6,905 research outputs found

    Implementing fault tolerant applications using reflective object-oriented programming

    Get PDF
    Abstract: Shows how reflection and object-oriented programming can be used to ease the implementation of classical fault tolerance mechanisms in distributed applications. When the underlying runtime system does not provide fault tolerance transparently, classical approaches to implementing fault tolerance mechanisms often imply mixing functional programming with non-functional programming (e.g. error processing mechanisms). The use of reflection improves the transparency of fault tolerance mechanisms to the programmer and more generally provides a clearer separation between functional and non-functional programming. The implementations of some classical replication techniques using a reflective approach are presented in detail and illustrated by several examples, which have been prototyped on a network of Unix workstations. Lessons learnt from our experiments are drawn and future work is discussed

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property
    • 

    corecore