF

describing the distribution of the additive electronic noise component: [194,195]

pd (d|E) =
1

k
ptot (d/k) ∗ pe (d) (4.2.43)

where pNtot
(d/k) = pNtot

(Ñtot)|Ñtot=d/k
, pe (d) represents the PDF of the signal resulting from

additive electronic noise, and k is a constant of proportionality that converts number of quanta to

detector element units.

Equations (4.2.42) and (4.2.43) describe the PDF of element signals after adaptive binning prior

to thresholding for single-Z detector materials. We use these expressions to calculate the zero-

frequency DQE (Eq. (4.1.1)) and relative energy imprecision (Eq. (E.2.4)) of a hypothetical Se-based

photon-counting x-ray detector that implements adaptive element binning.

4.2.5 Mean number of photon counts

For fast readouts, the mean number of photon counts c̄ for detectors that implement adaptive element

binning was described in detail in Chapter 3 and is given by

c̄ = q̄oaαISPC

[
1 +

ξ0
λISPC

]
(4.2.44)

where λ = ¯̇qoaTa� 1, ISPC is the SPC noise factor, and ξ0 represents the probability of observing

a false count due to electronic noise. In the following sections c̄ is used to identify thresholds that

result in suppression of false noise counts without loss of actual interaction events. Since λ � 1,
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Figure 4.3.1: Probability density functions of the total number of quanta collected by detector
elements for 20-keV (left) and 80-keV (right) photons incident on Se-based convertor materials for
selected thicknesses and applied electric �elds.

this will require thresholds such that ξ0 tends to zero while ISPC remains non-zero.

4.3 Results

4.3.1 PDF of detector element signals, pd (d|E)

Figure 4.3.1 illustrates pd(d|E) for the model illustrated in Fig. 4.2.4 calculated using Eq. (4.2.43) for

20-keV and 80-keV photons incident on a Se-based x-ray detector for selected convertor thicknesses,

applied electric �elds, and electronic noise levels. All calculations were performed using material

properties listed in Table 4.1 with mean gain values and PDFs listed in Tab. 4.2.

In general, low applied electric �elds (∼105 V cm−1) result in broad and asymmetric photo-

peaks due to depth-dependent collection e�ciencies. This e�ect is more severe for thicker convertor

materials, where the collection e�ciency has a stronger dependence on interaction depth (Fig. 4.2.6),

and higher-energy photons, where the distribution of interaction depths is more uniform over the

convertor layer. As expected, increasing additive noise levels also results in photo-peak broadening.

For systems with su�ciently low additive-noise levels and high electric �elds, stochastic energy
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Figure 4.3.2: Graphical illustration of the dependence of relative imprecision σrel on incident photon
energy for selected convertor thicknesses, applied electric �elds, and additive noise levels.

deposition and conversion processes are primary causes of spectral distortion, resulting in �nite-

width photo-peaks, K-escape peaks, and a distribution of low-energy deposition events.

4.3.2 Relative energy imprecision of EPC detectors

The relative energy imprecision σrel is shown in Fig. 4.3.2 for selected convertor thicknesses, applied

electric �elds, and additive noise levels.

In the case of low additive noise levels, there is low relative imprecision below the K-edge energy.

Similar to previous studies, [191] at energies above the k edge, relative energy imprecision increases

due to random escape of characteristic emissions. Compton scatter becomes important at energies

above approximately 45 keV resulting in a substantial increase in imprecision at higher energies.

In addition, imprecision increases with decreasing applied electric �eld due to broadening of photo-

peaks (Fig. 4.3.2) caused by depth-dependent collection e�ciency. This e�ect is more pronounced

for thicker convertor layers.

In the case of high additive noise levels, as expected, energy imprecision is generally worse than

that for low additive noise levels. In addition, relative imprecision is high for both lower and higher

photon energies with imprecision increasing with decreasing applied electric �eld and increasing

thickness for the same previously-discussed reasons.
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4.3.3 Optimal SPC threshold

Figure 4.3.3 illustrates the dependence of normalized SPC pixel value ( c̄/q̄oa) on threshold level for

selected convertor thicknesses, photon energies, and applied electric �elds. All curves in Fig. 4.3.3

were calculated assuming σe = 100 e-h pairs and λ = ¯̇qoaaT = 1/10.

In all cases, as expected, threshold values lower than approximately 3σe result in an in�ated

image signal due to false electronic noise counts. For threshold values greater than 3σe, a plateau is

reached with height approximately equal to the quantum e�ciency. The width of the plateau depends

on the number of secondaries collected per interacting x-ray photon and in general is narrower for

lower-energy photons than for higher-energy photons. In addition, decreasing the applied electric

�eld narrows the range of acceptable threshold values because of secondary quantum sink issues.
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4.3.4 Zero-frequency DQE of SPC detectors

Figure 4.3.4 illustrates the dependence of DQE(0) on incident photon energy for selected convertor

thicknesses and applied electric �elds. In all cases we have assumed σe = 100 e-h pairs, t = 3σe,

λ� 1, and large detector elements.

At �uoroscopic and radiographic energies (>40 keV), DQE(0) is approximately equal to the

quantum e�ciency for all convertor thicknesses, applied electric �elds, and additive noise levels con-

sidered. However, for higher levels of additive noise and mammographic photon energies (<40 keV),

DQE(0) is substantially degraded due to loss of energy-deposition events below the the electronic

noise �oor (3σe). This e�ect is caused by a combination of lower gain at lower energies, poor

collection e�ciency, and thresholding.

4.4 Discussion and Conclusions

A theoretical framework is presented for obtaining the energy-response function of photon-counting

x-ray detectors. This was made possible by the introduction of new relationships that describe

propagation of the PDF of the total number of image-forming quanta through complicated paral-

lel cascades of image forming processes for photon-counting x-ray detectors. It is shown that the

PDF of image quanta from parallel cascades can be obtained from the joint PDF of quanta from
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parallel paths. This is required when there is more than one image-forming process that contributes

to an image signal, such as in the case of reabsorption of �uorescent and Compton-scatter pho-

tons. Using this approach, the relative energy imprecision and zero frequency DQE of hypothetical

selenium-based EPC and SPC detectors were determined including the e�ects of escape and reab-

sorption of �uorescent and Compton-scatter photons, stochastic conversion to secondary quanta,

depth-dependent collection of secondary quanta, and electronic noise.

Similar to recent studies, [194,195] it is shown that for systems that implement adaptive element

binning, the zero-frequency SPC DQE is equal to the quantum e�ciency multiplied by a new SPC

noise factor ISPC that is equal to the probability of counting a photon given an interaction event,

ie. the true-positive fraction of photon counts. A CSA model of ISPC based on a generalized depth-

dependent interaction model incorporating the statistics of liberation and collection of secondary

quanta showed that the DQE is degraded by escape of �uorescent and Compton-scatter photons,

depth-dependent collection e�ciency, and electronic noise. It was demonstrated that for Se-based

SPC systems, there is a narrow range of acceptable thresholds that depends on photon energy,

collection e�ciency, and electronic noise level. In addition, for Se-based systems with thresholds

that adequately suppress electronic noise without thresholding out interaction events, the DQE is

approximately equal to the quantum e�ciency. In this case, as expected, the DQE is not compro-

mised by Swank noise or additive electronic noise. However, in some cases this condition cannot be

satis�ed, such as at lower mammographic energies, higher levels of additive noise, and poor collec-

tion e�ciency, and the SPC DQE is severely degraded suggesting that it may be di�cult to provide

high-DQE photon-counting images at low energies.

Similar to a Monte Carlo analysis presented in Appendix E, precision in photon-energy mea-

surements by energy-resolving photon-counting (EPC) detectors that implement adaptive binning is

shown to be compromised by escape of �uorescent and Compton-scatter photons. In addition, it was

demonstrated that depth-dependent collection e�ciency can also result in a large increase in energy

imprecision. This is particularly important for thick convertor materials with lower mobility-lifetime

products for electrons and/or holes. Even with the use of adaptive-binning algorithms to sum energy

deposited in detector elements surrounding a primary interaction to estimate total deposited energy,

the combined e�ects of characteristic emission, Compton scatter escape, and depth-dependent col-

lection e�ciency can result in relative energy imprecision of 20-40%. Electronic noise results in a

further increase in relative imprecision, particularly at lower mammographic photon energies.

In all cases, we assumed an adaptive binning approach where all interacting photon energy was

assumed to be collected in a single large element. In Se-based detectors, Compton scatter accounts
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for ≈ 20% of all x-ray interactions which may require adaptively-binned element areas up to 4 mm2

which will lower the tolerable �ux rates. Even if electronic readout systems are fast such clinical �ux

rates can be tolerated with these element areas, this may require summing up to 100 or more detector

elements (depending on element size) which would result in a substantial increase in additive noise

per adaptively-binned element per readout. As demonstrated in the analysis here, this will likely

result in loss of a substantial number of interaction events below the additive noise �oor, and therefore

reduced DQE. This suggests that Se-based detectors with this type of adaptive-binning approach

may not be suitable for EPC applications. Alternative binning techniques, and the trade o� between

suppression of false counts caused by reabsorption of �uorescent and Compton-scatter x rays and

increased additive noise levels caused by adaptive element binning were not analyzed in this thesis

and require further study to asses whether Se-based detectors are suitable for EPC applications.

Alternative x-ray convertor materials that have low Compton cross sections and relatively high

conversion gains may be more suitable candidates for photon-counting systems.
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Chapter 5

Cascaded-systems analysis of

angiographic image quality obtained

using energy-dependent and

conventional subtraction approaches

This chapter is adapted from a manuscript entitled �Cascaded-systems analysis of angiographic
image quality obtained using energy-dependent and conventional subtraction approaches� by Jesse
Tanguay, Seungman Yun, Ho Kyung Kim, and Ian A. Cunningham, in preparation for submission
to Medical Physics.

5.1 Introduction

X-ray digital subtraction angiography [34,56,96,133,149] (DSA) is a vascular imaging technique that

is commonly used for visualization of arterial diseases. With this technique, an image acquired

prior to injection of an iodinated contrast agent is subtracted from a post-injection image, thereby

largely removing overlapping anatomic structures. While DSA is extremely successful at imaging

structures that are near-stationary over a period of several seconds, the need for both pre and

post-injection exposures can result in severe motion artifacts and failed or compromised diagnostic

procedures. [32,37,47,75,95,119,149,188,200] For this reason, DSA is rarely used in coronary applications.

Alternative methods of generating iodine-speci�c images with reduced motion artifacts might
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exploit the energy-dependence of x-ray attenuation in a patient. This could be performed either by

aquiring two or more post-injection images at di�erent x-ray energies [75,76,88,97�99,112�116,130�133] or

from an analysis of the spectral shape of a single post-injection transmitted spectrum. [9�11,67,152,165]

The �rst method, energy-subtraction angiography (ESA), was introduced as a dual-energy alter-

native to DSA over two decades ago but technological limitations of the time resulted in poor im-

age quality. [75,76,88,97,98,130,131] The second potential method, energy-resolved angiography (ERA),

requires energy-resolving photon-counting (EPC) x-ray detectors that are under development in

a number of laboratories. [5,15,18,28,41,91,101,102,118,129,198,215,216] Both approaches would use energy-

dependent information to estimate iodine attenuation along each x-ray path with the goal of gener-

ating iodine-speci�c images that are less sensitive to patient motion.

It was recently demonstrated [192] that both ESA and ERA have the potential to produce iodine-

speci�c images with iodine SNR within 10% of DSA for the same patient x-ray exposure assuming

ideal instrumentation for each. While this provides strong motivation to pursue energy-dependent

angiographic approaches, stochastic x-ray interaction and detection processes are known to degrade

the performance of conventional energy-integrating systems, and are also expected to degrade iodine

SNR obtained with both ESA and DSA.

In the case of EPC systems, charge sharing between neighboring detector elements can cause sub-

stantial degradation of image quality [4,5,31,126] and loss of spectral information. [31,44,70,110,174,178]

While this e�ect is mitigated with techniques that sum charges in neighboring elements and as-

signs them to the element with the largest signal, such as those described by Bornefalk et al. [31]

and implemented in the MEDIPIX3 prototype, [18] poor collection e�ciency of secondary quanta

and escape of �uorescent and Compton-scatter photons will continue degrade to spectral informa-

tion [29,94,106,158,174,178,191] and may result in loss of photon counts below the electronic noise �oor,

as discussed in Chapters 3 and 4 of this thesis. It is well known that poor spectral information will

also result in noisy estimates of contrast material densities obtained using EPC detectors, [152,203]

and are also expected to degrade ERA image quality.

It is therefore important to understand and quantify how x-ray interaction and detection pro-

cesses will a�ect ERA, ESA, and DSA image quality to identify the conditions required for successful

implementation of energy-based approaches. Cascaded-systems analysis [6,52�54,77,78,125,146,148,180,218]

(CSA) has been an important tool in development of theoretical models of signal and noise perfor-

mance of energy-integrating systems, and was extended to include a description of photon-counting

image quality in Chapters 3 and 4 of this thesis. The goal of this study is to apply CSA concepts for

both energy-integrating and photon-counting detectors to the description of iodine SNR that could

89



be achieved with each of these approaches for both �uoroscopic and angiographic imaging condi-

tions, including the in�uence of stochastic x-ray interaction, conversion, and collection processes,

and electronic noise.

5.2 Theory

The goal of subtraction angiography, including ERA, ESA, and DSA, is to enhance visualization of

diseased vasculature, most often peripheral or coronary arteries, by producing an image showing only

those vessels that were opaci�ed by an iodine contrast agent. [32,35,47,56,75,88,97,115,130] As described

in Chapter 2, each of ERA, ESA, and DSA, are similar in that they all require weighted subtraction

of two or more x-ray images. It is therefore convenient to describe image signal and noise for each of

these processes using a generic formalism, described in detail by Tanguay et al., [192] and summarized

below.

5.2.1 Angiographic image signal

For ERA, ESA, and DSA, the angiographic image signal obtained from an estimate of iodine area

density AI [g cm
−2] for each x-ray path, which is derived from two or more images where, assuming

linear x-ray detectors, the expected pixel value measured in image i is given by

M̄i =

ˆ kV

0

si(E)q̄i (E) e−A
T µ

ρ (E)dE; i = 1 . . . n (5.2.1)

where

A =


AW

AB

AI

 and
µ

ρ
(E) =


µ

ρ
W (E)

µ

ρ
B (E)

µ

ρ
I (E)

 (5.2.2)

and si(E) is a weighting function describing the detector response associated with image i. [192] The

angiographic image signal is obtained by weighted log-subtraction of images M̃i:

ÃI = −
n∑
i=1

WI,i log
M̃i

Mi0
(5.2.3)

where image weights WI,i are related to the mass-attenuation coe�cients of basis materials and Mi0

is given by Eq. (5.2.1) evaluated at a known set of basis-material area densities. See Tanguay et

al., [192] for details on calculation of WI,i and Mi0 for ERA, ESA, and DSA. Equation (5.2.3) gives
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an estimate of iodine area density for each image pixel.

5.2.2 Angiographic image noise

We characterize angiographic image noise in terms of the of variance of ÃI, given by [192]

Var
(
ÃI

)
=

n∑
i=1

W 2
I i

SNR2
Mi

+

n∑
i=1

n∑
j=1
j 6=i

WI iWI i

M̄iM̄j
Cov

(
M̃i, M̃j

)
(5.2.4)

where SNR2
Mi

= M̄i
2/Var(M̃i), Cov(M̃i, M̃j) is the covariance between M̃i and M̃j . In the following

sectionsVar(M̃i) and Cov(M̃i, M̃j) are described for DSA, ESA, and ERA. We use d̃i and c̃i when

referring speci�cally to energy-integrating and energy-resolved photon-counting measurements, re-

spectively.

5.2.2.1 Energy-integrating systems

In the case of conventional DSA and ESA, d̃i represent signals from energy-integrating detector

elements. The expected value of d̃i is proportional to the mean number of secondary quanta, such

as electron-hole pairs in direct conversion detectors, detected in a detector element. In this case,

the quantity si (E) is proportional to the mean gain of the system. We let G (E) = d̄ (E) /q̄i,o (E)

represent the mean gain for incident photon energy E and number of quanta q̄i,o (E) [mm−2 keV−1]

incident at the detector plane. Equation (5.2.1) is then expressed as [52�54,180]

E(d̃i) = d̄i =

ˆ kV

0

G(E)q̄i (E) e−A
T µ

ρ (E)dE. (5.2.5)

Since separate readouts of the x-ray detector are independent, {d̃i, i = 1..n} are uncorrelated for

both ESA and DSA, the covariance between d̃i and d̃j is given by

Cov
(
d̃i, d̃j

)
= δijVar(d̃i). (5.2.6)

where δij represents the Kronecker delta function equal to 1 for i = j and zero otherwise. Assuming

wide-sense-stationary (WSS) noise processes, Var(d̃i) is obtained from the presampling Wiener noise-

power-spectrum (NPS), NPSdi (u, v): [52�54,143]

Var(d̃i) =

¨
R2

NPSdi (u, v) dudv (5.2.7)
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where u and v represent spatial frequencies in the x and y directions, respectively, and
˜

R2 dudv

represents a two-dimensional integral over all spatial frequencies. The form of NPSdi (u, v) depends

on speci�cs of the x-ray detector and x-ray spectrum incident on the detector. In Sec.5.2.3 we use

CSA to determine both G (E) and NPSdi (u, v).

5.2.2.2 Energy-resolving systems

Energy-resolved photon counting is achieved by incrementing a counter for one of n energy bins

based on the energy deposited in detectors element during one fast readout. Ideally, each readout

interval is short such that the probability of multiple photon interactions in the same element is

small. Pile-up occurs when this condition is not satis�ed and results in a decrease in detected count

rates. [100,217] We show in Appendix D that in the case of large detector elements, fast readouts,

and thresholds chosen to suppress false counts due to additive electronic noise, the mean number of

photon counts in bin i is given by [194,195]

c̄i = λT

ˆ kV

0

α (E)

[ˆ ti+1

ti

pd(d|E)dd

]
pE (E) e−A

T µ
ρ (E)dE (5.2.8)

where λ = ¯̇qaat represents the mean number of photons incident on a detector element of area a

during readout time at for mean �uence rate ¯̇q [mm−2 s−1], T [s] represent the total exposure time,

ti and ti+1 represent lower and upper thresholds for bin i, α(E) represents the detector quantum

e�ciency, pd(d|E) represents the PDF of prethresholding signals d̃ given one interacting photon

having energy E, and pE (E) represents the PDF of incident photon energies E. Equation (5.2.8)

assumes low count rates and therefore is valid for λ� 1. Conditions required to meet this constraint

are discussed in Section 5.3.

In Appendix D we show that, also in the case of large detector elements, fast readouts, and

thresholds chosen to suppress false counts due to additive electronic noise, the covariance of c̃i and

c̃j is expressed as

Cov (c̃i, c̃j) =


−cicj ×

at

T
i 6= j

ci i = j

(5.2.9)

where T/at is equal to the total number of readouts. For fast readouts, at/T � 1. The above

expressions shows that both the mean number of counts in each energy bin and covariance between

counts detected in two separate bins are directly related to the PDF describing the readout signal

d̃. In the following section we use a PDF-transfer approach to describe pd(d|E) and therefore c̄i and
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Table 5.1: Mean gain values for photoelectric and incoherent interactions. The variables EK and E′

represent �uorescent and Compton-scatter photon energy, respectively.

Photoelectric Incoherent
Variable Mean Mean
ḡA E/w
ḡB (E − EK)/w (E − E′)/w
ḡC EK/w E′/w

Cov(c̃i, c̃j).

5.2.3 Cascaded model of mean gain, variance, and PDF of d̃

In this section we described how to use CSA to obtain G (E), NPSd (u, v), and pd(d|E) required for

calculation of angiographic image signal and noise, as described above. Calculations are based on a

a CdZnTe x-ray detector with material properties listed in Tab. 5.2.

5.2.3.1 Mean gain

The detector signal from a conventional energy-integrating x-ray detector element is proportional to

the total number of collected secondaries q̃sec [mm−2]. Therefore,

d̄ (E) = kaq̄sec (E) (5.2.10)

where we have dropped the subscript i for notational convenience, k is a constant of proportionality

and a = axay represents the area of a detector element. We determine q̄sec (E) using the CSA model

illustrated Fig. 5.2.1. In this model, each incident photon may interact with Cd, Te, or Zn atoms,

yielding

q̄sec (E) = q̄Cd,sec (E) + q̄Zn,sec (E) + q̄Te,sec (E) (5.2.11)

where q̄Cd,sec (E), q̄Zn,sec (E), and q̄Te,sec (E) represent the number of collected secondaries resulting

from interactions with Cd, Zn, and Te atoms, respectively. We determine each of these using

the single-Z CSA model described in Chapter 4. A similar model has been shown to accurately

describe q̄sec and NPSsec (u, v) for single-Z energy-integrating detectors. [218] In all cases, we ignore

characteristic emission from lower-Z atoms following reabsorption of higher-Z characteristic photons.

Since these x rays may escape the detector, this model likely overestimates q̄sec. The mean number
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of secondaries for atom l is given by [218]

q̄l,sec (E) = q̄pe
l,sec (E) + q̄inc

l,sec (E) (5.2.12)

where l ∈{Cd, Zn, Te} identi�es the atom, and q̄pe
l,sec (E) and q̄inc

l,sec (E) represent the mean number of

secondaries collected from photoelectric and incoherent interactions. A simple extension of the model

presented by Yun et al. [218] to include depth-dependent collection processes in energy-integrating

x-ray detectors can be used to show that q̄pe
l,sec (E) and q̄inc

l,sec (E) are given by

q̄pe
l,sec (E) = q̄o (E)Fl,pe

[
(1− PKlωKl) 〈β〉z1 ḡl,pe,A

+PKlωKl

(
〈β〉z1 ḡl,pe,B +

〈
fl,pe 〈β〉z2

〉
z1,θ

ḡl,pe,C

)]
(5.2.13)

and

q̄inc
i,sec (E) = q̄o (E)Fl,inc

〈
〈β〉z1 ḡl,inc,B +

〈
fl,inc 〈β〉z2

〉
z1
ḡl,inc,C

〉
θ

(5.2.14)

respectively, where q̄o (E) [mm−2keV−1] represents the spectrum of photons incident on the x-ray

detector, PKl and ωKl represent the K-shell participation fraction and �uorescence yield, respectively,

fl,pe and fl,inc represent reabsorption probabilities of �uorescent and Compton-scatter x rays for

atom l, respectively, ḡpe,l,A, ḡpe,l,B, and ḡpe,l,C represent gain factors describing conversion of x-ray

energy to secondary quanta through photoelectric interactions for atom l, 〈 〉x represents an average

over the RV x̃, and Fl,pe and Fl,inc represent probabilities that an incident photon interacts in atom

l through photoelectric and incoherent interaction given by

Fl,pe =
(

1− eµtot(E)L
)
× µl,pe

µl,tot
× νl,w (5.2.15)

Fl,inc =
(

1− eµtot(E)L
)
× µl,inc

µl,tot
× νl,w (5.2.16)

where νl represents the atomic weight fraction for atom l, µl,pe, µl,inc, and µl,tot represent the pho-

toelectric, incoherent and total linear attenuation coe�cient for atom l, respectively, µtot represents

the total linear attenuation coe�cient of CdZnTe, and L represents detector thickness.

Probability density functions required for all averages in the above equations have been described

in detail in Chapter 4 and by Yun et. al . [218,219] Mean conversion gains g̃ for photoelectric and

incoherent interactions are summarized in Tab. 5.1. Note that many of the variables in the above

expressions are energy-dependent although we have only explicitly expressed q̄o (E) as a function of
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Figure 5.2.1: Schematic illustration of the CSA model used to describe energy deposition and con-
version to secondaries in CdZnTe detectors. Transfer of the mean, NPS, and PDF of the number of
quanta through each path is described using the generic interaction model described in Chapter 5.

energy.

Combining Eqs. (5.2.13) and (5.2.14) with (5.2.10) yields the mean gain G (E):

G (E) = GCd (E) +GZn (E) +GTe (E) (5.2.17)

where Gl (E) is given by

Gl (E) = ka
[
q̄pe
l,sec (E) + q̄inc

l,sec (E)
]

(5.2.18)

with q̄pe
l,sec (E) and q̄inc

l,sec (E) given by Eqs. (5.2.13) and (5.2.14), respectively, for atom l. Combin-

ing the above expressions with Eq. (5.2.5) yields the mean detector element signal d̄ for energy-

integrating systems. Substituting d̄i for M̄i in Eq. (5.2.3) yields the subtracted image signal for

DSA and ESA.

5.2.3.2 Energy-integrating pixel variance

The pixel variance for energy-integrating systems, given by Eq. (5.2.7), requires determination of

NPSdi (u, v). Ignoring the in�uence of spatial relocation of �uorescent photons, the CSA model

illustrated in Fig. 5.2.1 gives

NPSd (u, v) ≈ k2NPSsec (0, 0) a2sinc2 (axu) sinc2 (ayv) + NPSadd (u, v) (5.2.19)

where we have dropped the subscript i, sinc(axu) represents the sinc function, NPSsec (0, 0) repre-

sents the zero-frequency NPS of the number of collected secondary quanta q̃sec, and NPSadd (u, v)

represents the presampling additive noise NPS accounting for random variations in the image signal

resulting from noisy detector electronics. Combining the above expression with Eq. (5.2.7) gives

Var(d̃) = k2aNPSsec (0, 0) + σ2
add (5.2.20)
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where σ2
add =

˜
R2 NPSadd (u, v) dudv. Note that σadd represents the electronic noise level for a

single detector element over the entire length of the x-ray exposure. The above expression shows

that in the limit of large detector elements Var(d̃) can be obtained by characterizing NPSsec (0, 0)

and σadd.

Since the number of secondaries liberated for one photon of energy E is independent of those for

a di�erent energy, NPSsec (0, 0) is given by

NPSsec (0, 0) =

ˆ kV

0

NPSsec (0, 0;E) dE (5.2.21)

=

ˆ kV

0

NPSCd,sec (0, 0;E) dE +

ˆ kV

0

NPSZn,sec (0, 0;E) dE

+

ˆ kV

0

NPSTe,sec (0, 0;E) dE (5.2.22)

where NPSl,sec (0, 0;E) represents the energy-dependent zero-frequency NPS of the number of sec-

ondaries generated by an interaction with atom l. The second inequality in the previous equation

follows because the number of secondaries collected from interactions with one atom is independent

of the number collected from interactions with another atom. We obtain the zero-frequency NPS of

atom l using the approach describe by Yun et. al.: [218]

NPSl,sec (0, 0;E) = NPSpe
l,sec (0, 0;E) + NPSinc

l,sec (0, 0;E) (5.2.23)

where NPSpe
l,sec (0, 0;E) and NPSinc

sec (0, 0;E) represent the zero-frequency NPS of secondaries col-

lected from photoelectric and incoherent interactions, respectively, for incident photon energy E.

Extending the model described by Yun et. al. [218] to include depth-dependent collection processes

yields

NPSpe
l,sec (0, 0;E) = q̄o (E)Fl,pe

[
(1− PKlωKl) 〈β〉2z1 ḡ

2
l,pe,A

(
1 +

1

ḡl,pe,A
+

1− 〈β〉z1
〈β〉z1 ḡl,pe,A

)

+ PKlωKl

[
〈β〉z1 ḡ

2
l,pe,B

(
1 +

1

ḡl,pe,B

)
+
〈
fl,pe 〈β〉z2

〉
z1,θ

ḡ2
l,pe,C

(
1 +

1

ḡl,pe,C

)
+ 2

〈
fl,peβ 〈β〉z2

〉
z1,θ

ḡl,pe,Bḡl,pe,C

]]
(5.2.24)
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and

NPSinc
l,sec (0, 0;E) = q̄o (E)Fl,pe

[〈
βḡ2

l,inc,B

(
1 +

1

ḡl,inc,B

)〉
z1,θ

+

〈
fl,inc 〈β〉z2 ḡ

2
l,inc,C

(
1 +

1

ḡl,inc,C

)〉
z1,θ

+ 2
〈〈
fl,peβ 〈β〉z2

〉
z1
ḡl,inc,Bḡl,inc,C

〉
θ

]
(5.2.25)

respectively. Combining the above expressions with Eq. (5.2.20) yields the variance of d̃ for energy-

integrating systems. Substituting Var(d̃i) for Var(M̃i) in Eq. (5.2.4) yields an expression for image

noise for DSA and ESA.

5.2.3.3 PDF of prethresholding detector element signals

The mean EPC signal and variance are given by Eqs. (5.2.8) and (5.2.9), respectively, both of which

are expressed in terms of pd(d|E) which is equal to the PDF of prethresholding adaptively-binned

signal d̃ given one interacting photon with energy E. In Chapters 3 and 4 a PDF transfer approach

was used to obtain pd(d|E):

pd(d|E) =
1

k
p1

tot (d/k) ∗ pe (d) (5.2.26)

where p1
tot (d/k) represents the PDF of the total number of collected secondaries given one interacting

x ray photon, and pe (d) represents the PDF of the signal resulting from electronic noise which, similar

to Chapters 3 and 4 is assumed to be Gaussian with standard deviation
√
jσe where σe represents

electronic noise of a single prebinning detector element for one fast readout and j is the number

of binned detector elements. The number of binned elements j required to collect the total energy

deposited per interaction is discussed in Sec. 5.3. The PDF of collected secondaries, p1
tot(d/k), is

given by

p1
tot (d/k) = νCd,w p

1
Cd,tot (d/k) + νZn,w p

1
Zn,tot (d/k) + νTe,w p

1
Te,tot (d/k) (5.2.27)

where νl,w represents the atomic weight fraction of atom l. We use the CSA model described

in Chapter 4 to determine p1
l,tot (d/k) for each atom. Combining the above two equations with

Eqs. (5.2.8) and (5.2.9) yields the mean number of photon counts in each energy bin and covariance

between energy bins, respectively. Image signal and noise for ERA are then given by Eqs. (5.2.3) and

(5.2.4) with the replacement of M̄i, Var(M̃i), and Cov(M̃i, M̃j) with c̄i, Var(c̃i), and Cov(M̃i, M̃j),
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Table 5.2: Physical and electrical properties used for CdZnTe calculations. Atomic number, mass
density, fractional atom No, fractional atomic weight, Average K-�uorescent energy [keV], K-shell
participation fraction, and K-�uorescence yield are take from Ref. 106. Electron and hole mobility-
lifetime products are taken from Ref. 158.

Parameter Symbol Cd Zn Te
Atomic number Z 48 30 52
Mass density [g cm−2] ρ 8.65 7.61 6.25
Fractional atom No. νa 0.45 0.05 0.5
Fractional atomic weight νw 0.43 0.028 0.54
Average K-�uorescent energy [keV] EK 24 8.9 29
K-shell participation fraction PK 0.85 0.87 0.84
K-�uorescence yield ωK 0.84 0.48 0.88
Electron mobility lifetime product [cm2V−1] µeτe 2× 10−3

Electron mobility lifetime product [cm2V−1] µhτh 2× 10−5

respectively.

5.2.4 Iodine Detectability

We quantify the ability to visualize iodinated vasculature in terms of a performance metric related

to the detectability index, [1] de�ned as the iodine SNR per square-root of patient entrance exposure:

SNRI√
X

=
1√
X

E
(
ÃI − ÃN

I

)
√

Var
(
ÃI − ÃN

I

) , (5.2.28)

where X is the patient entrance exposure, and ÃI and Ã
N
I are the iodine signals from iodinated and

non-iodinated regions of the images, respectively. In this study we ignore spatial correlations in an

image, in which case Var(ÃI − ÃN
I ) = Var(ÃI) + Var(ÃN

I ).

5.3 Methods

5.3.1 Monte Carlo simulation of upper-limit of side-escape fraction

It is well understood that lateral escape of characteristic and/or Compton-scatter x rays from a

detector element results in degradation of spatial resolution, image quality, and spectral resolution,

and that some form of adaptive binning will be required to minimize these e�ects. We assume an

adaptive-binning approach similar to one implemented in the Medipix3 [18] prototype. With this

approach, charge liberated in a cluster of j neighboring elements is summed and a count attributed

to the element with the largest signal.
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In the case of CdZnTe convertor materials, less than 1 % of all x-ray interactions result in gen-

eration of a Compton-scatter x ray. Therefore, reabsorption of Compton scatter x rays outside

adaptively-binned elements will result in negligible degradation of both image quality and energy

imprecision. Estimating total deposited energy will therefore only require summing all secondaries

resulting from photoelectric interactions, including those produced following reabsorption of �uo-

rescent photons. We perform a simple Monte Carlo simulation to determine the adaptively-binned

element size required to minimize lateral escape of �uorescent photons. We assume that each x ray

arrives normal to the detector and establish an upper limit of the side-escape fraction per interact-

ing x ray by considering the worst-case scenario where characteristic photons are emitted at a polar

angle of π/2 radians, as illustrated in Fig. 5.3.1.

Since the fractional atomic number of Zn is negligible compared to that for Cd and Te, we only

consider interactions with either Cd or Te atoms with probabilities determined by fractional atomic

numbers. In the case of interaction with a Cd atom, the probability of characteristic emission

is determined from the product of the K-shell participation fraction and the K-shell �uorescence

yield. In the case of characteristic emission, azimuthal angle φ̃ is determined by sampling a uniform

distribution over the domain φ̃ ∈ [0, 2π]. Reabsorption distance l̃1 is determined by sampling

the distribution pl1(l1) = µ(ECd
K )exp(−µ(ECd

K )l1). When an interaction occurs with a Te atom,

probability of �uorescence, azimuthal angle φ̃, and reabsorption distance l̃1 are determined in a

similar manner as that for Cd. We also account for emission of a second characteristic photon

following interaction of a Te characteristic x ray in a Cd atom, as illustrated in Fig. 5.3.1. We tally

the total number of reabsorption events occurring inside the element for element widths ranging

from 0.1-2 mm. All Monte Carlo calculations were performed using the material properties listed in

Tab. 5.2.

5.3.2 Theoretical comparison of angiographic image quality

The method described above for calculating image signal and noise is used to theoretically compare

image quality that can be obtained with each of ERA, ESA, and DSA for the same patient entrance

exposure. For each method we consider the task of isolating iodine embedded in water. In all cases,

we assume a source-to-object distance of 20 cm, source-to-detector distance of 80 cm, 30-cm thick

patient, and a 0.5-mm thick CdZnTe x-ray convertor with material properties listed in Tab. 5.2. We

assume pre-binning element widths of 0.2×0.2 mm and ignore distortions in object size caused by

fan-beam projection as this will a�ect each technique equally. All x-ray spectra are generated using
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Figure 5.3.1: Schematic illustration of the Monte Carlo simulation used to determine the upper limit
of the fraction of x-ray interactions that result in lateral escape of characteristic photons from an
adaptively-binned CdZnTe element. A) Illustration of emission of characteristic x ray at a polar
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an in-house MATLAB routine that implements algorithms published by Tucker and Barnes [199] for

a tungsten-target x-ray tube.

5.3.2.1 Energy-resolved angiography, ERA

We implement a two-material decomposition approach [192] in which the object is assumed to be

composed of water and iodine. Interacting photon energy estimated from binned elements is assigned

to one of two energy bins using thresholds t1 and t2. We let t1 = 3×√jσe, where j is the number

of binned elements, in order to suppress false noise counts from binned elements and choose t2

such that PI is maximized. In all cases we assume an adaptively-binned element size such the

upper limit of the side-escape fraction (determined from Monte Carlo calculations) is ≤5 %, and

readout intervals of length at = 10−7 sec which is in the range of what is possible with state-of-the-

art readout electronics for CdZnTe-based photon-counting systems. [30,68,91,102,168,173,175,176,181] We

consider x-ray exposures typical for �uoroscopy (0.001 mR/image at the detector) and angiography

(0.1 mR/image at the detector). [55] As discussed below, for 1/30 sec exposure time and 10−7 sec

readout time, this results in negligible pulse pile up in EPC detectors. Image signal (Eq. (5.2.3)),

noise (Eq. (5.2.4)), and SNR per root exposureI (Eq. (5.2.28)) are calculated for an applied tube

voltage of 100 kV for the imaging geometry and patient thickness described above, and selected

additive noise levels and applied electric �elds.

5.3.2.2 Digital subtraction angiography, DSA

Digital subtraction angiography requires subtraction of a post-injection image from a pre-injection

(mask) image. The mean gain and zero-frequency NPS of secondary quanta used for calculation of

the mean pre and post-injection exposures are plotted as a function of incident photon energy in

Fig. 5.4.1. We assume an exposure time of 1/30 sec for both pre and post-injection images resulting

in a total exposure time T = 1/15 sec. To compare DSA with ERA for the same additive noise

level, we let σadd = σeT/at where, σe is the additive noise level corresponding to one fast readout

of one 0.2×0.2 mm2 element. Note that EI detectors do not perform fast readouts and expressing

σadd in terms of at and σe is only required to compare image quality with ERA for the same levels

of additive noise. We theoretically calculate image signal (Eq. (5.2.3)), noise (Eq. (5.2.4)), and SNR

per root exposure (Eq. (5.2.28)) for an applied tube voltage of 65 kV for imaging geometry, patient

thickness, and exposure levels described above, for selected convertor thicknesses and additive noise

levels.
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5.3.2.3 Energy subtraction angiography, ESA

We consider a dual-energy approach that implements weighted subtraction of low and high-energy

post-injection images with total exposure time of T = TL + TH = 1/30 sec where TL and TH

represent low and high-energy exposure times, respectively. Additive noise levels in low and high-

energy images are then given by σL,add = σe × TL/at and σH,add = σe × TH/at, respectively. We

theoretically calculate image signal (Eq. (5.2.3)), noise (Eq. (5.2.4)), and SNR per root exposure

(Eq. (5.2.28)) for low and high-energy applied tube voltages of 50 kV and 130 kV with 2.1 mm of

copper �ltration on the 130-kV spectrum and a low-to-high-mAs ratio that maximizes SNR per root

exposure. We assume the optimal mAs ratio is obtained by varying TL and TH for constant mA.

5.4 Results

5.4.1 Performance characteristics of CdZnTe detectors

5.4.1.1 Mean gain and zero-frequency NPS of collected secondaries

Figure (5.4.1) illustrates the dependence of the mean gain and normalized zero-frequency NPS of

secondaries (q̄oNPSsec(0, 0)/q̄sec) on incident photon energy and applied electric �eld. In general, as

expected, lower electric �elds result in lower mean gain values and higher normalized NPS values for

all incident photon energies. This is due to poor charge collection e�ciency at lower electric �elds

resulting in a secondary quantum sink. [53] This e�ect is modest under all conditions considered and,

therefore, will likely to have minimal e�ect on iodine SNR for DSA and ESA. At higher photon

energies the mean gain decreases and normalized NPS increases because of low quantum e�ciency

at these energies.

5.4.1.2 Fraction of �uorescent x rays reabsorbed in neighboring elements

Figure 5.4.2 illustrates the results of MC calculations of the upper limit of the number of x-ray

interactions that result in reabsorption of a characteristic x ray outside of adaptively-binned elements.

As expected, the side-escape fraction decreases with increasing element width. For small element

sizes (0.1-0.5 mm) the upper limit of side-escape fraction can be greater than 10 % suggesting that

at these element widths reabsorption of characteristic x rays may result in multiple photon counts

per interacting x-ray photon. At an adaptive-element width of 1.0 mm, the upper limit of side-

escape fraction reduces to approximately 5-6 %. Since the actual number of side-escape events will

be lower than this, we assume an adaptively-binned element size of 1.0×1.0 mm2 in all subsequent
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Figure 5.4.1: Dependence of mean gain G(E) and normalized zero-frequency NPS of secondaries
q̄oNPS (0, 0) /q̄2

sec on incident photon energy.

calculations. For prebinning-element width of 0.2 mm this requires binning into 5×5 element clusters.

The additive noise level for adaptively-binned prethresholding signals is then equal to 5× σe where

σe is the additive noise for one prebinning element.

Figure 5.4.3 illustrates the dependence of the mean number of incident photons per element per

readout on element size for selected detector exposure levels. Each curve is calculated based on

a 100 kV x-ray spectrum transmitted through 30 cm of water and 10−7 s readout intervals. This

�gure demonstrates that at �uoroscopic exposure levels (<0.01 mR) and adaptive-element widths of

1.0 mm, pulse pile up can be ignored. At angiographic exposure levels (0.1-0.5 mR) λ ∼ 10−2−10−1

suggesting that even at these higher exposures pulse pile up will not degrade image quality.

5.4.1.3 Response function

Figure 5.4.4 illustrates pd(d|E) for the model illustrated in Fig. 5.2.1 calculated using Eqs. (5.2.26)

and (5.2.27) for a 50-keV photon incident on a 0.5-mm thick CdZnTe-based x-ray detector for selected

applied electric �elds and electronic noise levels, and an adaptively-binned element size of 1.0 mm 2.

All calculations were performed using material properties listed in Table 5.2.

Similar to the results of Le Claire et al . [106], Fig. 5.4.4 shows that low applied electric �elds (∼102

V cm−1) result in broader and more asymmetric photo-peaks and escape peaks compared to higher

electric �elds. This is caused by a stronger depth dependence of the collection e�ciency at lower

electric �elds. In addition, as expected, increasing additive noise levels also results in photo and

escape-peak broadening. Since photo-peak broadening is known to increase noise in basis material
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of 100 ns and a 100 kV spectrum transmitted
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estimates, [152,201,203] it is expected that the combined e�ects of low electric �elds and high electronic

noise levels will result in degraded iodine SNR, as described below. For systems with su�ciently

low additive-noise levels and high electric �elds, escape of �uorescent scatter photons and stochastic

conversion gain are primary causes of spectral distortion.

5.4.2 Comparison of iodine SNR obtained with ERA, ESA, and DSA

assuming CdZnTe x-ray detectors for each

Figure 5.4.5 illustrates the dependence of PI on iodine area density [mg cm−2] for selected electronic

noise levels, applied electric �elds, and detector exposures for ERA, ESA, and DSA. For exposure

levels and readout times considered in this study, pulse pile up is expected to have a negligible e�ect

on image quality, in which case ERA is independent of exposure.

5.4.2.1 In�uence of depth-dependent collection e�ciency

In the case of ESA and DSA, as expected based on Fig. 5.4.1, Fig. 5.4.5 demonstrates that iodine SNR

per root exposure varies very little with applied electric �eld for all imaging conditions considered.

In addition, at angiographic exposure levels (∼0.5 mR), SNR/
√
X for ESA is within approximately

25 % of that of DSA for all iodine concentrations and additive noise levels considered.

In the case of ERA, SNR/
√
X shows a strong dependence on electric �eld. In particular, as
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suggested by the response functions in Fig. 5.4.4, iodine SNR for ERA is degraded at low electric

�eld levels. The in�uence of low electric �elds on ERA image quality is two-fold. Firstly, low

electric �elds result in photo-peak broadening that is known to degrade SNR in basis material

images. Secondly, low electric �elds reduce the mean number of secondaries collected per x-ray

interaction potentially resulting in prethresholding signals below the additive noise �oor. Successful

CdZnTe-based photon-counting systems for ERA will likely have to be designed such that collection

e�ciencies are near-uniform over the x-ray convertor layer. When this condition is satis�ed, and

additive noise levels are su�ciently low (≤ 5 × 200 e-h pairs for per adaptively-binned element),

Fig. 5.4.5 demonstrates that ERA has the potential to provide iodine SNR within approximately

25-30 % of that DSA for the same patient entrance exposure.

5.4.2.2 Dependence on exposure and electronic noise levels

Figure 5.4.5 illustrates that for both ESA and DSA, as expected, SNR/
√
X is reduced when exposure

levels are reduced from angiographic levels (∼0.5 mR) to �uoroscopic levels (1 µR) with the degree

of degradation depending on electronic noise levels. This occurs because at lower exposure levels

electronic noise becomes a substantial fraction of image noise and angiographic image quality is no

longer determined soley by noise associated with the random number of collected secondaries, ie.

image quality is no longer quantum noise limited. While SNR/
√
X for ESA may only be 30-50 %

of that of DSA at �uoroscopic exposures, pre and post-injection images for DSA may be acquired

many seconds apart which may result in substantial motion artifacts in real-time subtracted images.
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In the case of ERA, since this technique thresholds out electronic noise, SNR/
√
X is independent

of exposure levels for exposure and readout times considered here. However, Fig. 5.4.5 illustrates

that high additive noise levels (≥ 5 × 400 e-h pairs per adaptively-binned element) will result in a

substantial reduction of iodine SNR for all imaging conditions considered. This is due to the fact

that for higher additive noise levels, a higher threshold must be chosen to suppress false noise counts.

When additive noise per adaptively-binned element reaches the same order of magnitude (or greater)

as the mean number of secondaries collected per x-ray interaction (Fig. 5.4.1), this results in loss of

signals generated below the additive noise �oor. In some situations, this results in ERA iodine SNR

that is only 10 % that of DSA for the same patient entrance exposure and additive noise level.

5.5 Discussion

We have presented a novel theoretical comparison of angiographic image quality that could be

achieved using energy-dependent and conventional subtraction approaches including the e�ects of

electronic noise sources and stochastic energy-depositing, conversion, and collection processes. Iodine

SNR was determined for energy-resolved, energy-subtraction, and digital subtraction angiography

using cascaded-systems analysis in combination with a recently-described linearized noise propa-

gation. [192] This enabled a direct comparison of ERA image quality that could be achieved using

state-of-the-art CdZnTe-based photon-counting x-ray detectors, with ESA and DSA also assuming

CdZnTe detectors. Our analysis demonstrates that both energy-subtraction and energy-resolved

approaches have the potential to provide iodine SNR within 25% of that of DSA using realistic x-ray

detectors at angiographic exposure levels.

In the case of ERA, we assumed an adaptive-binning approach where signals from neighboring

elements are summed into a larger composite element to estimate total deposited photon energy, and

a count attributed to the element with the largest signal. A Monte Carlo simulation demonstrated

that clustering elements into 1.0 mm2 adaptively-binned elements would result in reabsorption of

�uorescent photons outside binned elements in less than 5% of all x-ray interactions. All calculations

were therefore based on 1.0 mm2 adaptively binned element sizes. With this assumption, it was

demonstrated that iodine SNR is within 25% of DSA when electric �elds are chosen such that

collection of e-h pairs is nearly uniform over the x-ray convertor layer, and additive noise levels do

not exceed 1000 e-h pairs per 1.0 mm2 composite element. Recently, a cadmium-telluride-based

EPC detector was constructed with element areas of 0.165 mm with additive noise levels less than

200 e-h pairs per element per readout, [101] suggesting that it may therefore be possible to achieve
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the imaging performance predicted in this analysis with contemporary EPC technologies.

For each technique considered in this study we assumed CdZnTe x-ray detector technology and, in

all cases, ignored the in�uence of spatial relocation of characteristic photons. The analysis presented

here, therefore, likely overestimates image quality achieveable with each technique. However, it is

unlikely that this assumption will in�uence the comparison between ESA and DSA since it is expected

that reabsorption will a�ect spatial resolution and image NPS similarly for these approaches. In

the case of ERA, since we have assumed an adaptive binning approach, spatial relocation of quanta

will only result in loss of resolution when reabsorption of �uorescent photons is outside adaptively-

binned elements, which occurs in less than 5% of all interactions, or when reabsorption occurs

within adaptively-binned elements but energy deposited at a reabsorption site is greater than that

deposited at a primary interaction site, which may occur for interacting photon energies less than

approximately 65 keV. In the latter case, a count may incorrectly be attributed to the element

where a �uorescent photon is reabsorbed. The relative in�uence of spatial relocation of reabsorbed

characteristic x rays on DSA, ESA, and ERA requires further study.

While CdZnTe is currently being developed for EPC x-ray detection systems, DSA and ESA

would likely be implemented using more common x-ray convertor materials, such as cesium iodide.

Many of the image-forming processes discussed in this analysis are common to all detector materials,

and the ESA and DSA results presented here will likely still apply.

5.6 Conclusions

The cascaded-systems approach combined with the linearized noise-propagation analysis provides

a framework for optimizing and evaluating iodine SNR that may be obtained using novel energy-

based methods in realistic imaging conditions. Using this framework, energy-resolved angiography

and energy-subtraction angiography were compared with conventional digital-subtraction angiog-

raphy, assuming CdZnTe-based x-ray detectors for each. While the energy-based methods are not

necessarily optimized and further improvements are likely, it is concluded that both dual-energy and

photon-counting approaches have the potential to provide iodine SNR within 25% of that of DSA

for the same x-ray exposure using realistic x-ray detectors.

For CdZnTe-based photon-counting systems, a Monte Carlo simulation demonstrated that bin-

ning detector elements into 1.0 mm2 composite elements would suppress greater than 95% of inter-

action events that result in reabsorption of �uorescent x-rays outside of adaptively-binned elements.

For readout times in the range of what is possible with state-of-the art CdZnTe EPC detectors, this
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will result in negligible pulse pile up at �uoroscopic and angiographic exposure levels. In addition

to adaptive binning, successful CdZnTe-based ERA systems will require electronic noise levels less

than ∼1000 e-h pairs per 1.0 mm2 adaptively-binned element and applied electric �elds chosen such

that collection of e-h pairs is nearly uniform over the x-ray convertor layer.
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Chapter 6

Conclusions

Energy-resolved and energy-subtraction angiography are exciting vascular imaging approaches that

may enable DSA-like imaging of moving structures, such as coronary arteries, that are not susceptible

to motion artifacts. Similar to any innovation in medical imaging, understanding and quantifying

the ultimate potential of these new imaging approaches to overcome limitations of existing methods,

and provide high-quality images, is critical and identi�es how much research e�ort and resources

should be focused on design and development of new systems. This requires development of new

theories and frameworks for comparing with conventional approaches by theory, simulation, and

experiment, and was the focus of this thesis.

In this thesis, a theoretical framework for describing angiographic image quality that could be

obtained with energy-resolved and conventional subtraction approaches was developed and used to

compare iodine SNR available with each of these approaches. A simple analysis assuming ideal

instrumentation suggested that both ERA and ESA could provide iodine SNR within 5-10% that

of DSA. This was a surprising result because it is generally accepted that ESA approaches result

in image SNR that is 3-5 times lower than DSA. The di�erence between the analysis described in

Chapter 2 and previous studies is that we considered the available iodine SNR per root exposure

independent of source and detector technology, where early studies performed in the 1980s assessed

the potential of ESA with technologies of the time that were often limited by power restrictions of

x-ray tubes and generators. Modern x-ray generators are capable of power outputs on the order of

80 kW, and Fig. 6.0.1 illustrates that it may be possible to obtain ESA images in less than 0.2 s that

satisfy this requirement. In coronary applications, images would be acquired in the diastolic phase

that is ≈0.25-0.3 s (depending on heart rate), during which coronary arteries are near-stationary.
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Figure 6.0.1: A plot of the applied tube power required to generate ESA images at angiographic
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Combining these numbers with the results of Chapter 5, it is concluded that ESA images of coronary

arteries could be generated with reduced motion artifacts compared to DSA and iodine SNR within

25% of that of DSA using modern x-ray source and detector technology. Depending on the degree

of motion-artifact reduction, this may result �DSA-like� coronary angiograms with higher iodine

sensitivity than conventional non-subtraction angiography.

Energy-subtraction angiography could be implemented using fast-kV-switching x-ray generators

and modern cesium-iodide-based energy-integrating x-ray detectors. Such a system is currently

under development in Dr. Cunningham's research laboratory at the Robarts Research Institute.

This system will be used in follow-up studies that quantitatively assess the in�uence of motion and

tube power on ESA image quality. It is expected that for higher heart rates, ESA may not completely

suppress motion artifacts and provide SNR within 25% of DSA. Energy-resolved approaches on the

other hand would only require a single post-injection exposure and would not be limited by power

restrictions.

While prototype EPC detectors are currently strip or small-area detectors, it was demonstrated

that ERA also has the potential to provide iodine SNR within 25% of that of DSA for the same

patient entrance exposure using CdZnTe-based photon-counting x-ray detectors. This will require

adaptively binning elements into 1.0 mm2 composite elements, electronic noise levels lower than

≈1000 e-h pairs per 1.0-mm2 adaptively-binned element, and applied electric �elds that result in col-

lection e�ciency of secondary quanta that is near-uniform over the convertor layer. Some prototype

CdZnTe-based systems are capable of satisfying the last two requirements, but electronic readout
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systems will need to be further developed in order to bin elements into larger 1.0 mm2 adaptively-

binned elements. The results of this thesis suggests that research e�ort and resources should be

focused on design and development of large-area low-noise EPC detectors with adaptive-binning

capabilities for implementation in future ERA systems. When these technological requirements are

satis�ed, ERA is expected to provide motion-artifact-free images with iodine SNR comparable to

that of DSA. In the interim, ESA could be developed as a dual-energy alternative that would reduce

motion artifacts for patients with lower heart rates.

Subtraction imaging of coronary arteries has been a long-term goal of cardiac imaging and the re-

sults of this thesis suggest that this may become possible with energy-dependent imaging approaches

in the near future. Both energy-dependent approaches considered in this thesis have the potential

to improve visibility of diseased coronary arteries compared to conventional non-subtraction ap-

proaches. This could enable imaging studies of the coronary anatomy that use lower iodine doses

and reduced x-ray exposures compared to current approaches. However, a limitation of this thesis is

that a direct comparison of angiographic image quality obtained using energy-dependent subtraction

and conventional non-subtraction approaches was not performed. As discussed in the Future Work

section, such a comparison would require quantifying the ability of ERA and ESA to remove image

intensity variations caused by density and thickness variations of soft-tissue and bone structures.

Whether or not suppression of background variations with ERA and ESA will result in superior

iodine visualization compared to non-subtraction angiography remains an unanswered question and

will be the focus of future studies, such as the one outlined in the Future Work section.
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Chapter 7

Future work I: Comparison of

energy-dependent angiography with

conventional non-subtraction

angiography

7.1 Introduction

For patients suspected of having coronary artery disease (CAD), determining the location and sever-

ity of atherosclerotic plaques is critical for predicting risk of myocardial infarction and identifying

patients that may bene�t from revascularization procedures. [42,66,71,150,207] In spite tremendous ad-

vances made in three-dimensional imaging techniques, including computed tomography and magnetic

resonance imaging approaches, conventional two-dimensional non-subtraction coronary angiography

remains the most widely used imaging technique for visualizing coronary anatomy. In Canada, the

United States, and Europe, with the exception of low-risk groups, the majority of patients suspected

of CAD will undergo x-ray angiography for both con�rmation of diagnosis of CAD and assessment

of suitability for revascularization procedures. [66,71,150]

Non-subtraction angiography procedures require acquisition of an x-ray image of cardiac anatomy

after injection of a contrast agent, usually iodine-based, into one or more coronary arteries. While

iodine injection enhances visualization of coronary arteries, projection of over and under-lying
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anatomic structures causes intensity variations that can obscure arterial visualization. [141] Pixel-

intensity variations caused by projection of soft-tissue and bone structures (with di�erent densi-

ties and thicknesses) onto a two-dimensional image plane is commonly referred to as anatomic

noise. [19,27,162,163] Minimizing the in�uence of anatomic noise on arterial visualization with non-

subtraction angiography requires using relatively high doses of iodine-based contrast material that,

when used in excess, can impair kidney and left ventricular function. [63,84,85,119,120]

Digital subtraction angiography [34,35,38,50,51,56,132,133,149] (DSA) was introduced in the 1970s with

the goal of improving visualization of diseased vasculature and reducing contrast-material doses.

While DSA is extremely successful at imaging structures that are near-stationary over a period of

several seconds, the need for subtraction of pre and post injection images results in motion artifacts

in studies of coronary arteries. [96]

In this thesis we revisited energy-subtraction approaches, originally proposed in the late 1970s as

a dual-energy alternative to DSA, and proposed the use of energy-resolved approaches for coronary

imaging. These approaches would be less sensitive to patient motion and, as demonstrated in

Chapter 5, both energy-subtraction angiography and energy-resolved angiography have the potential

to provide iodine SNR within 25% of that of DSA for the same patient entrance exposure. While this

result suggests that these approaches have to the potential to improve iodine detectability relative

to conventional non-subtraction angiography, a direct comparison between energy-dependent and

non-subtraction angiography was not performed. It therefore remains an unanswered question as to

whether or not these approaches will improve image quality in coronary angiography.

Performing a direct comparison of ESA and ERA image quality with non-subtraction angiogra-

phy requires quanti�cation of potential improvements in iodine visualization that would be gained

by suppression of soft-tissue and/or bone structures from angiographic images. In the following

sections a theoretical framework that describes the in�uence of both anatomic and quantum noise

sources is described. Results from a preliminary comparison of soft-tissue suppression capabilities of

energy-dependent and conventional subtraction approaches are presented. In addition, a preliminary

comparison of the iodine detectability index [1] obtained with energy-dependent and non-subtraction

angiography is presented.
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7.2 Theoretical framework for comparing subtraction and non-

subtraction angiography

The goal of both subtraction and non-subtraction angiography is to enhance visualization of diseased

vasculature by injecting a patient with a contrast-enhancing agent such as iodine. Assuming an

object composed of water, bone, and iodine, the line-integral of attenuation along an x-ray path

through a patient is given by

ˆ
µ̃ (r, s;E) ds =

m∑
b=1

µ

ρ
b (E) Ãb (r) = Ã (r)

T µ

ρ
(E) (7.2.1)

where s represents position along the x-ray path, E represents photon energy, r represents position

in the image plane and

Ã (r) =


ÃW (r)

ÃB (r)

AI (r)

 and
µ

ρ
(E) =


µ

ρ
W (E)

µ

ρ
B (E)

µ

ρ
I (E)

 (7.2.2)

where µ
ρ (E) [cm2 g−1] represents the mass-attenuation coe�cient and ÃW (r), ÃB (r), and AI (r)

[g cm−2] represent area densities of water, bone, and iodine, respectively. Note that the di�erence

between the above expressions and similar expressions presented in chapters 2 and 5, is the here

area densities are expressed as random functions of position. This enables analyses of the e�ects

of variations in soft-tissue and bone density encountered in real patients. In this chapter we only

consider anatomic variability due to changes in soft-tissue area density ÃW (r). In order to quantify

the in�uence of background variability on iodine detectability we use a statistical model of ÃW (r).

7.2.1 Modeling anatomic �uctuations

Modeling background variability is important for determining potential bene�ts that subtraction

approaches may have over conventional non-subtraction approaches. We consider the e�ects of soft-

tissue variations using the �lumpy-background� model described by Rolland et al. [156] and Myers et

al. [137] With this approach, anatomic variations are simulated by superimposing two-dimensional

Gaussian functions on a uniform background with mean area density ĀW . We let K̃ and {r̃i, i =
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1 . . . K̃} be RVs representing the number and locations of Gaussian �lumps:�

ÃW (r) = ĀW +

K̃∑
i=1

ν̃i b

πρ2
exp

(
−|r− r̃i|2

ρ2

)
(7.2.3)

where ν̃i is a Bernoulli RV that takes on values of +1 or −1 with equal probability, and b [g] and

ρ [cm] represent the height and 1/e width of each lump. Figure 7.2.1 illustrates some examples

of simulated anatomic backgrounds generated using Eq. (7.2.3) for Poisson-distributed K̃. While

real anatomic backgrounds may be more complicated than those in Fig. 7.2.1, this model enables

analyses of thickness and density variations of variable width and magnitude.

Rolland et al. [156] demonstrated that when K̃ is Poisson-distributed, anatomic variations de-

scribed using Eq. (7.2.3) satisfy the properties of wide sense stationarity (WSS) with noise power

spectrum (NPS) is given by

NPSAW
(u, v) = κb2e−2π2ρ2|u2+v2| (7.2.4)

[g2 cm−2] where u and v represent spatial frequencies in the x and y directions and κ = K̄/A [cm−2]

represents the mean number of Gaussian lumps per unit area where A represents image area. The

global variance σ2
W [g2 cm−4] of the anatomic background is expressed in terms of the integral of

the NPS over all spatial frequencies: [143]

σ2
W =

ˆ +∞

−∞

ˆ +∞

−∞
NPSAW (u, v) dudv =

κb2

2πρ2
(7.2.5)

Equation (7.2.5) demonstrates that the variance of Ã(r) depends on the number, height, and width

of Gaussian lumps. In the following sections, the NPS of both subtraction and non-subtraction

angiographic images is expressed in terms of NPSAW (u, v).

7.2.2 Angiographic image signal

7.2.2.1 Non-subtraction angiography

Conventional non-subtraction angiography uses a single image acquired after injection of an iodine-

based contrast agent to visualize diseased vasculature. Contrast between iodinated and non-iodinated

regions of an image is the result of increased attenuation through iodine. Assuming linear x-ray de-

tectors, the mean pixel value is proportional to the total energy deposited by all interacting x-ray
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ρ = 2 cm, κ= 0.4 cm−1 ρ = 4 cm, κ= 0.2 cm−1 ρ = 8 cm, κ= 0.1 cm−1

Figure 7.2.1: Examples of anatomic backgrounds simulated using Eq. (7.2.3) for selected values of
κ = K̄/A and ρ for σW = 5.

photons. The mean signal from a detector element centered at r given ÃW is given by

E
(
M̃ (r)

∣∣∣ ÃW

)
= k

ˆ kV

0

s(E)q̄ (E)

ˆ
a(r)

e−Ã(r′)
T µ

ρ (E)d2r′ dE (7.2.6)

where
´
a(r)

d2r′ represents a two-dimensional integral over an element of area a = axay centered

at r, k is a constant of proportionality, a [mm2] represents element area, q̄ (E) [mm−2 keV−1] and

kV describe the spectral distribution of x-ray photons incident on the patient, and s (E) = G (E)

where α (E) and Edep (E) represent the quantum e�ciency and deposited energy for incident photon

energy E. Averaging over all possible values of ÃW yields [143]

M̄ = E
(
M̃ (r)

)
= k

ˆ kV

0

s(E)q̄ (E)

ˆ
a(r)

E
(
e−Ã(r′)

T µ
ρ (E)

)
d2r′ dE. (7.2.7)

For the lumpy-background model, Ãw is approximately Gaussian-distributed and exp(−Ãw
µ
ρw (E))

is therefore approximately log-normally-distributed. Assuming small variations of Ãw about Āw,

the mean subtracted angiographic image signal M̄ is therefore given by

M̄ = ka

ˆ kV

0

s(E)q̄ (E) e−Ā
T µ

ρ (E) dE. (7.2.8)

7.2.2.2 Subtraction angiography

The goal of subtraction angiography is to produce an image showing only the spatial distribution of

iodine contrast agent. This is accomplished by estimating ÃI for each image pixel. The angiographic
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image signal ÃI is derived from two or more images where, similar to Eq. (7.2.8), the expected pixel

value measured in image i, is given by

M̄i = ka

ˆ kV

0

si(E)q̄i (E) e−Ā
T µ

ρ (E)dE; i = 1 . . . n (7.2.9)

where, as described in Chapter 2, si(E) is a weighting function describing the detector response

associated with image i. The angiographic image signal is obtained by weighted log-subtraction of

raw images M̃i:

ÃI = −
n∑
i=1

WI,i log
M̃i

Mi0
(7.2.10)

where image weights WI,i are related to the mass-attenuation coe�cients of basis materials and Mi0

is given by Eq. (7.2.9) evaluated at a known set of basis-material area densities. See Chapter 2 for

further details on calculation of WI,i and Mi0. Equation (7.2.10) gives an estimate of iodine area

density for each image pixel.

7.2.3 Image noise power spectrum including both quantum and anatomic

�uctuations

As discussed above, the ability to detect iodinated objects may be degraded by both quantum and

anatomic noise. Quantum �uctuations are the result random variations in the number of interact-

ing photons, the energy deposited by each photon, and the number of secondary quanta collected

in a detector element, and were described in Chapters 2-5 of this thesis. Anatomic �uctuations

are the result of variations in density and thickness of over and under-lying soft-tissue structures.

In this section the approach for calculating image noise presented in Chapter 2 is generalized to

accommodate calculation of the image NPS of both subtracted and subtracted images enabling a

direct comparison of image noise and iodine detectability for both subtraction and non-subtraction

angiography. Similar to Chapter 2, in all cases we assume ideal x-ray detectors. Results presented

here will therefore likely underestimate image noise for each technique.

Barret et al ., [19] showed that the the presampling NPS of an imaging system can be represented

as

NPS (u, v) = NPSq (u, v) + NPSan (u, v) (7.2.11)

where NPSq (u, v) and NPSan (u, v) represent quantum and anatomic contributions, respectively.

We separate our analysis of image noise into non-subtraction and subtraction approaches.
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7.2.3.1 Non-subtraction angiography

Quantum NPS The full derivation for the quantum and anatomical NPS terms is omitted here,

but it can be shown that the quantum NPS for non-subtraction angiography is given by

NPSq
M (u, v) = F

{
E
(
KM |AW

(τx, τy)
)}

(7.2.12)

where F {} represents the Fourier transform operator and KM |AW
(τx, τy) represents the autocovari-

ance of M̃ for �xed ÃW. The expected value in the above equation represents an average over all

possible values of ÃW. For small variations about ĀW and ideal energy-integrating x-ray detectors,

Eq. (7.2.12) can be written as

NPSq
M (u, v) = Varq(M̃) a2 sinc2 (au) sinc2 (av) (7.2.13)

where Varq(M̃) represents the variance of M̃ due to quantum �uctuations, given by

Varq(M̃) = E
(

Var(M̃ |Ãw)
)

(7.2.14)

where Var(M̃ |Ãw) represents the variance in detector element values for a �xed background level

and is given by: [184,185]

Var(M̃ |Ãw) = k

ˆ kV

0

α(E)E2
dep (E) q̄ (E)

ˆ
a(r)

e−Ã(r′)
T µ

ρ (E)d2r′dE. (7.2.15)

The expectation operator in Eq. (7.2.14) represents an average over all possible values of ÃW. Similar

to Eq. (7.2.8), averaging over all values of Ãw yields

Varq(M̃) = ka

ˆ kV

0

α(E)E2
dep (E) q̄ (E) e−Ā

T µ
ρ (E)dE. (7.2.16)

Equations (7.2.12)-(7.2.16) demonstrate that for small �uctuations of ÃW about ĀW, the quantum

NPS is that which would be observed for a uniform water background with mean ĀW.

Anatomic NPS The anatomic NPS (derivation omitted) for non-subtraction angiography is given

by

NPSan
M (u, v) = F

{
KE(M |AW) (τx, τy)

}
(7.2.17)
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where KE(M |AW)(τx, τy) represents the autocovariance function of E(M̃ |ÃW):

KE(M |AW)(τx, τy) = E
(

E
(
M̃ (r)

∣∣∣ ÃW (r)
)

E
(
M̃ (r + τ )

∣∣∣ ÃW (r + τ )
))
− M̄2 (7.2.18)

where τ = (τx, τy). Similar to Fredenberg et al., [67] we consider small �uctuations of ÃW about ĀW,

in which case the �rst term in the above equation is given by

E
(

E
(
M̃ (r)

∣∣∣ ÃW (r)
)

E
(
M̃ (r + τ )

∣∣∣ ÃW (r + τ )
))

=
M̄2

a2

µ̄

ρ

2

W

KAW
(τx, τy) ∗Π

(
τx
ax
,
τy
ay

)
∗Π

(
τx
ax
,
τy
ay

)
+ M̄2 (7.2.19)

where KAW
(τx, τy) represents the autocovariance function of ÃW and ∗Π( τxax ,

τy
ay

) represents convo-

lution with a two-dimensional rectangle function. Combining Eqs. (7.2.17)-(7.2.19) yields

NPSan
M (u, v) = M̄2 µ̄

ρ

2

W

NPSAW (u, v) sinc2 (au) sinc2 (av) (7.2.20)

where µ̄
ρW

denotes the average value of the mass-attenuation coe�cient of basis material b weighted

by s (E) q̄ (E) e−Ā
T µ

ρ (E). Equation (7.2.20) demonstrates that for small �uctuations of ÃW about

ĀW, the anatomic NPS is that which would be observed when an input distribution with NPS equal

to µ̄
ρ

2

W
NPSAW

(u, v) is transferred through a deterministic x-ray detection system with MTF equal

to a two-dimensional sinc-squared function. Equations (7.2.13) and (7.2.20) described the combined

e�ects of quantum and anatomic �uctuations on image noise.

Individual pixel noise Pixel noise is expressed in terms of the variance of an individual pixel,

Var(M̃). While pixel variance does not give information concerning noise correlations within an

image, it is useful in comparing the magnitude of image noise and the relative levels of quantum

and anatomic noise sources. Combining Eqs. (7.2.11), (7.2.13), and (7.2.20), and integrating over

all spatial frequencies yields Var(M̃): [52�54,143]

Var(M̃) =

ˆ +∞

−∞

ˆ +∞

−∞
NPS (u, v) dudv = Varq(M̃) + Varan(M̃) (7.2.21)

where Varq(M̃) is given by Eq. (7.2.16) and Varan(M̃) is given by

Varan(M̃) = M̄2 µ̄

ρ

2

W

ˆ +∞

−∞

ˆ +∞

−∞
NPSAW

(u, v) sinc2 (au) sinc2 (av) dudv. (7.2.22)
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7.2.3.2 Subtraction angiography

Quantum NPS The quantum NPS for subtraction angiography is similar in form to Eq. (7.2.13)

with the replacement of Varq(M̃) with Varq(ÃI):

NPSq
M (u, v) = Varq(ÃI) a

2 sinc2 (au) sinc2 (av) (7.2.23)

where Varq(ÃI) is given by

Varq(ÃI) = E
(

Var( ÃI

∣∣∣ ÃW)
)

=

n∑
i=1

W 2
I,i

Varq(M̃i)

M̄2
i

=

n∑
i=1

W 2
I,i

SNR2
q,i

(7.2.24)

where Varq(M̃i) is similar in form to Eq. (7.2.16) with the replacement of s(E) with si (E). The

above equation is identical to the expression for image noise that was derived in Chapter 2 and

demonstrates that increasing the SNR of �raw� images decreases quantum noise in iodine-speci�c

angiographic images.

Anatomic NPS Similar to non-subtraction angiography, the anatomic NPS for subtraction an-

giography is proportional to NPSAW
(u, v) modulated by a sinc-squared function:

NPSan
AI

(u, v) =

(
n∑
i=1

WI,i
µ̄

ρWi

)2

×NPSAW
(u, v) sinc2 (au) sinc2 (av) (7.2.25)

where µ̄
ρWi

denotes the average value of the mass-attenuation coe�cient of basis material b weighted

by si (E) q̄i (E) e−Ā
T µ

ρ (E). While NPSan
AI

(u, v) has the same frequency components as that for non-

subtraction angiography, we will see that the magnitude of NPSan
AI

(u, v) is often much less than that

of NPSan
M (u, v) for a wide range of anatomic variations.

Individual pixel noise Combining Eqs. (7.2.11), (7.2.23), and (7.2.25), and integrating over all

spatial frequencies yields Var(ÃI):
[52�54,143]

Var(ÃI) =

ˆ +∞

−∞

ˆ +∞

−∞
NPS (u, v) dudv = Varq(ÃI) + Varan(ÃI)
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where Varq(ÃI) is given by Eq. (7.2.24) and Varan(ÃI) is given by

Varan(ÃI) =

(
n∑
i=1

WI,i
µ̄

ρWi

)2

×
ˆ +∞

−∞

ˆ +∞

−∞
NPSAW

(u, v) sinc2 (au) sinc2 (av) dudv.

7.2.4 Task-based iodine detectability

The ability to visualize iodinated vasculature depends on x-ray exposure, vessel size, and the mag-

nitude and correlation length of anatomic variations. The detectability index dI is a �gure of merit

that enables analyses of each of these considerations on iodine detectability. [1] We compare the per-

formance of subtraction and non-subtraction approaches in terms of the detectability index per unit

entrance exposure (X ):

dI

X
=

1

X

ˆ +uN

−uN

ˆ +vN

−vN

F 2 (u, v) MTF2 (u, v)
+∞∑

n=−∞

+∞∑
m=−∞

NPS

(
u+

n

∆x
, v +

m

∆x

)dudv (7.2.26)

where the denominator is the image NPS including the e�ects of noise aliasing, ∆x and ∆y rep-

resent the image sample spacing in the x and y directions, respectively, uN = 1/(2∆x) and vN =

1/(2∆y) represent the Nyquist frequencies in the x and y directions, respectively, MTF (u, v) =

sinc (au) sinc (av), and F (u, v) is a task function equal to the Fourier transform of the object to be de-

tected. In all cases, we assume the sample spacing is equal to element width, ie. ∆x = ∆y = ax = ay.

We consider detection of low contrast iodinated vessels with lengths Ly ranging from 1 cm to

5 cm and widths Lx ranging from 0.01 cm to 1 cm. In the spatial domain, the imaging task is then

represented as a two dimensional rectangle function with length Ly, width Lx, and height equal to

the average di�erence between iodinated and non-iodinated regions of the image. Therefore

F (u, v) =
∣∣M̄ − M̄NI

∣∣LxLysinc (Lxu) sinc (Lyv) non subtraction (7.2.27)

F (u, v) =
∣∣ĀI − ĀNI

I

∣∣LxLysinc (Lxu) sinc (Lyv) subtraction (7.2.28)

where M̄ and M̄NI represent the mean subtracted image signals (Eq. (7.2.8)) from iodinated and

non-iodinated regions of the image, respectively, and similarly for ĀI and Ā
NI
I .
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7.3 Monte Carlo simulation of quantum and anatomic noise

7.3.1 Simulating variations in soft-tissue density

Anatomic backgrounds were simulated using Eq. (7.2.3). As described by Eq. (7.2.5), the global

variance is determined by the mean number of Gaussian �lumps� per unit area κ = K̄/A, the 1/e

width ρ and the strength b of each lump. The number of lumps per unit area is simulated by sampling

a Poisson distribution with mean K̄ for image area A. Each lump is either added or subtracted, with

equal probability, from a uniform background with mean ĀW. We assume width ρ and strength b

are the same for each lump, in which case the NPS of the background is given by Eq. (7.2.4).

7.3.2 Imaging simulation

X-ray images were simulated using a Monte Carlo method similar to that described in Chapter 2.

With this approach, x-ray spectra were generated using an in-house MATLAB routine that imple-

ments algorithms published by Tucker et al. [199] for a tungsten-target x-ray tube. The number of

incident x-ray photons in each energy interval (1 keV) was determined for a desired exposure using a

Poisson random number generator. For each background model (described above) a 128 x 128 grid

of 0.02 x 0.02 cm2 detector elements was simulated giving a 2.56 x 2.56 cm2 image. Transmissions

were calculated using tabulated values of the mass-attenuation coe�cients for water and iodine.

Conventional energy-integrating images were simulated by weighting each transmitted x-ray photon

in proportion to its energy and then summing over the entire spectral distribution. For DSA this was

performed on both pre and post-injection images. In the case of ESA, this technique was performed

for both the high and low-energy images. We simulated EPC images by summing the number of

transmitted x-ray photons between the lower and upper energy thresholds of each energy bin. We

used the exposure parameters summarized in Chapter 2. In all cases we assumed unity quantum

e�ciency and ideal energy resolution. Therefore, the results of the theoretical and simulation studies

will likely overestimate the image quality achievable with each technique.

7.4 Preliminary results: Soft-tissue suppression capabilities of

energy-dependent angiography

Figure 7.4.1 illustrates the dependence of iodine detectability per unit exposure on vessel width for

conventional non-subtraction angiography, ERA, ESA, and DSA assuming ideal instrumentation for
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Figure 7.4.1: An illustration of the dependence of iodine detectability per unit exposure d/X on
object size for subtraction and non-subtraction angiography for uniform background consisting of
30 g cm−2 of water. Calculations are based on 0.01 g cm−2 of iodine.

each. As expected, when a uniform iodinated object is embedded in a uniform water background,

conventional non-subtraction angiography provides the highest detectability. This is an expected

result because in this case performing either energy-dependent subtraction or conventional temporal

subtraction does not enhance iodine visualization but does result in an increase in quantum noise

relative to non-subtraction angiography for the same patient exposure.

7.4.1 Dependence on magnitude of soft-tissue variability

Figure 7.4.2 illustrates the dependence of iodine detectability on vessel width for selected levels

of anatomic background variability σW and 1/e width ρ for both non-subtraction and subtraction

angiography, including ERA, ESA, and DSA. Comparing Fig. 7.4.2 with Figure 7.4.1, we see that

soft-tissue variations have very little e�ect on iodine detectability for ERA, ESA, and DSA for all

levels of anatomic variability considered. On the other hand, iodine detectability for conventional

non-subtraction angiography is substantially degraded when the 1/e width of soft-tissue variations ρ

is on the same order of magnitude as vessel width. In this case, each of the subtraction approaches can

provide higher iodine detectability per unit exposure than conventional non-subtraction angiography.

When ρ is greater than the vessel width, iodine detectability with conventional angiography is not

degraded by anatomic �uctuations because in this case the background intensity is near-uniform

over the area of a vessel.

Figure 7.4.3 displays Monte-Carlo-simulated non-subtraction angiography, DSA, ESA, and ERA

images for selected levels of background variability. These images show the same trends as those

discussed above. In the case of a uniform background, the large iodinated objected is better visualized
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Figure 7.4.2: An illustration of the dependence of iodine detectability per unit exposure d/X on ob-
ject size for subtraction and non-subtraction angiography for selected levels of background variability
σW and correlation length ρ. Calculations are based on 0.01 g cm−2 of iodine, a mean background
level of 30 g cm−2 of water, and 20 mR entrance exposure. Also, plotted is the detectability index
for non-subtraction angiography at 80 mR entrance exposure.
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Figure 7.4.3: Comparison of simulated images of a large iodinated object (area density of 0.01
g cm−2) in inhomogeneous backgrounds with increasing variability σW for conventional non-
subtraction angiography, DSA, ESA, and ERA. Images were generated using a total entrance expo-
sure of 20 mR assuming parallel beam x-ray geometry.

with angiography due to the superior quantum noise properties of this approach. However, as the

level of background variability is increased, iodine visualization is degraded for non-subtraction

angiography but not for DSA, ESA or ERA, as expected based on Fig. 7.4.2. Both ESA and ERA

images show levels of background suppression similar to DSA images.

7.4.2 Dependence of iodine detectability on exposure level

Figure 7.4.3 displays another set of non-subtraction angiography, ERA, and ESA images gener-

ated from the Monte Carlo simulation. The high-contrast structure in the center of each image

is 1.65 g cm2 of bone and the vertical structures represent iodinated vessels with radii of 0.08 �

0.3 mm �lled with 0.1 g cm−3 of iodine. Since we have assumed a dual-energy approach for ESA,
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Figure 7.4.4: Comparison of simulated images containing 30 cm of water with background variance
σW = 1 g cm−2 with vertical vessels having radii of 0.08 � 0.3 mm �lled with 0.1 g cm−3 of iodine
at 20-160 mR entrance exposures.

and a two-bin approach for ERA, neither of these approaches remove the overlying bone structure.

However, both approaches have suppressed soft-tissue variations from the images. As expected,

increasing the exposure level from 20 mR to 160 mR increases iodine visibility for both ERA and

ESA. However, in the case of non-subtraction angiography, increasing the exposure level has little

in�uence on the ability to visualize iodinated structures. This is expected for this approach since

increasing the exposure level does not remove soft-tissue variations that degrade iodine detectability.

7.5 Discussion of preliminary comparisons

The framework presented above will be useful in future comparisons of energy-dependent subtraction

angiography with conventional subtraction and non-subtraction approaches. While the formalism

described above assumed ideal detectors, it could easily be extended to include the in�uence of

stochastic energy-deposition, conversion, and collection processes, and electronic noise described in

Chapters 2-5. The preliminary study described above demonstrated the utility of this approach

for the quanti�cation of soft-tissue suppression capabilities of energy-dependent approaches. The
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results of this study suggest that both ERA and ESA have the potential to remove image intensity

variations caused by spatial �uctuations in soft-tissue area density, resulting in iodine detectability

similar to that of DSA. Since ideal detectors were assumed, it is expected that iodine detectability

would be approximately 25-30% lower than DSA when the in�uence of stochastic image forming

processes are considered, such as those discussed in Chapters 2-5.

A comparison between subtraction and non-subtraction approaches for the task of detecting

low-contrast iodinated structures in a spatially varying background demonstrated that in some situ-

ations iodine detectability obtained with non-subtraction angiography will be degraded by anatomic

�uctuations. It was demonstrated that when the correlation length of the anatomical background is

on the same order of magnitude or smaller than object size, iodine detectability for angiography is

substantially degraded. Conversely, when the correlation length of the background is much greater

than object size, iodine detectability is not degraded. Since subtraction approaches remove anatomic

noise sources, iodine detectability with these approaches was independent of anatomic noise levels.

It should be emphasized that the results presented here only apply to the task and anatomic

background model considered, both of which may not be suitable for describing angiographic situ-

ations. In reality, an angiographer must be able to detect atherosclerotic lesions located in one or

more coronary arteries. This requires visualization of one or more arteries of various lengths and

diameters and is a more complicated task than detecting a single low-contrast iodinated structure.

Furthermore, the comparisons here assumed the anatomic background satis�ed the properties of

wide-sense stationarity which may not be satis�ed for real anatomic backgrounds. [26,27] Therefore,

caution must be taken when interpreting the comparisons between subtraction and non-subtraction

approaches presented here. Therefore, while the framework presented here may be used as a founda-

tion for comparing energy-dependent angiography with and conventional non-subtraction coronary

angiography, future studies must determine appropriate task functions and models of anatomic noise

that accurately re�ect realistic angiograms.
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Chapter 8

Future work II: Theoretical analysis

of charge sharing in photon-counting

x-ray detectors using a

cascaded-systems approach

8.1 Introduction

Prototype photon-counting detectors employ a direct detection approach where x-ray photons are

converted to electron-hole (e-h) pairs in a semiconductor. Liberated charges migrate to the top

and/or bottom surfaces of the convertor material where they are integrated by a capacitive element

and then ampli�ed by a semiconductor device located in each detector element. [129,157,216] Due

to Coulomb repulsion of charges of the same sign, electrons and holes may be relocated from the

position of primary x-ray interaction which can result in charge-sharing between neighboring detector

elements. Charge sharing between neighboring detector elements can cause substantial degradation

of image quality [4,5,31,126] and loss of spectral information. [31,44,70,110,174,178] This e�ect is mitigated

with techniques that sum charges in neighboring elements and assigns them to the element with the

largest signal, such as those described by Bornefalk et al. [31] and implemented in the MEDIPIX3

prototype. [18] Determining optimal adaptive binning approaches will require quanti�cation of how

charge sharing and adaptive binning are expected to a�ect image signal, noise, and spatial resolution.
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Figure 8.2.1: Cascaded model used to describe the in�uence of charge sharing in photon-counting
x-ray detectors.

The following sections outline current progress made toward a description of the e�ects of charge

sharing on recorded count rates and spatial resolution, expressed in terms of the photon-counting

modulation transfer function (MTF).

8.2 Cascaded-systems analysis of charge sharing in photon-

counting detectors

A simple CSA model of energy deposition in photon-counting x-ray detectors is illustrated in

Fig. 8.2.1 and includes the e�ects of quantum e�ciency, stochastic conversion gain, collection of

secondary quanta by collecting electrodes, relocation of secondary quanta, integration in detector

elements, electronic noise, and thresholding. This model does not include the emission of character-

istic or Compton-scatter x rays considered in Chapters 4 and 5 and therefore may only be applicable

to situations where Compton-scatter can be ignored and for energies below the K-edge energy of a

convertor material.

The quantum relocation stage illustrated in Fig. 8.2.1 describes the situation where every sec-

ondary quantum is relocated by the same PSF. While the distance a quantum is relocated may

depend on depth of interaction, these a�ects are ignored in this analysis. In the following sections

the PDF of the total number of image quanta per x-ray interaction is calculated for the model shown

in Fig. 8.2.1. As will be shown, this enables description of both the mean number of photon counts

per detector element and the PSF and MTF of photon-counting systems.
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8.2.1 PDF of the number of image quanta collected in detector elements

We let Ñtot represent the total number that are collected somewhere in the detector given one x-ray

interaction and let Ñdel(r) represent the number of quanta collected in an element centered at r.

Since quantum relocation does not result in production or loss of secondary quanta, the PDF of

Ñtot is obtained using the PDF transfer approach described in Chapters 3 and 4. From the results

of Chapter 3 and Appendix B, pNtot
(Ntot) is given by

pNtot
(Ntot) =

∞∑
l=1

∞∑
i=1

prg (i)

 i

Ntot

βj (1− β)
i−Ntot δ (Ntot − l) (8.2.1)

where prg (i) represents the probability mass function (PMF) of gain variable g̃, and β represents the

collection e�ciency of secondary quanta. We let PSF (r) represent the probability density function

of relocation position r relative to the primary interaction site. The probability that a secondary

quantum is detected in an element of area a centered at r is then given by

PSFdel (r) = PSF (r) ∗Π
( r

a

)
(8.2.2)

where Π (r/a) represents the 2-D rectangle function. The relationship between PSFdel (r) and

PSF (r) is illustrated schematically in Fig. 8.2.2 for Gaussian PSF. Since each secondary quan-

tum is either detected in an element centered at r or is not, the PDF of the number of quanta

collected in an a detector element centered at r can be obtained from the binomial distribution. The

full derivation is omitted here, but it can be shown that pNdel
(Ndel) is given by

pNdel
(Ndel) =

ˆ
pNdel

(Ndel|Ntot) pNdel
(Ntot) dNtot (8.2.3)

where pNdel
(Ndel|Ntot) represents the PDF of Ndel given Ntot, given by

pNdel
(Ndel|Ntot) =

∞∑
n=0

prNdel
(Ndel|Ntot) δ (Ndel − n) (8.2.4)

where prNdel
(Ndel|Ntot) represents the the PMF of Ndel given Ntot, and is a complicated function of

the point spread function PSFdel(r) and total number of quanta Ntot:

prdel (Ndel|Ntot) =
1

A

 Ntot

Ndel

¨
R2

(PSFdel(r))
Ndel (1− PSFdel(r))

Ntot−Ndel d2r (8.2.5)
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Figure 8.2.2: A 1-D schematic illustration of the relationship between PSF (r) and PSFpix (r) for
Gaussian-distributed secondary quanta with variance σ2. The PSF represents the probability density
that a secondary quantum is detected at position r where the pixel PSF represents the probability
that a secondary quantum is detected in a pixel centered at r.

where A represents image area, PSFdel(r) is given by Eq. (8.2.2) and
˜

R2 d2r represents a two-

dimensional integral over all space. Combining the above expressions yields

pNdel
(Ndel) =

∞∑
i=0

prg (i)

∞∑
l=0

 i

l

βj (1− β)
i−l

× 1

A

∞∑
n=0

 l

n

¨
R2

(PSFdel(r))
n

(1− PSFdel(r))
l−n

d2r (Ndel − n) (8.2.6)

The above expression shows that the PDF for the number of photons detected in an element is a

complicated function of the point spread function, and importantly, is independent of position r

which is an important requirement for wide-sense stantionarity.

8.2.2 Mean signal

Assuming fast readouts such that pulse pile up can be ignored, the mean number of photon counts

is expressed as (derivation omitted):

c̄ = q̄oaακ

[
1 +

1− αηλ
λ

ξ

κ

]
(8.2.7)

where α represents the quantum e�ciency, λ = ¯̇qaat � 1 represents the mean number of incident

photons per detector element for readout time at, ξ represents the probability of a false count,

κ ∈ [0,∞) is given by

κ =
A

a

ˆ ∞
t

pNdel
(Ndel) dNdel (8.2.8)
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and η ∈ [1,∞) is equal to the average number of detector elements that detect at least one secondary

quantum given one x-ray interaction:

η =
A

a

ˆ ∞
1

pNdel
(Ndel) dNdel. (8.2.9)

To avoid pulse pile up issues, count rates must be chosen such that all secondaries detected in an

element result from a single x-ray interaction event. The product ηλ in Eq. (8.2.7) is interpreted as

an e�ective count rate that must be much less than unity to avoid pulse pile up. The factor κ in

Eq. (8.2.7) is equal to the mean number of photon counts per x-ray interaction and may be larger

than one depending on the amount of charge sharing and threshold level, and has been referred to

as the �multiplicity� of SPC systems by some investigators. [126,127]

Equation (8.2.7) is an important result an demonstrates the expected result that, unlike energy-

integrating systems, both charge sharing and electronic noise may result in incorrectly recording

more photon counts than actual interactions. In the limit of no charge sharing, Eq. (8.2.7) reduces

to the expression derived in Chapter 3 for large elements with negligible charge sharing.

8.2.3 Spatial resolution of photon-counting systems

In this section the PSF and MTF of photon counting systems that can be described using the CSA

model illustrated in Fig. 8.2.1 are derived.

8.2.3.1 Photon-counting point spread function

Charge sharing may result in a non-negligible probability of detecting photons in an element located

at some position r from the primary interaction site. In the previous section we saw that this may

result in multiple detected photons per interaction event. We de�ne the photon-counting PSF as

the probability density function of counting a photon at position r relative to a primary interaction

site, given one interacting photon. We start by considering the PMF of the number of secondaries

detected in an element centered at r, given a primary interaction at r = 0 and Ntot collected

secondaries. The binomial distribution gives

prÑdel

(
Ñdel|Ntot; r

)
=

 Ntot

Ndel

 [PSFdel (r)]
Ndel [1− PSFdel (r)]

Ntot−Ndel (8.2.10)
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where PSFdel (r) represents the probability that a secondary quantum is collected in an element

centered at r and is given by Eq. (8.2.2). A count is incremented in an element centered at r

when Ñdel (r) ≥ t where t is a threshold used to distinguish interaction events from electronic noise.

Therefore, the probability of incrementing a count in an element centered at r given Ñtot secondaries

is given by [143]

P
(
Ñdel (r) ≥ t|Ntot

)
=

∞∑
l=t

 Ntot

l

 [PSFdel (r)]
l
[1− PSFdel (r)]

Ntot−l . (8.2.11)

Averaging over all values of Ñtot and normalizing to unity gives the PDF of detecting a photon in

an element centered at r:

PSFSPC
del (r) =

1

κa

∞∑
i=0

Ntot∑
l=t

prNtot
(Ntot)

 i

l

 [PSFdel (r)]
l
[1− PSFdel (r)]

i−l
(8.2.12)

where κ is given by Eq. (8.2.8) and prNtot
(Ntot) is given by Eq. (8.2.1).

8.2.3.2 Photon-counting modulation transfer function

The MTF is equal to the Fourier Transform of the point spread function. Using the binomial

theorem, the SPC point spread functions is expressed as

PSFSPC
del (r) =

1

κa

∞∑
i=0

Ntot∑
l=T

Ntot−l∑
m=0

bi,l,m [PSFdel (r)]
l
[PSFdel (r)]

m
(8.2.13)

where

bi,l,m = prNtot
(Ntot)

 Ntot

l


 Ntot − l

m


∣∣∣∣∣∣∣
Ntot=i

. (8.2.14)

Taking the Fourier transform of Eq. (8.2.13) yields the photon-counting MTF:

TSPC
del (u, v) =

1

κa

∞∑
Ntot=0

Ntot∑
l=T

Ntot−l∑
m=0

bi,l,m
[
Tdel (u, v) ∗l+m Tdel (u, v)

]
(8.2.15)

where

Tdel (u, v) = T (u, v) sinc (au) sinc (av)

and Tdel (u, v) ∗l+m Tdel (u, v) represents the convolution of Tdel (u, v) with itself l +m times. The

above equation illustrates the complicated relationship between the MTF of an SPC x-ray detector,

134



the threshold value, and Tdel (u, v).

8.3 Methods and Materials

8.3.1 Theoretical comparison of charge sharing e�ects in SPC and energy-

integrating x-ray detectors

We use the above formalism to theoretically compare the e�ects of charge sharing between neigh-

boring pixels on the MTF of both SPC and conventional energy-integrating x-ray detectors. For

energy-integrating systems, the PSF and MTF are simply given by PSFdel (r) and Tdel (u, v), re-

spectively. We consider the simple case of a one-dimensional x-ray detector and Gaussian PSF (r)

with variance σ2. We assume that all photons interact through the photoelectric e�ect and no char-

acteristic x rays are emitted. The results presented will therefore represent an upper limit of spatial

resolution for both SPC and energy-integrating x-ray detectors.

8.3.2 Monte Carlo validation

Monte Carlo simulations have been performed to validate the theoretical description of the mean

photon counting image signal and MTF described above. For simplicity we let β = 1 and assume

Poisson-distributed g̃. Relocation distances for secondary quanta are assumed Gaussian-distributed

with variance σ2. A counter is incremented in an element when the number of secondaries detected

in the element is greater than threshold t.

The presampling pixel PSF and MTF were calculated by simulating x-ray incidence at 10 evenly

spaced locations in a pixel centered at the origin. For each location, we simulated 1000 interacting

x-ray photons and calculated the total number of photons counted in each detector element. The

presampling MTF was then determined used the method described by Fujita et al. [69] and Samei et

al . [161].

8.4 Preliminary results

8.4.1 In�uence of charge sharing on recorded count rates

Figure 8.4.1 illustrates the dependence of normalized SPC pixel value co = c̄/q̄oa on threshold level

for selected levels of charge sharing assuming Gaussian-distributed PSF for electronic noise level

σe = kḡ/10. Excellent agreement is obtained between theoretical and Monte Carlo calculations. As
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Figure 8.4.1: Plots of normalized SPC pixel value co as a function of threshold value (expressed as
a fraction of the mean prethresholding signal d̄) for selected charge-sharing levels. All calculations
have been performed for λ = 1/8, σe = kḡ/10, and α = 1. Lines and symbols represent theoretical
and Monte Carlo calculations, respectively.

expected, charge sharing results in false counts for low threshold values. In general, the number of

false counts increases as the width of the PSF of secondaries increases. In addition, charge sharing

narrows the acceptable range of threshold values that adequately suppress false counts while at the

same time preserving actual interaction events.

8.4.2 In�uence of charge sharing on spatial resolution

Figure 8.4.2 illustrates results of theoretical and Monte Carlo calculations the one-dimensional PSF

and MTF of SPC and EI systems. Excellent agreement is obtained between theoretical and Monte

Carlo calculations. Notice that the shape of the PSF for SPC systems is di�erent than that of

EI systems. For lower levels of charge sharing, the PSF of both SPC and EI systems resembles a

rectangle function that has been slightly �blurred.� In the case of SPC systems, as expected, the

width of the PSF increases with decreasing threshold level. This results in an MTF that may be

slightly degraded relative to that of an energy-integrating system, as illustrated in the right column of

Fig. 8.4.2. As the level of charge sharing increases, the PSF for energy-integrating systems becomes

more similar in shape to a Gaussian. However, in the case of SPC systems, the PSF remains more

similar in shape to a rectangle function with width increasing as the threshold decreases. This is

due to the fact that in SPC systems, for a given x-ray interaction, equal weighting is given to all

elements that collect more secondaries than threshold t. This di�ers from EI where element signals

are weighted in proportion to the number of collected secondaries.
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8.4.3 Optimal SPC threshold

In the case of SPC systems, Fig. 8.4.2 demonstrates that the shape of the MTF is strongly dependent

on the threshold used to identify x-ray interaction events. For the model considered here, increasing

the threshold level to one half of the mean prethresholding signal results in an MTF approximately

equal to the sinc function for all levels of charge sharing considered. Surprisingly, even when the

width of the relocation PDF was one-half of the element width, a threshold equal to d̄/2 would result

in negligible loss of photon counts, as illustrated in Fig. 8.4.1. This suggests that for photon-counting

applications where energy information is not required, simple thresholding may adequately suppress

false counts caused by charge sharing.

8.5 Discussion of preliminary results

The analysis presented here represents a �rst attempt at a theoretical understanding of the in�uence

of charge sharing between neighboring detector elements on SPC count rates and spatial resolution

expressed in terms of the modulation transfer function. While the description presented above is

simplistic in the sense that it does not account for emission and reabsorption of �uorescent and

Compton-scatter photons, or depth-dependent issues encountered in real SPC systems, it was useful

in highlighting some of the fundamental relationships between charge-sharing levels, count rates,

and spatial resolution of SPC systems. An interesting result from this �rst analysis is that when

energy-information is not required, simple thresholding techniques may enable increasing the MTF

of SPC systems without sacri�cing count rates. However, this may not be the case when emission

of �uorescent and Compton-scatter photons are considered. In this case, a combination of the

techniques used in the analyses presented here and those presented in Chapters 4 and 5 will be

required to understand the in�uence of reabsorption on count rates, spatial resolution, and image

noise. This is the focus of an ongoing investigation.

The formalism presented above will become useful in design, evaluation, and identi�cation of

potential bene�ts of adaptive binning approaches that sum charge from neighboring pixels to estimate

total deposited photon energy for each x-ray interaction, such as one implemented in the MEDIPIX3

prototype. [18]
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Appendix A

Supplemental material for Chapter 2

Material in this chapter is adapted from the Appendix of a manuscript entitled �A theoretical
comparison of x-ray angiographic image quality using energy-dependent and conventional subtraction
methods� by Jesse Tanguay, Ho Kyung Kim, and Ian A. Cunningham, published in Medical Physics
2012; 39: 132-142.

A.1 Linearization of the log signals

We let A0 = [A10, ..., Am0] represent the point about which we expand the log signal l̃i and li0 be

the corresponding log signal. Then

E
(
l̃i − l̃i0

)
= −E

ln
M̃i

M̃i

∣∣∣
A=A0

 . (A.1.1)

We linearize the right side of the above equation about M̃i/M̃i

∣∣
A=A0

= 1:

E
(
l̃i − l̃i0

)
≈ 1− E

 M̃i

M̃i

∣∣∣
A=A0

 . (A.1.2)

The quantity M̃i

∣∣
A=A0

would be determined from an average of a series of calibration scans and we

assume has negligible variability. Therefore

E
(
l̃i − l̃i0

)
≈ 1−

ˆ ∞
0

Si (E) q̄i (E) e−A
T µ

ρ (E)dE
ˆ ∞

0

Si (E) q̄i (E) e−A
T
0

µ
ρ (E)dE
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Linearizing M̃i about A =A0 yields

E
(
l̃i − l̃i0

)
≈

m∑
b=1

(Ab −Ab0)
µ̄

ρ
ib

where µ̄
ρ ib denotes the average value of the mass-attenuation coe�cient of basis material b weighted

by Si (E) q̄i (E) e−A
T
0

µ
ρ (E). In matrix notation the above expression can be written as

L− L0 = J (A−A0) . (A.1.3)

A.2 Log-signal covariance

In general, the covariance between log signals i and j, Cov(l̃i, l̃j), is given by

Cov
(
l̃i, l̃j

)
= E

(
∆l̃i∆l̃j

)
(A.2.1)

where ∆l̃i = l̃i − E(l̃i). A �rst order Taylor expansion of l̃i about E(M̃i) gives

l̃i ≈ l̃i

∣∣∣
M̃i=E(M̃i)

+
(
M̃i − E

(
M̃i

)) ∂l̃i

∂M̃i

∣∣∣∣∣
M̃i=E(M̃i)

(A.2.2)

≈ E
(
l̃i

)
−
M̃i − E

(
M̃i

)
E
(
M̃i

) . (A.2.3)

Therefore,

∆l̃i = − ∆M̃i

E
(
M̃i

) . (A.2.4)

where ∆M̃i = M̃i − E(M̃i). Combining Eqs. (A.2.1) and (A.2.4):

Cov
(
l̃i, l̃j

)
= E

 ∆M̃i

E
(
M̃i

) ∆M̃j

E
(
M̃j

)
 =

Cov
(
M̃i, M̃j

)
E
(
M̃i

)
E
(
M̃j

) (A.2.5)

where Cov(M̃i, M̃j) is the covariance between M̃i and M̃j . The exact form of Cov(M̃i, M̃j) depends

on the speci�c imaging application.

140



Appendix B

Supplemental material for Chapter 3

Material in this chapter is adapted from the Appendix of a manuscript entitled �The detective
quantum e�ciency of photon-counting x-ray detectors using cascaded-systems analyses� by Jesse
Tanguay, Seungman Yun, Ho Kyung Kim, and Ian A. Cunningham, published in Medical Physics
2013; 40(4): 041913-1.

B.1 PDF of readout signal, pd (d (r))

The PDF of readout signal d̃j describes the relative probability of d̃j taking particular values. In the

limit of fast readout rates ( ¯̇qoata� 1) with no scattering of secondary image quanta in the detector

(Tsec(k) ≈ 1) and one photon incident at ri, d̃
j is given by

d̃j (r) =

 d̃j |1 if ri is in element centered at r

d̃j |0 otherwise
(B.1.1)

where the CSA model gives

d̃j |1 = kq̃sec ∗Π
( r

a

)
+ ẽ (B.1.2)

= kÑsec|1 + ẽ (B.1.3)

and

d̃j |0 = ẽ (B.1.4)

where Ñsec|1 represents the total number of secondaries collected given one incident photon and ẽ

is a zero-mean Gaussian-distributed RV representing uncorrelated additive readout noise. Under

141



these conditions the probability that d̃j is greater than t is given by the complementary cumulative

distribution function (CDF) for d̃. The CDF for d̃ given Ñ j
o incident photons with positions {r̃ji , i =

1..Ñ j
o} is given by

Pd

(
d (r) ≥ t| Ñ j

o , r
j
1, ..., r

j
Nj

)
= Pd

(
d̃j |1 ≥ t

) Ñjo∑
i=1

Π

(
r− rji
a

)

+Pd

(
d̃j |0 ≥ t

)1−
Ñjo∑
i=1

Π

(
r− rji
a

) (B.1.5)

where the two terms describe regions of r where the readout signal is given by Eqs. (B.1.3) and

(B.1.4) respectively. Averaging over all possible values of {r̃ji , i = 1..Ñ j
o} yields

Pd

(
d (r) ≥ t| Ñ j

o

)
= Pd

(
d̃j |1 ≥ t

) Ñjo∑
i=1

ˆ
A

Π

(
r− rji
a

)
pr

(
rji

)
d2rji

+Pd

(
d̃j |0 ≥ t

) ˆ
A

1−
Ñjo∑
i=1

Π

(
r− rji
a

) pr

(
rji

)
d2rji (B.1.6)

= Pd

(
d̃j |1 ≥ t

) Ñ j
oa

A
+ Pd

{
d̃j |0 ≥ t

}(
1− Ñ j

oa

A

)
. (B.1.7)

Averaging over all possible values of Ñ j
o yields

Pd (d (r) ≥ t) = Pd

(
d̃j |1 ≥ t

)
¯̇qoata+ Pd

(
d̃j |0 ≥ t

)
(1− ¯̇qoata) (B.1.8)

=

ˆ ∞
t

[
pd

(
d̃j |1

)
¯̇qoata+ pd

(
d̃j |0

)
(1− ¯̇qoata)

]
dd. (B.1.9)

The integrand of the above equation is equal to the PDF for d̃:

pd (d (r)) = pd
(
dj |1

)
¯̇qoata+ pd

(
dj |0

)
(1− ¯̇qoata) (B.1.10)

which reduces to Eq. (3.2.25). The �rst term in Eq. (B.1.10) describes the primary peak in the PDF

centered at d̄nm = k1βḡ in Fig. 3.2.5 giving the distribution in d̃j values when a photon is incident

in an element centered on the photon, while the second term gives the distribution when no photon

is incident.
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B.2 Joint PDF of readout signal, pd (d (r) , d (r+ τ ))

The Wiener NPS in a photon-counting image is given by the Fourier transform of the autocovariance

of c̃ from Eq. (3.2.21) and requires the joint PDF of d̃ (r) and d̃ (r + τ ). It is important to emphasize

that d̃(r) is the presampling readout signal for an element centered at any r value, including the

non-physical situation of overlapping elements when τ is less than the detector element spacing. In

this case, one interacting photon may contribute to signals in both elements.

There are three possible scenarios to consider in the joint PDF: 1) photon incident on both

elements; 2) photon incident on only one element; and 3) no photons are incident on either element.

We let P1,1, P1,0, and P0,0 represent the probability that both elements are above the threshold for

each of these scenarios, giving

P (d (r) ≥ t and d (r + τ ) ≥ t) = P1,1 + 2P1,0 + P0,0. (B.2.1)

P1,1 : The scenario of a photon incident on each element has two physically possible conditions,

corresponding to complete overlap of the two elements or no overlap. When the elements completely

overlap (|τ | = 0), there can be only one photon contributing to both elements and the probability

that both signals are greater than t is then given by the complementary CDF for d̃|1 de�ned above

(see Eq. (B.1.8)). If the elements do not overlap, there must be two di�erent photons incident on

two uncorrelated elements, and the probability that both are greater than t is given by the square

of the complementary CDF for d̃|1 . The probability that both elements are above the threshold is

therefore given by

P1,1 = P
(
d̃j |1 ≥ t

) Ñjo∑
i=1

Π

(
r− rji
a

)
Π

(
r + τ − rji

a

)

+
[
P
(
d̃j |1 ≥ t

)]2 Ñjo∑
i=1

Ñjo∑
l=1
l 6=i

Π

(
r− rji
a

)
Π

(
r + τ − rjl

a

)
(B.2.2)

where the two terms describe the two conditions above. While it will not matter what the model

predicts for non-physical cases, Eq. (B.2.2) describes a convenient linear transition from complete

overlap to no overlap in proportion to the overlap area. Averaging over all possible values of {r̃ji , i =
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1..Ñ j
o} yields

P1,1 =
1

A
P
(
d̃j |1 ≥ t

) Ñjo∑
i=1

ˆ
A

Π

(
r− rji
a

)
Π

(
r + τ − rji

a

)
d2rji

+
1

A2

[
P
(
d̃j |1 ≥ t

)]2 Ñjo∑
i=1

Ñjo∑
l=1
l 6=i

ˆ
A

ˆ
A

Π

(
r− rji
a

)
Π

(
r + τ − rjl

a

)
d2rjid

2rjl (B.2.3)

=
Ñ j

o

A
P
(
d̃j |1 ≥ t

)
Π
(τ
a

)
∗Π

(τ
a

)
+
(
Ñ j

o

)2 a2

A2

[
P
(
d̃j |1 ≥ t

)]2
(B.2.4)

=
Ñ j

o

A
P
(
d̃j |1 ≥ t

)
aΛ
(τ
a

)
+
(
Ñ j

o

)2 a2

A2

[
P
(
d̃j |1 ≥ t

)]2
(B.2.5)

where Λ(τ/a) = Λ(τx/ax)Λ(τy/ay) represents the two dimensional triangle function and Λ(τx/a) is

equal to (1 − |τx/ax|) for |τx| < ax and zero otherwise and similarly for Λ(τy/ay). Averaging over

all possible values of Ñ j
o yields

P1,1 = ¯̇qoatP
(
d̃j |1 ≥ t

)
aΛ
(τ
a

)
+ (¯̇qoata)

2
[
P
(
d̃j |1 ≥ t

)]2
. (B.2.6)

P0,0 : For the case of no photon incident on either element, counts are triggered only when additive

noise exceeds the threshold. For complete element overlap we have

P0,0||τ |=0 = P
(
d̃j |0 ≥ t

)1−
Ñjo∑
i=1

Π

(
r− rji
a

) (B.2.7)

where the term in parenthesis describes regions of r where there are no incident x-ray photons. For

no overlap, we have

P0,0|τx>a and τy>a
= P0

(
d (r) ≥ t| Ñ j

o , r
j
1, ..., r

j

Ñjo

)
P0

(
d (r + τ ) ≥ t| Ñ j

o , r
j
1, ..., r

j

Ñjo

)
=

1−
Ñjo∑
i=1

Π

(
r− rji
a

)1−
Ñjo∑
i=1

Π

(
r + τ − rjl

a

)[P(d̃j |0 ≥ t)]2 . (B.2.8)
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Assuming a linear transition from non-overlapping elements to complete overlap as before gives

P0,0 = P
(
d̃j |0 ≥ t

)1−
Ñjo∑
i=1

Π

(
r− rji
a

)Λ
(τ
a

)

+
[
P
(
d̃j |0 ≥ t

)]21−
Ñjo∑
i=1

Π

(
r− rji
a

)1−
Ñjo∑
l=1

Π

(
r + τ − rjl

a

)[1− Λ
(τ
a

)]
(B.2.9)

and averaging over all possible values of {r̃ji , i = 1..Ñ j
o} and Ñ j

o yields

P0,0 = (1− ¯̇qoata) P
(
d̃j |0 ≥ t

)
Λ
(τ
a

)
+
[
P
(
d̃j |0 ≥ t

)]2
(1− ¯̇qoata)

2
[
1− Λ

(τ
a

)]
. (B.2.10)

P1,0 : In the non-overlapping case, d̃(r) and d̃(r+τ ) are independent RVs. In the complete-overlap

case, P1,0 must be equal to 0 because an element cannot have both one and zero photons incident

on it. We therefore represent P1,0 as

P1,0 = P
(
d̃j |1 ≥ t

)
P
(
d̃j |0 ≥ t

) Ñjo∑
i=1

Π

(
r− rji
a

)1−
Ñjo∑
l=1

Π

(
r + τ − rjl

a

)[1− Λ
(τ
a

)]
.

(B.2.11)

Averaging over all possible values of {r̃ji , i = 1..Ñ j
o} and Ñ j

o yields

P1,0 = ¯̇qoata (1− ¯̇qoata) P
(
d̃j |1 ≥ t

)
P
(
d̃j |0 ≥ t

) [
1− Λ

(τ
a

)]
. (B.2.12)

Combining Eqs. (B.2.6), (B.2.9), and (B.2.12) yields

P (d (r) ≥ t and d (r + τ ) ≥ t)

= ¯̇qoatP
{
d̃j |1 ≥ t

}
aΛ
(τ
a

)
+ (¯̇qoata)

2
[
P
{
d̃j |1 ≥ t

}]2
+ (1− ¯̇qoata) P

{
d̃j |0 ≥ t

}
Λ
(τ
a

)
+ (1− ¯̇qoata)

2
[
P
{
d̃j |0 ≥ t

}]2 [
1− Λ

(τ
a

)]
+2¯̇qoata (1− ¯̇qoata) P

{
d̃j |1 ≥ t

}
P
{
d̃j |0 ≥ t

}[
1− Λ

(τ
a

)]
(B.2.13)
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and the joint PDF of d̃(r) and d̃(r + τ ) can therefore be represented as

pd (d (r) , d (r + τ )) = δ (d (r)− d (r + τ )) ¯̇qoat pd
(
dj |1

)∣∣
d(r)

aΛ
(τ
a

)
+ (¯̇qoata)

2
pd
(
dj |1

)∣∣
d(r)

pd
(
dj |1

)∣∣
d(r+τ )

+ δ (d (r)− d (r + τ )) (1− ¯̇qoata) pd
(
dj |0

)∣∣
d(r)

Λ
(τ
a

)
+ (1− ¯̇qoata)

2
pd
(
dj |0

)∣∣
d(r)

pd
(
dj |0

)∣∣
d(r+τ )

[
1− Λ

(τ
a

)]
+ 2¯̇qoata (1− ¯̇qoata) pd

(
dj |0

)∣∣
d(r)

pd
(
dj |1

)∣∣
d(r+τ )

[
1− Λ

(τ
a

)]
(B.2.14)

where pd(d
j |1)|d(r) indicates that the PDF of d̃j |1 is evaluated at d̃(r) and similarly for pd(d

j |1)|d(r+τ ).

B.3 Presampling NPS of SPC image c̃(r)

Building on Appendix B and combining Eqs. (3.2.21) and (B.2.14), gives the autocovariance Kc (τ ):

Kc (τ ) = M

[
q̄oa

ˆ ∞
t

pd

(
d̃j |1

)
dd

+ (1− ¯̇qoata)

ˆ ∞
t

pd

(
d̃j |0

)
dd

− (1− ¯̇qoata)
2
(ˆ ∞

t

pd

(
d̃j |0

)
dd

)2

−2¯̇qoata (1− ¯̇qoata)

×
ˆ ∞
t

pd

(
d̃j |0

)
dd

ˆ ∞
t

pd

(
d̃j |1

)
dd

]
Λ
(τ
a

)
. (B.3.1)

Taking the Fourier transform gives

NPSc (k) = M

[
q̄oa

ˆ ∞
t

pd

(
d̃j |1

)
dd

+ (1− ¯̇qoata)

ˆ ∞
t

pd

(
d̃j |0

)
− (1− ¯̇qoata)

2
(ˆ ∞

t

pd

(
d̃j |0

)
dd

)2

−2¯̇qoata (1− ¯̇qoata)

×
ˆ ∞
t

pd

(
d̃j |0

)
dd

ˆ ∞
t

pd

(
d̃j |1

)
dd

]
×asinc2 (axu) sinc2 (ayv) (B.3.2)

where sinc(θ) = sin(πθ)/πθ.
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B.4 Calculation of ξT (t) and ξF (t)

From Eqs. (3.2.43) and (3.2.45), the probability of a true count given a photon interaction ξT (t) is

given by

ξT (t) =

ˆ ∞
t

 ∞∑
i=0

i∑
j=1

j∑
l=1

prg (i)

 i

j

βj (1− β)
i−j

 j

l

 γl (1− γ)
j−l

δ

(
d

k1
− l
) ∗ pe (d) dd

(B.4.1)

=

∞∑
i=0

i∑
j=1

j∑
l=1

prg (i)

 i

j

βj (1− β)
i−j

 j

l

 γl (1− γ)
j−l
[ˆ ∞

t

δ

(
d

k
− l
)
∗ pe (d) dd

]

(B.4.2)

=

∞∑
l=t

∞∑
j=1

∞∑
i=0

prg (i)

 i

j

βj (1− β)
i−j

 j

l

 γl (1− γ)
j−l

pe (kl) (B.4.3)

and the probability of a false count given no photon interaction ξF (t) is simply given by

ξF (t) =

ˆ ∞
t

pe (d) dd (B.4.4)

where pe (k1j) represents the PDF for ẽ evaluated at k1j and similarly for pe (d).
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Appendix C

Supplemental material for Chapter 4

C.1 Joint PDF of parallel processes

C.1.1 Joint PDF and branch points

Random selection of points of an input distribution to follow one of two paths, or both paths,

is illustrated in Fig. 4.2.2 where ÑA and ÑB represent the number of quanta in paths A and B,

respectively, and ξ̃j,A and ξ̃j,B represent selection variables for the jth input quantum. We let

ξ̃A = [ξ̃A,1 . . . ξ̃A,Ño
], ξ̃B = [ξ̃B,1 . . . ξ̃B,Ño

] and pNA,NB
(NA, NB|Ño, ξ̃A, ξ̃B) represent the joint PDF of

ÑA and ÑB given Ño, ξ̃A, and ξ̃B. For �xed Ño, ξ̃A, and ξ̃B, ÑA and ÑB are given by ÑA =
∑Ño

j=1 ξ̃j,A

and ÑB =
∑Ño

j=1 ξ̃j,B, respectively. Therefore

pNA,NB

(
NA, NB|Ño, ξ̃A, ξ̃B

)
= δ

NA −
Ño∑
j=1

ξ̃j,A, NB −
Ño∑
j=1

ξ̃j,B

 (C.1.1)

where δ( , ) denotes the two-dimensional Dirac δ function. Using the translation property of the

delta function, the above equation is expressed as

pNA,NB

(
NA, NB |Ño, ξ̃A, ξ̃B

)
=

[
δ
(
NA − ξ̃A,1, NB − ξ̃B,1

)
∗ δ
(
NA − ξ̃A,2, NB − ξ̃B,1

)
∗ . . .

... ∗ δ
(
NA − ξ̃A,Ño

, NB − ξ̃B,Ño

)]
(C.1.2)
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where ∗ represents the convolution operator. Therefore

pNA,NB(NA, NB|Ño) =

ˆ
...

ˆ
pA,B

(
NA, NB |Ño, ξA, ξB

)
pξA,ξB (ξA, ξB) dÑoξAdÑoξB (C.1.3)

=

ˆ
...

ˆ [
δ
(
NA − ξ̃A,1, NB − ξ̃B,1

)
∗ δ
(
NA − ξ̃A,2, NB − ξ̃B,2

)
∗ . . .

... ∗ δ
(
NA − ξ̃A,Ño

, NB − ξ̃A,Ño

)]
pξA,ξB

(ξA, ξB) dÑoξAdÑoξB (C.1.4)

where pξA,ξB
(ξA, ξB) = pξA,1,...,ξA,Ño

,ξB,1,...,ξB,Ño
(ξA,1, . . . , ξA,Ño

, ξB,1, . . . , ξB,Ño
) represents the joint

PDF of {ξ̃j,A, ξ̃j,B, j = 1..No}, and
´

dÑoξA represents an Ño-dimensional integral with respect to

ξA and similarly for
´

dÑoξB. Since each trial is independent of all others we have [143]

pξA,ξB
(ξA, ξB) =

Ño∏
j=1

pξA,ξB (ξA,j , ξB,j) . (C.1.5)

Combining the previous two equations yields

pNA,NB(NA, NB|Ño) =

[ˆ
δ
(
NA − ξ̃A,1, NB − ξ̃B,1

)
pξA,ξB (ξA,1, ξA,1) dξA,1dξB,1

]
∗ . . .

· · · ∗
[ˆ

δ
(
NA − ξ̃A,Ño

, NB − ξ̃B,Ño

)
pξA,ξB

(
ξA,Ño

, ξB,Ño

)
dξA,Ño

dξB,Ño

]
(C.1.6)

Using the sifting property of the δ function results in Eq. (4.2.14).

C.1.1.1 Joint PDF of parallel cascades

Figure 4.2.3 is an illustration of a parallel cascade of elementary processes. We let Ñj,A,i represent

the number of quanta after the ith quantum process of path A for the jth input quantum and

similarly for Ñj,B,i. The total number of quanta from paths A and B, ÑA and ÑB, are therefore

given by

ÑA =

Ño∑
j=1

Ñj,A,nA
and ÑB =

Ño∑
j=1

Ñj,B,nB
(C.1.7)

where nA and nB represent the number of elementary processes in paths A and B, respectively.

For notational simplicity we let Ñj,A = Ñj,A,nA and Ñj,B = Ñj,B,nB represent the total number of

quanta from paths A and B, respectively, corresponding to the jth input quantum. Assuming that

each process in path A is independent of each process in path B, the joint PDF of Ñj,A and Ñj,B is
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expressed as

pNj,A,Nj,B

(
Nj,A, Nj,B| ξ̃j,A, ξ̃j,B

)
= pNj,A

(
Nj,A| ξ̃j,A

)
pNj,B

(
Nj,B| ξ̃j,B

)
. (C.1.8)

Since each trial is independent of the others we also have

pN1,A,...,NÑo,A
,N1,B,...,NÑo,B

(
N1,A, ..., NÑo,A

, N1,B, ..., NÑo,B

∣∣∣ Ño, ξ̃A, ξ̃B

)
=

Ño∏
j=1

Ño∏
j′=1

pNj,A

(
Nj,A| ξ̃j,A

)
pNj′,B

(
Nj′,B| ξ̃B,j′

)
. (C.1.9)

Therefore, the joint PDF of ÑA and ÑB is given by

pNA,NB

(
NA, NB| Ño, ξ̃A, ξ̃B

)
= pNA

(
NA| Ño, ξ̃A

)
pNB

(
NB| Ño, ξ̃B

)
(C.1.10)

where

pNA

(
NA| Ño, ξ̃A

)
= pN1,A

(
NA| ξ̃1,A

)
∗ pN2,A

(
NA| ξ̃2,A

)
∗ · · · ∗ pNÑo,A

(
NA| ξ̃Ño,A

)
(C.1.11)

where a similar expression exists for pNB(NB|Ño, ξ̃B). Combining the previous two equations yields

pNA,NB

(
NA, NB| Ño, ξ̃A, ξ̃B

)
=
[
pN1,A

(
NA| ξ̃1,A

)
pN1,B

(
NB| ξ̃1,B

)]
∗
[
pN2,A

(
NA| ξ̃2,A

)
pN2,B

(
NB| ξ̃2,B

)]
· · · ∗

[
pNÑo,A

(
NA| ξ̃Ño,A

)
pNÑo,B

(
NB| ξ̃Ño,B

)]
. (C.1.12)

Since {Ñj,A, j = 1..Ño} are identically distributed RVs, the above expression reduces to

pNA,NB

(
NA, NB| Ño, ξ̃A, ξ̃B

)
=

[
pN1

A

(
NA| ξ̃A

)
pN1

B

(
NB| ξ̃B

)]
∗Ño−1

[
pN1

A

(
NA| ξ̃A

)
pN1

B

(
NB| ξ̃B

)]
(C.1.13)

where pN1
A

(NA|ξ̃A) and pN1
B

(NB|ξ̃B) represent the PDFs of ÑA and ÑB, respectively, for one quan-

tum input to the parallel cascade, and [pN1
A

(NA|ξ̃A)pN1
B

(NB|ξ̃B)] ∗ Ño−1[pN1
A

(NA|ξ̃A)pN1
B

(NB|ξ̃B)]

represents a two-dimensional convolution of pN1
A

(NA|ξ̃A)pN1
B

(NB|ξ̃B) with itself Ño − 1 times.
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C.1.1.2 Joint PDF of quantum-labelled parallel cascades

In many situations, the parameters describing the indiviual process (eg. gain or selection) in

Fig. 4.2.3 are themselves functions of some RV associated with each quantum input to that process.

This idea was introduced by Van Metter and Rabbani [125] who called these input-labelled random

processes. We adopt this idea to describe the depth-dependent collection e�ciency in the top shaded

path of Fig. 4.2.5 where we let the interaction depth z̃1 be a RV with the appropriate exponential

PDF. However, in the lower shaded box of Fig. 4.2.5 all processes are functions of either depth z̃1

and/or scatter angle θ̃. In addition, these processes are coupled because they are dependent on

the same z̃1 and θ̃ for each individual interacting photon. We generalize the previous derivation to

include the description of these input-labelled parallel processes.

We let b̃j = [b̃j,1 b̃j,1 . . . b̃j,m] be a 1 × m random vector with components representing input

parameters associated with the jth input quantum. We let pb(bj) = pb(bj,1, bj,2, . . . , bj,m) represent

the joint PDF of b̃j,1 b̃j,1 . . . b̃j,m. The number of input parameters m is determined from the physical

situation being described. For example, in the case of photoelectric interactions, the characteristic

reabsorption probability depends on both the angle of characteristic emission θ̃ and the depth of

interaction z̃1, the number of collected secondaries also depends on the depth of interaction, and

therefore m = 2. The set of input parameters for one quantum is independent of those for another

quantum and, therefore, similar to the derivation above, the PDF of ÑA and ÑB given Ño, ξ̃A, ξ̃B,

and {b̃j , j = 1..Ño} is given by

pNA,NB

(
NA, NB| Ño, ξ̃A, ξ̃B,

{
b̃j , j = 1..Ño

})
= pNA

(
NA| Ño, ξ̃A, ξ̃B,

{
b̃j , j = 1..Ño

})
× pNB

(
NB| Ño, ξ̃A, ξ̃B,

{
b̃j , j = 1..Ño

})
(C.1.14)

where

pNA

(
NA| Ño, ξ̃A, ξ̃B,

{
b̃j , j = 1..Ño

})
= pN1,A

(
NA| ξ̃1,A, b̃1

)
∗ pN2,A

(
NA| ξ̃2,A, b̃2

)
∗ . . .

· · · ∗ pNÑo,A

(
NA| ξ̃Ño,A

, b̃Ño

)
. (C.1.15)

Combining with pNA
(NA|Ño, ξ̃A, ξ̃B, {b̃j , j = 1..Ño}) and averaging over all possible values of ξ̃A,
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ξ̃B, and {b̃j , j = 1..Ño} yields

pNA,NB

(
NA, NB|Ño

)
=
〈〈
pN1

A
(NA| ξA,b) pN1

B
(NB| ξB,b)

〉
b

〉
ξA,ξB

∗No−1
〈〈
pN1

A
(NA| ξA,b) pN1

B
(NB| ξB,b)

〉
b

〉
ξA,ξB

(C.1.16)

where pN1
A

(NA|ξA,b) and pN1
B

(NB|ξB,b) represent the PDFs of ÑA and ÑB given ξj,A, ξj,B, and bj ,

for one quantum input to the parallel cascade, and

〈
pN1

A
(NA| ξA,b) pN1

B
(NB| ξB,b)

〉
b

=

ˆ
pN1

A
(NA| ξA,b) pN1

B
(NB| ξB,b) pb (b) dmb (C.1.17)

where pb(bj) = pb(b) is independent of j. Averaging over all possible values of Ño yields

pNA,NB
(NA, NB) =

ˆ [〈〈
pN1

A
(NA| ξA,b) pN1

B
(NB| ξB,b)

〉
b

〉
ξA,ξB

∗No−1
〈〈
pN1

A
(NA| ξA,b) pN1

B
(NB| ξB,b)

〉
b

〉
ξA,ξB

]
po (No) dNo. (C.1.18)

The above equation is a generic expression for the joint PDF of quanta from two parallel paths when

elementary processes in each path depend on a number of input parameters b̃.

C.2 PDF of number of quanta for a generalized interaction

model

In this section we calculate the PDF of the total number of quanta for the generalized interaction

model illustrated in Fig. 4.2.5. This model is used to describe energy deposition, conversion to

seconday quanta, and collection of secondary quanta for both photoelectric and incoherent inter-

actions. We let ÑA, ÑB, and ÑC represent the number of quanta for top, middle, and bottom

paths of Fig. 4.2.5, respectively, ÑB+C = ÑB + ÑC, and Ñt = ÑA + ÑB+C represent the total

number of quanta for interaction type t. We calculate pNt(Nt) for one incident quantum, that is

pNo
(No) = δ(No − 1).

The �rst branching point in Fig. 4.2.5 represents separation of interacting photons that produce a

�uorescent/scatter photon (paths B and C) from those that do not (path A). This process represents
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a Bernoulli branch, and, therefore, the PDF of Ñt can be calculated using Eq. (4.2.22):

pNt (Nt) = (1− St) pNA

(
Nt| S̃t = 0

)
+ St pNB+C

(
Nt| S̃t = 1

)
(C.2.1)

where St = S̄t represents the probability that a scatter/emission photon is generated, pNA
(NA|S̃t =

0) represents the PDF of ÑA given no scatter/emission photon, and pNB+C
(NB+C |S̃t = 1) represents

the PDF of ÑB+C given a scatter/emission photon. Since the collection e�ciency in path A is a

function of interaction depth, and each process in paths B and C may be functions of interaction

depth and �uorescent/scatter emission angle, calculation of pNA
(NA|S̃t = 0) and pNB+C

(NB+C |S̃t =

1) requires use of the joint PDF for quantum-labelled parallel processes derived above.

C.2.1 PDF of ÑA

Path A describes the case where no scatter/emission photon is produced and all the energy of an

interacting photon is deposited at the primary interaction site. In this case, pNA
(NA|S̃t = 0) can be

obtained using Eq. (4.2.18):

pNA

(
NA| S̃t = 0

)
=

ˆ
pNA,0

(
NA,0| S̃t = 0

)ˆ
pNA,1

(NA,1|NA,0) pNA,2
(NA|NA,1) dNA,0dNA,1

(C.2.2)

where pA,0(NA,0|S̃t = 0) = δ(NA,0 − 1) and therefore

pNA

(
NA| S̃t = 0

)
=

ˆ
pNA,1 (NA,1|NA,0 = 1) pNA,2 (NA|NA,1) dNA,1. (C.2.3)

C.2.1.1 Conversion to secondary quanta

The �rst process after the Bernoulli branch in path A represents conversion to secondary quanta at

the primary interaction site. This is described using the PDF transfer relationship for a quantum

gain stage. Therefore

pNA

(
NA| S̃ = 0

)
=

ˆ
pgA (NA,1) pNA,2 (NA|NA,1) dNA,1 (C.2.4)

where pgA(NA,1) = pgA(gA)|gA=NA,1 where pgA(gA) represents the PDF describing all possible gain

values g̃A and is given by Eqs. (4.2.8), (4.2.9), and (4.2.10) for Poisson, Gaussian, and deterministic
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gain, respectively. In this work we assume that g̃A is Poisson-distributed with mean ḡ = E/w where

E is the incident photon energy and w is the energy required to liberate one electron-hole pair.

C.2.1.2 Depth-dependent collection of secondary quanta

The second process in path A represents depth-dependent collection of secondary quanta and is

characterized by a Bernoulli selection variable that takes on values of either zero or one with prob-

abilities that depend on the depth of primary photon interaction z̃1. Transfer of the PDF through

depth-dependent collection processes has recently been described, [194] giving

pNA,2
(NA|NA,1) =

ˆ
B (NA;NA,1, β (z1)) pz1 (z1) dz1 (C.2.5)

where B (NA;NA,1, β(z1)) represents the binomial distribution with number of trials NA,1 and prob-

ability of success β(z1) equal to the collection e�ciency, and pz1(z1) represents the PDF of z̃1.

Combining the previous two equations yields

pNA

(
NA| S̃ = 0

)
=

ˆ
pgA (NA,1)

ˆ
B (NA;NA,1, β (z1)) pz1 (z1) dz1dNA,1. (C.2.6)

C.2.2 PDF of ÑB + ÑC

In the case that a characteristic/scatter photon is generated, energy may be deposited at primary

(path B) and secondary (path C) absorption sites as illustrated Fig. 4.2.5. The branch point sep-

arating paths B and C represents a cascade fork. All subsequent processes may be functions of

interaction depth or emission/scatter angle or both, and therefore, from Eqs. (4.2.25) and (C.1.18),

pNB+C(NB+C|S̃t = 1) is given by

pNB+C

(
NB+C| S̃t = 1

)
=
〈
pNB

(
NB+C| S̃t = 1,b

)
∗pNC

(
NB+C| S̃t = 1,b

)〉
b

(C.2.7)

where b̃ = [z̃1, θ̃]. In the following sections we calculate pNB
(NB|S̃t = 1,b) and pNB

(NC|S̃t = 1,b) for

�xed b̃ = [z̃1, θ̃] and then average over all possible values of b̃ = [z̃1, θ̃] to get pNB+C
(NB+C|S̃t = 1).

Averaging over all possible values of [z̃1, θ̃] requires the joint PDF of z̃1 and θ̃, pz1,θ(z1, θ).
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C.2.2.1 PDF of ÑB for �xed z̃1 and θ̃

There are two processes following the cascade fork in Path B of Fig. 4.2.3. The �rst process represents

conversion to secondary quanta at the primary interaction site and the second process represents

depth-dependent collection of secondary quanta. In the case of incoherent interactions, the energy

deposited at the primary interaction site is a function of the random scatter angle θ̃. Therefore,

from Eq. (4.2.18), pNB
(NB|S̃t = 1, z̃1, θ̃) is given by

pNB

(
NB| S̃t = 1, z̃1, θ̃

)
=

ˆ
pNB,0

(
NB,0| S̃t = 1

)
(C.2.8)

×
ˆ
pNB,1

(
NB,1|NB,0, θ̃

)
pNB,2 (NB|NB,1, z̃1) dNB,1dNB,0 (C.2.9)

where pB,0(NB,0|S̃ = 1) = δ(NB,0 − 1):

pNB

(
NB| S̃t = 1, z̃1, θ̃

)
=

ˆ
pNB,1

(
NB,1|NB,0 = 1, θ̃

)
pNB,2

(NB|NB,1, z̃1) dNB,1 (C.2.10)

Conversion to secondary quanta at primary interaction site The �rst process following the

cascade fork in path B represents conversion to secondary quanta at the primary interaction site.

Therefore, similar to Eq. (C.2.4):

pNB

(
NB| S̃t = 1, z̃1, θ̃

)
=

ˆ
pgB

(
NB,1; θ̃

)
pNB,2

(NB|NB,1, z̃1) dNB,1 (C.2.11)

where pgB(gB; θ̃) represents the PDF of g̃B for scatter/emission photon angle θ̃. Similar to g̃A, we

assume g̃B is Poisson-distributed with mean value ḡB = (E − E′ (θ))/w where E′ (θ) is the �uores-

cent/scatter photon energy for emission angle θ. Note that in the case of photoelectric interactions

the �uorescent photon energy is independent of scatter angle.

Depth-dependent collection of secondary quanta For �xed z̃1, pNB,2
(NB|NB,1, z̃1) is given

by the binomial distribution [193�195]

pNB,2
(NB|NB,1, z̃1) = B (NB;NB,1, β (z̃1)) . (C.2.12)
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Combining the previous two equations yields

pNB

(
NB| S̃t = 1, z̃1, θ̃

)
=

ˆ
pgB

(
NB,1; θ̃

)
B (NB;NB,1, β (z̃1)) dNB,1. (C.2.13)

C.2.2.2 PDF of ÑC for �xed z̃1 and θ̃

There are three processes following the cascade fork in Path C of Fig. 4.2.3. Therefore, from

Eq. (4.2.18), pNC
(NC|S̃t = 1, z̃1, θ̃) is given by

pNC

(
NC| S̃t = 1, z̃1, θ̃

)
=

ˆ
pNC,0

(
NC,0| S̃t = 1

)ˆ
pNC,1

(
NC,1|NC,0, θ̃, z̃1

)
×
ˆ
pNC,2

(
NC,2|NC,1, θ̃

)
pNC,3

(NC|NC,2, z̃1) dNC,2dNC,1dNC,0 (C.2.14)

where pNC,0

(
NC,0|S̃t = 1

)
= δ(NC,0 − 1). Therefore

pNC

(
NC| S̃t = 1, z̃1, θ̃

)
=

ˆ
pNC,1

(
NC,1|NC,0 = 1, θ̃, z̃1

)
×
ˆ
pNC,2

(
NC,2|NC,1, θ̃

)
pNC,3

(
NC|NC,2, z̃1, θ̃

)
dNC,2dNC,1. (C.2.15)

Reabsorption of �uorescent/scatter photon The �rst process following the cascade fork in

Path C of Fig. (4.2.5) represents selection of �uorescent/scatter photons that are reabosrbed in the

x-ray convertor material. Therefore pNC,1(NC,1|NC,0 = 1, θ̃, z̃1) is equal to the Binomial distribution

with 1 trial and probability of success equal to the reabsorption probability ft(θ̃, z̃1). Therefore [195]

pNC,1

(
NC,1|NC,0 = 1, θ̃, z̃1

)
=
[
1− ft

(
θ̃, z̃1

)]
δ (NC,1) + ft

(
θ̃, z̃1

)
δ (NC,1 − 1) (C.2.16)

Combining the previous two equations yields

pNC

(
NC| S̃t = 1, z̃1, θ̃

)
=
[
1− ft

(
θ̃, z̃1

)] ˆ
pNC,2

(
NC,2|NC,1 = 0, θ̃

)
pNC,3 (NC|NC,2, z̃1) dNC,2

+ ft

(
θ̃, z̃1

)ˆ
pNC,2

(
NC,2|NC,1 = 1, θ̃

)
pNC,3

(
NC|NC,2, z̃1, θ̃

)
dNC,2

(C.2.17)
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where
´
pNC,2(NC,2|NC,1 = 0)pNC,3(NC|NC,2)dNC,2 = δ (NC). Therefore

pNC

(
NC| S̃t = 1, z̃1, θ̃

)
=
[
1− ft

(
θ̃, z̃1

)]
δ (NC)

+ ft

(
θ̃, z̃1

)ˆ
pNC,2

(
NC,2|NC,1 = 1, θ̃

)
pNC,3

(
NC|NC,2, z̃1, θ̃

)
dNC,2.

(C.2.18)

Conversion to secondary quanta at reabsorption site The second process following the

cascade fork in path C represents conversion to secondary quanta at the reabsorption site. Therefore,

similar to Eqs. (C.2.4) and (C.2.11),

pNC

(
NC| S̃t = 1, z̃1, θ̃

)
=
[
1− ft

(
θ̃, z̃1

)]
δ (NC)

+ ft

(
θ̃, z̃1

)ˆ
pgC

(
NC,2; θ̃

)
pNC,3

(
NC|NC,2, z̃1, θ̃

)
dNC,2 (C.2.19)

where pgC(gC; θ̃) represents the PDF of g̃C for �uorescent/scatter angle θ̃ where ḡC = E′(θ)/w.

Similar to g̃A and g̃B, we assume that g̃C is Poisson-distributed.

Depth-dependent collection of secondary quanta at reabsorption site The third process

following the cascade fork in Path C represents depth-dependent collection of secondary quanta. We

let pz2(z2|z̃1, θ) represent the PDF of reabsorption depth z̃2 given primary interaction depth z̃1 and

emission angle θ̃. Using the PDF transfer relationship for depth-dependent collection e�ciency, [194]

pNC,3(NC|NC,2, z̃1, θ̃) is given by

pNC,3

(
NC|NC,2, z̃1, θ̃

)
=

ˆ
B (NC; gC, β (z2)) pz2

(
z2| z̃1, θ̃

)
dz2. (C.2.20)

Therefore

pNC

(
NC| S̃ = 1, z̃1, θ̃

)
=

[
1− ft

(
θ̃, z̃1

)]
δ (NC) + ft

(
θ̃, z̃1

)[ˆ
pgC

(
NC,2; θ̃

)
×
ˆ
B (NC; gC, β (z2)) pz2

(
z2| z̃1, θ̃

)
dz2dNC,2

]
(C.2.21)
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C.2.2.3 PDF of ÑB + ÑC

Combining Eqs. (C.2.7), (C.2.13), and (C.2.21) yields

pB+C

(
NB+C| S̃ = 1

)
= 〈(1− f)BB (NB+C;β)〉z1,θ +

〈
f BB (NB+C;β) ∗ 〈BC (NB+C;β)〉z2

〉
z1,θ

(C.2.22)

where BB(NB;β) and BC(NC;β) are given by Eqs. (4.2.35) and (4.2.36), respectively.

C.2.3 PDF of Ñt = ÑA + ÑB + ÑC

Combining Eqs. (C.2.1), (C.2.6), and (C.2.22) yields the PDF of the total number of quanta for the

generic x-ray interaction model illustrated in Fig. (4.2.5)

pt (Nt) = (1− S) 〈BA (Nt;β)〉z1 + S 〈(1− f)BB (Nt;β)〉z1,θ

+ S
〈
f BB (Nt;β) ∗ 〈BC (Nt;β)〉z2

〉
z1,θ

. (C.2.23)

C.3 PDF of reabsorption depth z̃2

Calculation of the total number of quanta for the generic interaction model (Eq. (C.2.23)) requires

the PDF of reabsorption depth z̃2 given primary interaction depth z̃1 and scatter angle θ̃. Using a

cylindrical coordinate system with origin at z̃1, pz2(z2|z1, θ) is given by

pz2

(
z2| z̃1, θ̃

)
=

¨
pz2

(
z2, r, φ| z̃1, θ̃

)
rdrdφ (C.3.1)

where pz2(z2, r, φ|z1, θ) represents the joint PDF of z̃2, r̃, and azimuthal angle φ̃ (Fig.4.2.5) given z̃1

and θ̃ and is given by

pz2

(
z2, r, φ| z̃1, θ̃

)
= C

(
z̃1, θ̃

)
µ (Es) e

−µ(Es)
√
r2+(z̃1−z2)2 (C.3.2)

where C(z̃1, θ̃) is a normalization constant that is a function of both z̃1 and scatter angle θ̃. Assuming

the scatter photon is reabsorbed, C(z̃1, θ̃) is determined by requiring the integral of pz2(z2, r, φ|z̃1, θ̃)
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over a semi-in�nite slab of thickness L to be unity for all z̃1 and θ̃:

C
(
z̃1, θ̃

)−1

= 2π


ˆ L

z̃1

ˆ (L−z̃1)|tan θ|

0

µ (Es) e
−µ(Es)

√
r2+(z̃1−z2)2rdrdz2 0 ≤ θ < π/2

ˆ z̃1

0

ˆ z̃1|tan θ|

0

µ (Es) e
−µ(Es)

√
r2+(z̃1−z2)2rdrdz2 π/2 ≤ θ < π

. (C.3.3)
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Appendix D

Supplemental material for Chapter 5

In the following sections the mean number of counts and covariance of counts detected in energy bins

of EPC x-ray detectors is derived. The derivation presented below is similar to that recently derived

for photon-counting detectors that implement a single threshold to disitinguish x-ray interactions

from electronic noise.

D.1 Energy-binned image signal for energy-resolving photon-

counting x-ray detectors

Energy-resolved photon counting imaging is achieved by applying two thresholds to assign interacting

photon energy to one of n energy bins for each fast readout of the detector. Ideally, each readout

interval is short such that the probability of multiple photon interactions in the same element is small

(i.e.. at � 1/¯̇qoa). Pile-up occurs when this condition is not satis�ed, resulting in spectral distortion

and a reduced detected count rate. [100,217] In either case, for the jth readout of the detector, the

number of photons detected in energy bin ν is a Bernoulli RV s̃jv,nm having sample values of 1 or 0

where

s̃j,nm =

 1 for tν ≤ d̃jnm ≤ tν+1

0 otherwise
(D.1.1)

where tν and tν+1 represent lower and upper thresholds for bin ν. We assume a lag-free detector

such that s̃jν,nm and s̃iν,nm are independent RVs for i 6= j and de�ne s̃†jν (r) [mm−2] as the sampled
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and thresholded image signal:

s̃†jν (r) = s̃jν (r)

∞∑
n=−∞

∞∑
m=−∞

δ (r− rnm) (D.1.2)

where s̃jν (r) is a continuous presampling representation of s̃jν,nm. An SPC image is produced after

M readouts using s̃jν,nm to increment a counter for each element, resulting in image c̃†ν (r):

c̃†ν (r) =

M∑
j=1

s̃†jν (r) (D.1.3)

represented as a sequence of scaled δ-functions.

D.2 Mean energy-binned signals

The mean iamge signal from energy bin ν is given by

E
{
c̃†ν (r)

}
=

∞∑
n=−∞

∞∑
m=−∞

E {c̃ν (r)} δ (r− rnm) . (D.2.1)

Following the notation of Papoulis [143] and Tanguay et al., [192] we let pcν (cν ; r) represent the PDF of

c̃ν(r). Since c̃ is equal to the summation of M Bernoulli RVs, the binomial distribution gives [143,192]

E (c̃ν (r)) = M P(tν ≤ d̃ (r) ≤ tν+1) (D.2.2)

where P( ) represents the probability of observing the speci�ed event. Similar to the derivation

presented by Tanguay et al., [192] the above equation is expressed as

E (c̃ν (r)) = c̄ν = M

ˆ tν+1

tν

pd (d) dd. (D.2.3)

The above equation shows the expected result that the mean signal from an energy bin is shift

invariant and, more importantly, can be determined from the PDF of d̃.
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D.3 Covariance bewteen EPC energy bins

The covariance between energy bins ν and ρ is generally expressed as

Cov (c̃ν(r), c̃ρ(r)) = E (c̃ν(r)c̃ρ(r))− E (c̃ν(r)) E (c̃ρ(r)) (D.3.1)

= E (c̃ν(r)c̃ρ(r))− c̄ν c̄ρ (D.3.2)

where c̄ν and c̄ρ are given by Eq. (D.2.3). The �rst term in the above equation is given by:

E (c̃ν(r)c̃ρ(r)) = E

 M∑
i=1

M∑
j=1

s̃iν (r) s̃jρ (r)

 (D.3.3)

=
M∑
j=1

E
(
s̃jν (r) s̃jρ (r)

)
+

M∑
i=1

M∑
j=1
j 6=i

E
(
s̃iν (r) s̃jρ (r)

)
(D.3.4)

where we have separated the double summation into terms for which i = j and i 6= j, E{s̃iν (r) s̃jν (r)} =

s̄ν s̄ρ and, since d̃ is WSS,

E
(
s̃jν (r) s̃jρ (r)

)
=

ˆ +∞

−∞

ˆ +∞

−∞
sjνs

j
ρps
(
sjν , s

j
ρ

)
dsjν dsjρ (D.3.5)

where ps(s
j
ν , s

j
ρ) represents the joint PDF [143] for sjν (r) and sjρ (r) and is the same for all j and

independent of r:

ps
(
sjν , s

j
ρ

)
=

1∑
i=0

1∑
l=0

ζilδ
(
sjν − i

)
δ
(
sjν − l

)
(D.3.6)

where ζil represents the probability that s̃
j
ν (r) equals i and s̃jρ (r) equals l. Since a photon can only be

counted in bin ν or bin ρ, E(s̃jν (r) s̃jρ (r)) is always equal to 0 ν 6= ρ. For ν = ρ, E(s̃jν (r) s̃jρ (r))|ν=ρ =

E(s̃jν (r)) = s̄ν . Therefore

E
(
s̃jν (r) s̃jρ (r)

)
=

 0 for ν 6= ρ

s̄ν for ν = ρ
. (D.3.7)

Combining this result with Eqs. (D.3.2) and (D.3.4), and assuming M � 1 yields

Cov (c̃ν , c̃ρ) =

 −Ms̄ν s̄ρ for ν 6= ρ

Ms̄ν for ν = ρ
(D.3.8)

=

 −c̄ν c̄ρ ×
1

M
for ν 6= ρ

c̄ν for ν = ρ
(D.3.9)
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where s̄ν =
´ tν+1

tν
pd (d) dd.
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Appendix E

Monte Carlo simulation of

fundamental energy-resolution limits

in energy-resolving photon-counting

x-ray detectors

This chapter is adapted from a manuscript entitled �The role of x-ray Swank factor in energy-
resolving photon-counting imaging� by Jesse Tanguay, Ho Kyung Kim, and Ian A. Cunningham,
published in Medical Physics 2010; 37: 6205-6211.

E.1 Introduction

The prospect of single-photon counting (SPC) detectors for x-ray image acquisition has identi�ed

a number of bene�ts over the usual approach in which the detector signal is proportional to total

energy deposited during an image-acquisition interval. [18,29,111,129,171,172,174,187,216] One exciting as-

pect is the potential for energy-resolved x-ray imaging where the energy of each interacting x-ray

photon is estimated with the goal of determining the spectrum of interacting photons for each image

pixel. Studies have shown that the use of energy-resolving photon-counting (EPC) detectors can

increase the contrast-to-noise ratio of calci�cations and iodine by 35% or more compared with en-

ergy integrating technologies while maintaining the same patient dose. [166,174] An important reason

for this increase is the use of task-speci�c weighting factors that are applied to the detection of
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each photon based on absorbed energy. [166,167,196] In addition, these detectors allow for rejection of

electronic noise through the use of thresholding techniques.

Energy-resolving detectors may also enable new advanced material-speci�c imaging such as an-

giography without requiring subtraction of a mask image. [29,61,152,165,202] These methods exploit the

K-edge discontinuity in the attenuation coe�cient to enhance visualization of bone or administered

contrast agents such as iodine and gadolinium, and their success will depend on how accurately

photon energy can be determined. [167,202,203] Even if energy measurements are separated into only

two energy bins (one below and one above the K-edge energy for example), high-quality energy

resolution is necessary for sharp energy-bin separation. [152,202]

There are a number of challenges that must be overcome before the full bene�ts of EPC imaging

can be achieved. For example, current prototype detectors cannot achieve the high count rates

required for radiography. Also, variablity in deposited photon energy due to random escape of

Compton scatter and characteristic emissions will degrade the precision of energy measurements,

and reabsorption will result in cross-talk between elements. Unlike isotope imaging where a photo-

peak is often isolated to determine photon energy, use of a broad spectrum of x-ray energies makes

it impossible to determine a photo-peak and the full energy of an interacting photon can only be

determined by summing signals from all detector elements in which energy is deposited. This will

require the use of fast coincidence detection algorithms, such as that implemented in the Medipix-3

prototype detector, [18] so that scattered photons can be distinguished from independent low-energy

photons. We imagine an �adaptive� binning approach in which the signal from a number of elements

surrounding each interaction is summed. This would result in the bene�ts of large elements for

energy measurements, without the corresponding loss of spatial resolution, although scatter escape

from front or rear surfaces will continue to be a problem. Even without energy discrimination,

coincident events must be recognized to avoid counting both an initial interaction and absorption of

scatter to prevent double counting which would result in increased image noise and noise correlations

between elements. [4,126]

The importance of variations in deposited energy was �rst identi�ed by Swank. [184,185] He showed

that the detective quantum e�ciency (DQE) of a detector (termed �noise-equivalent absorption�

by Swank) is degraded both by variations in the energy of incident x-ray quanta (the x-ray energy

distribution, XED) and the fraction of that energy deposited in the detector. These two contributions

are somtimes separated giving rise to an energy-dependent Swank factor [184,185] I (E) (also used by

Tapiovaara and Wagner, [196] Ja�ray et al ., [? ] Blevis et al ., [25]and others) and a broad-spectrum
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Swank factor [184] I. In this article we use the energy-dependent form:

DQE (E) = η (E) I (E) (E.1.1)

where η (E) is the energy-dependent detector quantum e�ciency. Swank originally expressed I(E)

as a product of two factors, one associated with the absorbed-energy distribution IAED,
[77,78] now

known as the x-ray Swank factor, and the other associated with the distribution of optical-pulse

heights from a phosphor, IOPD.
[57] In this article we consider only variations in deposited x-ray energy

due to single photon interactions, and thus concern ourselves with only the energy-dependent x-ray

Swank factor and its impact on EPC detectors. By ignoring IOPD we are in e�ect assuming that the

number of charges collected by the detector from each primary interaction is su�ciently large that

statistical variations in this number (due to Poisson statistics for example) can be ignored, and that

depth-dependent variation in the charge collection e�ciency is small. This assumption will fail, and

results presented here will understate imprecision in energy measurements, if the number of charges

collected is small, corresponding to a large e�ective ionization energy of the converter material (W

value), and at low x-ray energies. We are essentially assuming a small Fano factor value (used in

the description of radiation detectors [? ]) and no �secondary quantum sink� problem [53] caused by

low conversion gain.

The energy-dependent x-ray Swank factor is given by: [184,196? ]

I (E) =
M2

1 (E)

M0 (E)M2 (E)
(E.1.2)

where Mn is the n-th moment of the absorbed energy distribution (AED), which describes the

average distribution of deposited energies for an incident photon of energy E. [? ] We show here that

the ability of an EPC detector to determine the energy of an interacting x-ray photon is determined

largely by the x-ray Swank factor.

E.2 Theory: Energy imprecision of EPC x-ray detectors

X rays interact in the converter material of a detector with photoelectric interactions dominating

in high-Z materials such as HgI2, and Compton scatter being important in low-Z materials such

as Si. The deposited energy will be distributed over one or more near-by detector elements due to

production and reabsorption of Compton scatter and characteristic emissions (electron path lengths
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are normally very short compared to detector element sizes for diagnostic energies). As discussed

in the introduction, it is assumed that some form of ideal adaptive binning is used such that the

binned detector signal d is proportional to all energy deposited from one interaction.

It is convenient to describe the energy response of a detector in terms of its response function,

R(ε, E), similar to recent works. [48,165,172,203] The response function gives the probability density

(per keV) of depositing energy ε given an interacting photon with energy E. The n-th energy

moment of R (ε, E) is given by

Rn (E) =

ˆ ∞
0

εnR (ε, E) dε. (E.2.1)

The mean and variance in an energy measurement are therefore

ε̄ = R1 (E) (E.2.2)

and

σ2
ε = R2 (E)−R2

1 (E) , (E.2.3)

respectively. The relative root-mean-square (RMS) measurement imprecision is given by the coe�-

cient of variation, σrel:

σrel =
σE
Ē

=

√
R2 (E)

R2
1 (E)

− 1. (E.2.4)

The AED A (ε, E) describes the probability that an incident photon having energy E interacts

in the detector and deposits energy ε:

A (ε, E) = η (E)R (ε, E) . (E.2.5)

The n-th energy moment of A (ε, E) is therefore

Mn (E) =

ˆ ∞
0

εnη (E)R (ε, E) dε = η (E)Rn (E) (E.2.6)

and substituting Eq. (E.2.6) into Eq. (E.1.2) gives

I (E) =
M2

1 (E)

M0 (E)M2 (E)
=

R2
1 (E)

R2 (E)
. (E.2.7)
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Figure E.3.1: Detector geometry modeled in the Monte Carlo calculations. The geometry simulates
the large-area limit of a detector element. In this case, variability in deposited energy is a result of
Compton scatter and characteristic x rays that escape through the top and bottom surfaces.

The second equality in the previous equation follows because the detector response function is

normalized to unity (R0 (E) = 1). Combining Eqs. (E.2.4) and (E.2.7) yields

σrel =

√
1

I (E)
− 1. (E.2.8)

This simple result is important because it shows that high-quality EPC imaging will require a high

detector Swank factor, much like a high Swank factor is a requirement for obtaining a high DQE

with conventional energy-integrating detectors. Eq. (E.2.8) is similar to a result described by Blevis

et al. [25] but from the perspective of energy measurements using EPC detectors.

E.3 Application to Common Detector Materials

The potential of common detector converter materials for precise energy measurements was de-

termined by virtual pulse-height spectroscopy using Monte Carlo N-Particle transport simulations

(MCNP Version 5, the Radiation Safety Information Computational Center or RSICC, Oak Ridge,

TN, USA) to simulate the coupled photon-electron transport within a-Se, Si, CdZnTe, and HgI2

detector converter materials (see Table E.1) for mono-energetic photon incidence. A single (large)

detector element was modeled as a cylindrical slab with radius 20 cm as illustrated in Fig. E.3.1. A

photon beam was incident normal to the detector at the center point of the top surface. This ge-

ometry prevents lateral escape of Compton scatter and characteristic emissions, allowing for escape

in forward and reverse directions only, corresponding to the large-area limit of a detector element

with the beam incident at the center. We considered interacting photon energies in the range 10 �

100 keV with 107 photons per simulation.
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Material Atomic Number Z Density (g/cm3) K-edge energy (keV)
a-Se 34 4.3 12.66
Si 14 2.3 1.84

Cd0.95Zn0.05Te 30(Zn), 48(Cd), 52(Te) 5.8 9.66(Zn), 26.71(Cd), 31.81(Te)
HgI2 80(Hg), 53(I) 6.3 83.10(Hg), 33.17(I)

Table E.1: Material properties used for the Monte Carlo calculations.

We applied a pulse-height tally, recording energy-absorption events due to every incident-photon

interaction within the detector material. For incident photons of energy E, the Monte Carlo code

provides the AED from which the energy moments can be determined. The Swank factor and relative

imprecision are then calculated using Eq. (E.1.2) and (E.2.8).

The signal from EPC detectors will be proportional to energy deposited in the detector, d = kε,

where k is a constant that will be determined from a calibration (for example using the known

photo-peak energies of one or two calibration sources similar to methods used in nuclear medicine

and x-ray spectroscopy), and the relative accuracy of energy measurements is expressed as

d̄

d0
=

ε̄

E
=

R1 (E)

E
(E.3.1)

where d0 is the photo-peak signal corresponding to an interacting photon with energy E. Relative

imprecision in energy measurements, de�ned as the coe�cient of variation in d, is given by

σd
d̄

=
σε
ε̄

= σrel (E.3.2)

where σrel is de�ned in Eq. (E.2.4) and (E.2.8).

E.4 Results

The response functions for a 100-keV photon incident on the center of 0.5-mm thick a-Se, Si, CdZnTe,

and HgI2 converter materials are shown in Fig. E.4.1. The key features are the photo-peak at

E = 100 keV, K-escape peaks at E−EK and E−2EK , and a Compton edge at 2αE/(1+2α) = 28 keV

where α = E/moc
2. [17] The CdZnTe and HgI2 results show additional escape peaks.
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Figure E.4.1: The response functions R(ε, E) for 0.5-mm thick a-Se, Si, CdZnTe, and HgI2 detectors
for 100-keV photons incident on the detector center as determined by Monte Carlo show the photo-
peak at energy E, escape peaks and a Compton edge (α = E/moc

2). A non-zero Fano factor would
result in broadening of peaks in the response functions.

E.4.1 Relative energy accuracy

Results of the Monte Carlo calculation are shown in Fig. E.4.2. The left-most column shows relative

energy accuracy based on Eq. (E.3.1) as a function of incident photon energy for each converter

material with thicknesses of 0.2, 0.5, and 1.0 mm. These thicknesses and energies re�ect those

currently in use in many clinical systems and energy-resolving photon-counting systems under de-

velopment. [18,157] They do not, however, describe some novel designs such as strip-detectors using

1-3 cm of Si. [16,29,31]

For the case of Si, relative accuracy shows a decrease as energy increases (and therefore the

probability of Compton interactions and Compton-scatter escape), although the overall dependence

of accuracy on converter thickness is modest as shown in Fig. E.4.2.

For the case of the high-Z materials (CdZnTe and HgI2), relative accuracy is generally close to
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Figure E.4.2: Results of the Monte Carlo simulation. In the left, center and right columns are plots
of the accuracy, Swank factor, and relative imprecision, respectively, as a function of incident photon
energy for each detector material and thicknesses of 0.2 mm, 0.5 mm, and 1.0 mm.
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unity below the K-edge energy for each material, although HgI2 shows both K and L-edge e�ects.

Above each edge, the potential for escape of characteristic emissions results in a drop in relative

accuracy depending on escape probability. Above the K-edge energies, CdZnTe and HgI2 show a

greater dependence on thickness than Si.

The results for a-Se show trends similar to both Si and the high-Z materials. There is a sudden

drop in relative accuracy at the K-edge energy and a continuous decrease in relative accuracy as the

probability of Compton interactions increases.

E.4.2 Swank factor and relative energy imprecision

The Swank factor is shown in the center column of Fig. E.4.2. Below the K-edge energy for each

material, the Swank factor is close to unity resulting in low relative imprecision. At energies above the

K edge, the Swank factor decreases due to random escape of characteristic emissions and Compton

scatter, with a corresponding increase in relative energy imprecision. While imprecision worsens

with increasing energy, Compton scatter becomes important in a-Se and Si, resulting in a substantial

increase in imprecision at the higher energies in Fig. E.4.2. For Si and a-Se the in�uence of converter

thickness on relative energy imprecision is generally modest. For the high-Z materials the in�uence of

converter thickness has a larger in�uence on relative imprecision. This is due to higher reabsorption

probability for both characteristic and Compton x rays in the high-Z materials. In practice, a non-

zero Fano factor would result in a broadening of peaks in the response functions (Fig. (E.4.1)) not

shown here, and possibly an increase in imprecision.

E.5 Discussion

We have shown that while it is often (correctly) claimed that photon-counting detectors are insen-

sitive to Swank noise, precision in energy measurements using EPC detectors is strongly linked to

the energy-dependent x-ray Swank factor. Converter materials having a Swank factor close to unity

(and low Fano factor) will tend to be the best materials for EPC detectors. However, this can be

di�cult to achieve. Even minor decreases in the Swank factor (eg. 5 - 15%) result in large increases

in relative imprecision (30-40%). This relationship is shown explicitly in Fig. E.5.1 and underlies

the critical need for a large Swank factor. If a speci�c imaging task requires a maximum relative

imprecision σmax, then Eq. (E.2.8) gives:

I ≥ 1

σ2
max + 1

. (E.5.1)
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Figure E.5.1: A plot of the relationship between relative imprecision and the Swank factor given by
Eq. (E.2.8) and compared with Monte Carlo results for 0.2-mm detector thickness. The multiple
data points for each material correspond to the energies evaluated.

While the electrical properties of converter materials ignored in the Monte Carlo simulation

(charge liberation and collection) will cause a broadening of peaks in the response function, [21,68,167]

this will likely have minimal impact on the overall shape of the response and hence on the Swank

factor. Regardless, it must be emphasized that unlike isotope imaging where a photo-peak can be

isolated from a background of lower-energy events, photo-peak width is not as important as the

Swank factor as a metric of performance for broad-spectrum imaging.

The Swank factor results presented here di�er to some published values [25,45,46,57,77,78] due to

our assumption of a large �binned� detector element with x rays incident at the center only. This

reduces the e�ect of cross-talk between elements, corresponding to a true �zero-frequency� Swank

factor, and will only be realized if some form of adaptive binned is implemented. The Medipix-3

prototype implents an early form of this binning. [18,126]

At mammographic energies (15 - 25 keV), relative energy RMS imprecision is 15-20% for a-Se,

making it di�cult to measure photon energy with imprecision less than 15%. A Si-based detector is

only slightly better. Both CdZnTe and HgI2-based detectors will have energy imprecision of 5-8%.

For general radiography (near 60 keV), energy imprecision is 70-90% for Si, which may prohibit its

use in energy-resolved imaging tasks at these energies. All of a-Se, CdZnTe, and HgI2 have energy

imprecision of 12-25% at 60 keV. It will therefore be very di�cult to measure photon energy with

imprecision less than 12% at general radiographic conditions. Similar observations can be made for

energies typically used in chest radiography (80 keV), although HgI2 will give 10 - 20% below 83 keV.

These results indicate that at most energies, it will be di�cult to make accurate and precise

measures of individual incident-photon energy. However, if only two energy bins are required for
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an imaging task, [202] then energy precision is only important near the boundary between bins.

For example, a-Se has relatively good precision near 33 keV (iodine K-edge energy) and may be

well suited for iodine-speci�c imaging. In general, spectral tailing caused by escape of scattered x

rays causes the incident photon spectrum to be shifted towards lower energies and deconvolution

methods, such as those implemented by the Medipix collaborators and others, [29,128,145,165] may be

an important part of accurate energy measurements.

E.6 Conclusions

Precision in photon-energy measurements by energy-resolving photon-counting (EPC) detectors is

shown to depend directly on the energy-dependent x-ray Swank factor. A Swank factor value close

to unity is known to be necessary to achieve a DQE value close to unity and it will continue to

play a key role in EPC detectors. Even with the use of adaptive-binning algorithms to sum energy

deposited in detector elements surrounding a primary interaction to estimate total deposited energy,

it is shown that a modest decrease in the Swank factor (5 - 10%) due to characteristic emission and

Compton scatter escape causes a large increase in relative energy imprecision (30 - 40%). The energy

dependence of the x-ray Swank factor will therefore be an important consideration in determining

the best detector material for a particular application. For example, CdZnTe and HgI2 will result

in better energy precision at mammographic energies than a-Se or Si-based detectors, while a-Se

may be optimal for iodine-speci�c imaging (angiography) when good energy precision is required for

minimizing cross-talk between energy bins near the iodine K-edge energy (34 keV).
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