3,096 research outputs found

    Phase and TV Based Convex Sets for Blind Deconvolution of Microscopic Images

    Full text link
    In this article, two closed and convex sets for blind deconvolution problem are proposed. Most blurring functions in microscopy are symmetric with respect to the origin. Therefore, they do not modify the phase of the Fourier transform (FT) of the original image. As a result blurred image and the original image have the same FT phase. Therefore, the set of images with a prescribed FT phase can be used as a constraint set in blind deconvolution problems. Another convex set that can be used during the image reconstruction process is the epigraph set of Total Variation (TV) function. This set does not need a prescribed upper bound on the total variation of the image. The upper bound is automatically adjusted according to the current image of the restoration process. Both of these two closed and convex sets can be used as a part of any blind deconvolution algorithm. Simulation examples are presented.Comment: Submitted to IEEE Selected Topics in Signal Processin

    Hierarchical Bayesian sparse image reconstruction with application to MRFM

    Get PDF
    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g. by maximizing the estimated posterior distribution. In our fully Bayesian approach the posteriors of all the parameters are available. Thus our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of our hierarchical Bayesian sparse reconstruction method is illustrated on synthetic and real data collected from a tobacco virus sample using a prototype MRFM instrument.Comment: v2: final version; IEEE Trans. Image Processing, 200

    Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions

    Full text link
    An analysis of steganographic systems subject to the following perfect undetectability condition is presented in this paper. Following embedding of the message into the covertext, the resulting stegotext is required to have exactly the same probability distribution as the covertext. Then no statistical test can reliably detect the presence of the hidden message. We refer to such steganographic schemes as perfectly secure. A few such schemes have been proposed in recent literature, but they have vanishing rate. We prove that communication performance can potentially be vastly improved; specifically, our basic setup assumes independently and identically distributed (i.i.d.) covertext, and we construct perfectly secure steganographic codes from public watermarking codes using binning methods and randomized permutations of the code. The permutation is a secret key shared between encoder and decoder. We derive (positive) capacity and random-coding exponents for perfectly-secure steganographic systems. The error exponents provide estimates of the code length required to achieve a target low error probability. We address the potential loss in communication performance due to the perfect-security requirement. This loss is the same as the loss obtained under a weaker order-1 steganographic requirement that would just require matching of first-order marginals of the covertext and stegotext distributions. Furthermore, no loss occurs if the covertext distribution is uniform and the distortion metric is cyclically symmetric; steganographic capacity is then achieved by randomized linear codes. Our framework may also be useful for developing computationally secure steganographic systems that have near-optimal communication performance.Comment: To appear in IEEE Trans. on Information Theory, June 2008; ignore Version 2 as the file was corrupte

    Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions

    Full text link
    An analysis of steganographic systems subject to the following perfect undetectability condition is presented in this paper. Following embedding of the message into the covertext, the resulting stegotext is required to have exactly the same probability distribution as the covertext. Then no statistical test can reliably detect the presence of the hidden message. We refer to such steganographic schemes as perfectly secure. A few such schemes have been proposed in recent literature, but they have vanishing rate. We prove that communication performance can potentially be vastly improved; specifically, our basic setup assumes independently and identically distributed (i.i.d.) covertext, and we construct perfectly secure steganographic codes from public watermarking codes using binning methods and randomized permutations of the code. The permutation is a secret key shared between encoder and decoder. We derive (positive) capacity and random-coding exponents for perfectly-secure steganographic systems. The error exponents provide estimates of the code length required to achieve a target low error probability. We address the potential loss in communication performance due to the perfect-security requirement. This loss is the same as the loss obtained under a weaker order-1 steganographic requirement that would just require matching of first-order marginals of the covertext and stegotext distributions. Furthermore, no loss occurs if the covertext distribution is uniform and the distortion metric is cyclically symmetric; steganographic capacity is then achieved by randomized linear codes. Our framework may also be useful for developing computationally secure steganographic systems that have near-optimal communication performance.Comment: To appear in IEEE Trans. on Information Theory, June 2008; ignore Version 2 as the file was corrupte

    A signomial programming approach for binary image restoration by penalized least squares

    Get PDF
    The authors present a novel optimization approach, using signomial programming (SP), to restore noise-corrupted binary and grayscale images. The approach requires the minimization of a penalized least squares functional over binary variables, which has led to the design of various approximation methods in the past. In this brief, we minimize the functional as a SP problem which is then converted into a reversed geometric programming (GP) problem and solved using standard GP solvers. Numerical experiments show that the proposed approach restores both degraded binary and grayscale images with good accuracy, and is over 20 times faster than the positive semidefinite programming approach. © 2007 IEEE.published_or_final_versio
    • 

    corecore