3,525 research outputs found

    Evolutionary Multi-Objective Design of SARS-CoV-2 Protease Inhibitor Candidates

    Full text link
    Computational drug design based on artificial intelligence is an emerging research area. At the time of writing this paper, the world suffers from an outbreak of the coronavirus SARS-CoV-2. A promising way to stop the virus replication is via protease inhibition. We propose an evolutionary multi-objective algorithm (EMOA) to design potential protease inhibitors for SARS-CoV-2's main protease. Based on the SELFIES representation the EMOA maximizes the binding of candidate ligands to the protein using the docking tool QuickVina 2, while at the same time taking into account further objectives like drug-likeliness or the fulfillment of filter constraints. The experimental part analyzes the evolutionary process and discusses the inhibitor candidates.Comment: 15 pages, 7 figures, submitted to PPSN 202

    Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular docking methods are commonly used for predicting binding modes and energies of ligands to proteins. For accurate complex geometry and binding energy estimation, an appropriate method for calculating partial charges is essential. AutoDockTools software, the interface for preparing input files for one of the most widely used docking programs AutoDock 4, utilizes the Gasteiger partial charge calculation method for both protein and ligand charge calculation. However, it has already been shown that more accurate partial charge calculation - and as a consequence, more accurate docking- can be achieved by using quantum chemical methods. For docking calculations quantum chemical partial charge calculation as a routine was only used for ligands so far. The newly developed Mozyme function of MOPAC2009 allows fast partial charge calculation of proteins by quantum mechanical semi-empirical methods. Thus, in the current study, the effect of semi-empirical quantum-mechanical partial charge calculation on docking accuracy could be investigated.</p> <p>Results</p> <p>The docking accuracy of AutoDock 4 using the original AutoDock scoring function was investigated on a set of 53 protein ligand complexes using Gasteiger and PM6 partial charge calculation methods. This has enabled us to compare the effect of the partial charge calculation method on docking accuracy utilizing AutoDock 4 software. Our results showed that the docking accuracy in regard to complex geometry (docking result defined as accurate when the RMSD of the first rank docking result complex is within 2 Ă… of the experimentally determined X-ray structure) significantly increased when partial charges of the ligands and proteins were calculated with the semi-empirical PM6 method.</p> <p>Out of the 53 complexes analyzed in the course of our study, the geometry of 42 complexes were accurately calculated using PM6 partial charges, while the use of Gasteiger charges resulted in only 28 accurate geometries. The binding affinity estimation was not influenced by the partial charge calculation method - for more accurate binding affinity prediction development of a new scoring function for AutoDock is needed.</p> <p>Conclusion</p> <p>Our results demonstrate that the accuracy of determination of complex geometry using AutoDock 4 for docking calculation greatly increases with the use of quantum chemical partial charge calculation on both the ligands and proteins.</p

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    SCREENING INTERACTIONS BETWEEN PROTEINS AND DISORDERED PEPTIDES BY A NOVEL COMPUTATIONAL METHOD

    Get PDF
    Concerted interactions between proteins in cells form the basis of most biological processes. Biophysicists study protein–protein association by measuring thermodynamic and kinetic properties. Naively, strong binding affinity should be preferred in protein–protein binding to conduct certain biological functions. However, evidence shows that regulatory interactions, such as those between adapter proteins and intrinsically disordered proteins, communicate via low affinity but high complementarity interactions. PDZ domains are one class of adapters that bind linear disordered peptides, which play key roles in signaling pathways. The misregulation of these signals has been implicated in the progression of human cancers. To understand the underlying mechanism of protein-peptide binding interactions and to predict new interactions, in this thesis I have developed: (a) a unique biophysical-derived model to estimate their binding free energy; (b) a novel semi-flexible structure-based method to dock disordered peptides to PDZ domains; (c) predictions of the peptide binding landscape; and, (d) an automated algorithm and web-interface to predict the likelihood that a given linear sequence of amino acids binds to a specific PDZ domain. The docking method, PepDock, takes a peptide sequence and a PDZ protein structure as input, and outputs docked conformations and their corresponding binding affinity estimation, including their optimal free energy pathway. We have applied PepDock to screen several PDZ protein domains. The results not only validated the capabilities of PepDock to accurately discriminate interactions, but also explored the underlying binding mechanism. Specifically, I showed that interactions followed downhill free energy pathways, reconciling a relatively fast association mechanism of intrinsically disordered peptides. The pathways are such that initially the peptide’s C-terminal motif binds non-specifically, forming a weak intermediate, whereas specific binding is achieved only by a subsequent network of contacts (7–9 residues in total). This mechanism allows peptides to quickly probe PDZ domains, rapidly releasing those that do not attain sufficient affinity during binding. Further kinetic analysis indicates that disorder enhanced the specificity of promiscuous interactions between proteins and peptides, while achieving association rates comparable to interactions between ordered proteins

    Quantifying the Role of Water in Ligand-Protein Binding Processes

    Get PDF
    The aim of this thesis is to quantify the contributions of water thermodynamics to the binding free energy in protein-ligand complexes. Various computational tools were directly applied, implemented, benchmarked and discussed. An own implementation of the IFST formulation was developed to facilitate easy integration in workflows that are based on Schrödinger software. By applying the tool to a well-defined test set of congeneric ligand pairs, the potential of IFST for quantitative predictions in lead-optimization was assessed. Furthermore, FEP calculations were applied to an extended test set to validate if these simulations can accurately account for solvent displacement in ligand modifications. As a fast tool that has applications in virtual screening problems, we finally developed and validated a new scoring function that incorporates terms for protein and ligand desolvation. This resulted in total in three distinct studies, that all elucidated different aspects of water thermodynamics in CADD. These three studies are presented in the next section. In the conclusion, the results and implications of these studies are discussed jointly, as well with possible future developments. An additional study was focused on virtual screening and toxicity prediction at the androgen receptor, where distinguishing agonists and antagonists poses difficulties. We proposed and validated an approach based on MD simulations and ensemble docking to improve predictions of androgen agonists and antagonists
    • …
    corecore