157,553 research outputs found

    (PS)(2): protein structure prediction server

    Get PDF
    Protein structure prediction provides valuable insights into function, and comparative modeling is one of the most reliable methods to predict 3D structures directly from amino acid sequences. However, critical problems arise during the selection of the correct templates and the alignment of query sequences therewith. We have developed an automatic protein structure prediction server, (PS)(2), which uses an effective consensus strategy both in template selection, which combines PSI-BLAST and IMPALA, and target–template alignment integrating PSI-BLAST, IMPALA and T-Coffee. (PS)(2) was evaluated for 47 comparative modeling targets in CASP6 (Critical Assessment of Techniques for Protein Structure Prediction). For the benchmark dataset, the predictive performance of (PS)(2), based on the mean GTD_TS score, was superior to 10 other automatic servers. Our method is based solely on the consensus sequence and thus is considerably faster than other methods that rely on the additional structural consensus of templates. Our results show that (PS)(2), coupled with suitable consensus strategies and a new similarity score, can significantly improve structure prediction. Our approach should be useful in structure prediction and modeling. The (PS)(2) is available through the website at

    QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information

    Get PDF
    ABSTRACT: BACKGROUND: The selection of the most accurate protein model from a set of alternatives is a crucial step in protein structure prediction both in template-based and ab initio approaches. Scoring functions have been developed which can either return a quality estimate for a single model or derive a score from the information contained in the ensemble of models for a given sequence. Local structural features occurring more frequently in the ensemble have a greater probability of being correct. Within the context of the CASP experiment, these so called consensus methods have been shown to perform considerably better in selecting good candidate models, but tend to fail if the best models are far from the dominant structural cluster. In this paper we show that model selection can be improved if both approaches are combined by pre-filtering the models used during the calculation of the structural consensus. RESULTS: Our recently published QMEAN composite scoring function has been improved by including an all-atom interaction potential term. The preliminary model ranking based on the new QMEAN score is used to select a subset of reliable models against which the structural consensus score is calculated. This scoring function called QMEANclust achieves a correlation coefficient of predicted quality score and GDT_TS of 0.9 averaged over the 98 CASP7 targets and perform significantly better in selecting good models from the ensemble of server models than any other groups participating in the quality estimation category of CASP7. Both scoring functions are also benchmarked on the MOULDER test set consisting of 20 target proteins each with 300 alternatives models generated by MODELLER. QMEAN outperforms all other tested scoring functions operating on individual models, while the consensus method QMEANclust only works properly on decoy sets containing a certain fraction of near-native conformations. We also present a local version of QMEAN for the per-residue estimation of model quality (QMEANlocal) and compare it to a new local consensus-based approach. CONCLUSION: Improved model selection is obtained by using a composite scoring function operating on single models in order to enrich higher quality models which are subsequently used to calculate the structural consensus. The performance of consensus-based methods such as QMEANclust highly depends on the composition and quality of the model ensemble to be analysed. Therefore, performance estimates for consensus methods based on large meta-datasets (e.g. CASP) might overrate their applicability in more realistic modelling situations with smaller sets of models based on individual methods

    Improved estimation of structure predictor quality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methods that can automatically assess the quality of computationally predicted protein structures are important, as they enable the selection of the most accurate structure from an ensemble of predictions. Assessment methods that determine the quality of a predicted structure by comparing it against the various structures predicted by different servers have been shown to outperform approaches that rely on the intrinsic characteristics of the structure itself.</p> <p>Results</p> <p>We examined techniques to estimate the quality of a predicted protein structure based on prediction consensus. LGA is used to align the structure in question to the structures for the same protein predicted by different servers. We examine both static (e.g. averaging) and dynamic (e.g. support vector machine) methods for aggregating these distances on two datasets.</p> <p>Conclusion</p> <p>We find that a constrained regression approach shows consistently good performance. Although it is not always the absolute best performing scheme, it is always performs on par with the best schemes across multiple datasets. The work presented here provides the basis for the construction of a regression model trained on data from existing structure prediction servers.</p

    Machine learning methods for evaluating the quality of a single protein model using energy and structural properties

    Get PDF
    Computational protein structure prediction is one of the most important problems in bioinformatics. In the process of protein three-dimensional structure prediction, assessing the quality of generated models accurately is crucial. Although many model quality assessment (QA) methods have been developed in the past years, the accuracy of the state-of-the-art single-model QA methods is still not high enough for practical applications. Although consensus QA methods performed significantly better than single-model QA methods in the CASP (Critical Assessment of protein Structure Prediction) competitions, they require a pool of models with diverse quality to perform well. In this thesis, new machine learning based methods are developed for single-model QA and top-model selection from a pool of candidates. These methods are based on a comprehensive set of model structure features, such as matching of secondary structure and solvent accessibility, as well as existing potential or energy function scores. For each model, using these features as inputs, machine learning methods are able to predict a quality score in the range of. Five state-of-the-art machine learning algorithms are implemented, trained, and tested using CASP datasets on various QA and selection tasks. Among the five algorithms, boosting and random forest achieved the best results overall. They outperform existing single-model QA methods, including DFIRE, RW and Proq2, significantly, by up to 10% in QA scores

    Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection

    Get PDF
    The accuracy of a homology model based on the structure of a distant relative or other topologically equivalent protein is primarily limited by the quality of the alignment. Here we describe a systematic approach for sequence-to-structure alignment, called β€˜K*Sync’, in which alignments are generated by dynamic programming using a scoring function that combines information on many protein features, including a novel measure of how obligate a sequence region is to the protein fold. By systematically varying the weights on the different features that contribute to the alignment score, we generate very large ensembles of diverse alignments, each optimal under a particular constellation of weights. We investigate a variety of approaches to select the best models from the ensemble, including consensus of the alignments, a hydrophobic burial measure, low- and high-resolution energy functions, and combinations of these evaluation methods. The effect on model quality and selection resulting from loop modeling and backbone optimization is also studied. The performance of the method on a benchmark set is reported and shows the approach to be effective at both generating and selecting accurate alignments. The method serves as the foundation of the homology modeling module in the Robetta server

    Improving predicted protein loop structure ranking using a Pareto-optimality consensus method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction.</p> <p>Results</p> <p>We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of ~20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods.</p> <p>Conclusions</p> <p>By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.</p

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
    • …
    corecore