8,894 research outputs found

    An Introductory Guide to Aligning Networks Using SANA, the Simulated Annealing Network Aligner.

    Get PDF
    Sequence alignment has had an enormous impact on our understanding of biology, evolution, and disease. The alignment of biological networks holds similar promise. Biological networks generally model interactions between biomolecules such as proteins, genes, metabolites, or mRNAs. There is strong evidence that the network topology-the "structure" of the network-is correlated with the functions performed, so that network topology can be used to help predict or understand function. However, unlike sequence comparison and alignment-which is an essentially solved problem-network comparison and alignment is an NP-complete problem for which heuristic algorithms must be used.Here we introduce SANA, the Simulated Annealing Network Aligner. SANA is one of many algorithms proposed for the arena of biological network alignment. In the context of global network alignment, SANA stands out for its speed, memory efficiency, ease-of-use, and flexibility in the arena of producing alignments between two or more networks. SANA produces better alignments in minutes on a laptop than most other algorithms can produce in hours or days of CPU time on large server-class machines. We walk the user through how to use SANA for several types of biomolecular networks

    IDSS: deformation invariant signatures for molecular shape comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many molecules of interest are flexible and undergo significant shape deformation as part of their function, but most existing methods of molecular shape comparison (MSC) treat them as rigid bodies, which may lead to incorrect measure of the shape similarity of flexible molecules.</p> <p>Results</p> <p>To address the issue we introduce a new shape descriptor, called Inner Distance Shape Signature (IDSS), for describing the 3D shapes of flexible molecules. The inner distance is defined as the length of the shortest path between landmark points within the molecular shape, and it reflects well the molecular structure and deformation without explicit decomposition. Our IDSS is stored as a histogram which is a probability distribution of inner distances between all sample point pairs on the molecular surface. We show that IDSS is insensitive to shape deformation of flexible molecules and more effective at capturing molecular structures than traditional shape descriptors. Our approach reduces the 3D shape comparison problem of flexible molecules to the comparison of IDSS histograms.</p> <p>Conclusion</p> <p>The proposed algorithm is robust and does not require any prior knowledge of the flexible regions. We demonstrate the effectiveness of IDSS within a molecular search engine application for a benchmark containing abundant conformational changes of molecules. Such comparisons in several thousands per second can be carried out. The presented IDSS method can be considered as an alternative and complementary tool for the existing methods for rigid MSC. The binary executable program for Windows platform and database are available from <url>https://engineering.purdue.edu/PRECISE/IDSS</url>.</p

    3DMolNavi: A Web-Based Retrieval and Navigation Tool for Flexible Molecular Shape Comparison.

    Get PDF
    Background Many molecules of interest are flexible and undergo significant shape deformation as part of their function, but most existing methods of molecular shape comparison treat them as rigid shapes, which may lead to incorrect measure of the shape similarity of flexible molecules. Currently, there still is a limited effort in retrieval and navigation for flexible molecular shape comparison, which would improve data retrieval by helping users locate the desirable molecule in a convenient way. Results To address this issue, we develop a web-based retrieval and navigation tool, named 3DMolNavi, for flexible molecular shape comparison. This tool is based on the histogram of Inner Distance Shape Signature (IDSS) for fast retrieving molecules that are similar to a query molecule, and uses dimensionality reduction to navigate the retrieved results in 2D and 3D spaces. We tested 3DMolNavi in the Database of Macromolecular Movements (MolMovDB) and CATH. Compared to other shape descriptors, it achieves good performance and retrieval results for different classes of flexible molecules. Conclusions The advantages of 3DMolNavi, over other existing softwares, are to integrate retrieval for flexible molecular shape comparison and enhance navigation for user’s interaction. 3DMolNavi can be accessed via https://engineering.purdue.edu/PRECISE/3dmolnavi/index.html webcite

    Protein Functional Surfaces: Global Shape Matching and Local Spatial Alignments of Ligand Binding Sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein surfaces comprise only a fraction of the total residues but are the most conserved functional features of proteins. Surfaces performing identical functions are found in proteins absent of any sequence or fold similarity. While biochemical activity can be attributed to a few key residues, the broader surrounding environment plays an equally important role.</p> <p>Results</p> <p>We describe a methodology that attempts to optimize two components, global shape and local physicochemical texture, for evaluating the similarity between a pair of surfaces. Surface shape similarity is assessed using a three-dimensional object recognition algorithm and physicochemical texture similarity is assessed through a spatial alignment of conserved residues between the surfaces. The comparisons are used in tandem to efficiently search the Global Protein Surface Survey (GPSS), a library of annotated surfaces derived from structures in the PDB, for studying evolutionary relationships and uncovering novel similarities between proteins.</p> <p>Conclusion</p> <p>We provide an assessment of our method using library retrieval experiments for identifying functionally homologous surfaces binding different ligands, functionally diverse surfaces binding the same ligand, and binding surfaces of ubiquitous and conformationally flexible ligands. Results using surface similarity to predict function for proteins of unknown function are reported. Additionally, an automated analysis of the ATP binding surface landscape is presented to provide insight into the correlation between surface similarity and function for structures in the PDB and for the subset of protein kinases.</p

    Three dimensional shape comparison of flexible proteins using the local-diameter descriptor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Techniques for inferring the functions of the protein by comparing their shape similarity have been receiving a lot of attention. Proteins are functional units and their shape flexibility occupies an essential role in various biological processes. Several shape descriptors have demonstrated the capability of protein shape comparison by treating them as rigid bodies. But this may give rise to an incorrect comparison of flexible protein shapes.</p> <p>Results</p> <p>We introduce an efficient approach for comparing flexible protein shapes by adapting a <it>local diameter </it>(LD) <it>descriptor</it>. The LD descriptor, developed recently to handle skeleton based shape deformations <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>, is adapted in this work to capture the invariant properties of shape deformations caused by the motion of the protein backbone. Every sampled point on the protein surface is assigned a value measuring the diameter of the 3D shape in the neighborhood of that point. The LD descriptor is built in the form of a one dimensional histogram from the distribution of the diameter values. The histogram based shape representation reduces the shape comparison problem of the flexible protein to a simple distance calculation between 1D feature vectors. Experimental results indicate how the LD descriptor accurately treats the protein shape deformation. In addition, we use the LD descriptor for protein shape retrieval and compare it to the effectiveness of conventional shape descriptors. A sensitivity-specificity plot shows that the LD descriptor performs much better than the conventional shape descriptors in terms of consistency over a family of proteins and discernibility across families of different proteins.</p> <p>Conclusion</p> <p>Our study provides an effective technique for comparing the shape of flexible proteins. The experimental results demonstrate the insensitivity of the LD descriptor to protein shape deformation. The proposed method will be potentially useful for molecule retrieval with similar shapes and rapid structure retrieval for proteins. The demos and supplemental materials are available on <url>https://engineering.purdue.edu/PRECISE/LDD</url>.</p

    CryoAlign: feature-based method for global and local 3D alignment of EM density maps

    Full text link
    Advances on cryo-electron imaging technologies have led to a rapidly increasing number of density maps. Alignment and comparison of density maps play a crucial role in interpreting structural information, such as conformational heterogeneity analysis using global alignment and atomic model assembly through local alignment. Here, we propose a fast and accurate global and local cryo-electron microscopy density map alignment method CryoAlign, which leverages local density feature descriptors to capture spatial structure similarities. CryoAlign is the first feature-based EM map alignment tool, in which the employment of feature-based architecture enables the rapid establishment of point pair correspondences and robust estimation of alignment parameters. Extensive experimental evaluations demonstrate the superiority of CryoAlign over the existing methods in both alignment accuracy and speed

    Computationally Comparing Biological Networks and Reconstructing Their Evolution

    Get PDF
    Biological networks, such as protein-protein interaction, regulatory, or metabolic networks, provide information about biological function, beyond what can be gleaned from sequence alone. Unfortunately, most computational problems associated with these networks are NP-hard. In this dissertation, we develop algorithms to tackle numerous fundamental problems in the study of biological networks. First, we present a system for classifying the binding affinity of peptides to a diverse array of immunoglobulin antibodies. Computational approaches to this problem are integral to virtual screening and modern drug discovery. Our system is based on an ensemble of support vector machines and exhibits state-of-the-art performance. It placed 1st in the 2010 DREAM5 competition. Second, we investigate the problem of biological network alignment. Aligning the biological networks of different species allows for the discovery of shared structures and conserved pathways. We introduce an original procedure for network alignment based on a novel topological node signature. The pairwise global alignments of biological networks produced by our procedure, when evaluated under multiple metrics, are both more accurate and more robust to noise than those of previous work. Next, we explore the problem of ancestral network reconstruction. Knowing the state of ancestral networks allows us to examine how biological pathways have evolved, and how pathways in extant species have diverged from that of their common ancestor. We describe a novel framework for representing the evolutionary histories of biological networks and present efficient algorithms for reconstructing either a single parsimonious evolutionary history, or an ensemble of near-optimal histories. Under multiple models of network evolution, our approaches are effective at inferring the ancestral network interactions. Additionally, the ensemble approach is robust to noisy input, and can be used to impute missing interactions in experimental data. Finally, we introduce a framework, GrowCode, for learning network growth models. While previous work focuses on developing growth models manually, or on procedures for learning parameters for existing models, GrowCode learns fundamentally new growth models that match target networks in a flexible and user-defined way. We show that models learned by GrowCode produce networks whose target properties match those of real-world networks more closely than existing models
    • …
    corecore