5,614,867 research outputs found
Annotation and Curation of the Protein Data Bank
The Protein Data Bank (PDB) is the worldwide repository for experimentally determined 3D structures of biological macromolecules. Established in 1971 with just seven structures, it presently includes more than 56,000 entries. To maintain the highest standards in curation and processing, the members of the worldwide Protein Data Bank (wwPDB) collaborate in data annotation and the development of procedures, tools, and resources. Annotation-related issues, particularly those impacted by new developments
in structural biology, are critically reviewed at in-person and virtual meetings regularly and frequently. Comprehensive documentation of the procedures, formats, and related data dictionaries used in data annotation are available at the wwPDB website(www.wwpdb.org).

Mindful of the impact that changes in annotation procedures or data format may have on users, changes are carefully managed and communicated in a timely fashion. In cases involving complex scientific or policy issues, input is sought from advisory committees, standing task forces, experimental method developers, and community experts. This is exemplified by creation of the recently-released version of the PDB archive which updates and further standardizes database references, small molecule chemistry, biological assemblies, and active sites
Directed evolution converts subtilisin E into a functional equivalent of thermitase
We used directed evolution to convert Bacillus subtilis subtilisin E into an enzyme functionally equivalent to its thermophilic homolog thermitase from Thermoactinomyces vulgaris. Five generations of random mutagenesis, recombination and screening created subtilisin E 5-3H5, whose half-life at 83°C (3.5 min) and temperature optimum for activity (Topt, 76°C) are identical with those of thermitase. The Topt of the evolved enzyme is 17°C higher and its half-life at 65°C is >200 times that of wild-type subtilisin E. In addition, 5-3H5 is more active towards the hydrolysis of succinyl-Ala-Ala-Pro-Phe-p-nitroanilide than wild-type at all temperatures from 10 to 90°C. Thermitase differs from subtilisin E at 157 amino acid positions. However, only eight amino acid substitutions were sufficient to convert subtilisin E into an enzyme equally thermostable. The eight substitutions, which include known stabilizing mutations (N218S, N76D) and also several not previously reported, are distributed over the surface of the enzyme. Only two (N218S, N181D) are found in thermitase. Directed evolution provides a powerful tool to unveil mechanisms of thermal adaptation and is an effective and efficient approach to increasing thermostability without compromising enzyme activity
Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity
Computational protein design methods were used to predict five variants of monofunctional Escherichia coli chorismate mutase expected to maintain catalytic activity. The variants were tested experimentally and three active site mutants exhibited catalytic activity similar to or greater than the wild-type enzyme. One mutant, Ala32Ser, showed increased catalytic efficiency
Multiple structural alignment for distantly related all b structures using TOPS pattern discovery and simulated annealing
Topsalign is a method that will structurally align diverse protein structures, for example, structural alignment of protein superfolds. All proteins within a superfold share the same fold but often have very low sequence identity and different biological and biochemical functions. There is often signi®cant structural diversity around the common scaffold of secondary structure elements of the fold. Topsalign uses topological descriptions of proteins. A pattern discovery algorithm identi®es equivalent secondary structure elements between a set of proteins and these are used to produce an initial multiple structure alignment. Simulated annealing is used to optimize the alignment. The output of Topsalign is a multiple structure-based sequence alignment and a 3D superposition of the structures. This method has been tested on three superfolds: the b jelly roll, TIM (a/b) barrel and the OB fold. Topsalign outperforms established methods on very diverse structures. Despite the pattern discovery working only on b strand secondary structure elements, Topsalign is shown to align TIM (a/b) barrel superfamilies, which contain both a helices and b strands
Influenza Evolution and H3N2 Vaccine Effectiveness, with Application to the 2014/2015 Season
Influenza A is a serious disease that causes significant morbidity and
mortality, and vaccines against the seasonal influenza disease are of variable
effectiveness. In this paper, we discuss use of the method to
predict the dominant influenza strain and the expected vaccine effectiveness in
the coming flu season. We illustrate how the effectiveness of the 2014/2015
A/Texas/50/2012 [clade 3C.1] vaccine against the A/California/02/2014 [clade
3C.3a] strain that emerged in the population can be estimated via pepitope. In
addition, we show by a multidimensional scaling analysis of data collected
through 2014, the emergence of a new A/New Mexico/11/2014-like cluster [clade
3C.2a] that is immunologically distinct from the A/California/02/2014-like
strains.Comment: 19 pages, 4 figure
Minimum energy configurations of the 2-dimensional HP-model of proteins by self-organizing networks
We use self-organizing maps (SOM) as an efficient tool to find the minimum energy configurations of the 2-dimensional HP-models of proteins. The usage of the SOM for the protein folding problem is similar to that for the Traveling Salesman Problem. The lattice nodes represent the cities whereas the neurons in the network represent the amino acids moving towards the closest cities, subject to the HH interactions. The valid path that maximizes the HH contacts corresponds to the minimum energy configuration of the protein. We report promising results for the cases when the protein completely fills a lattice and discuss the current problems and possible extensions. In all the test sequences up to 36 amino acids, the algorithm was able to find the global minimum and its degeneracies
Influence of mutations of Val226 on the catalytic rate of haloalkane dehalogenase
Haloalkane dehalogenase converts haloalkanes to their corresponding alcohols. The 3D structure, reaction mechanism and kinetic mechanism have been studied. The steady state kcat with 1,2-dichloroethane and 1,2-dibromoethane is limited mainly by the rate of release of the halide ion from the buried active-site cavity. During catalysis, the halogen that is cleaved off (Clα) from 1,2-dichloroethane interacts with Trp125 and the Clβ interacts with Phe172. Both these residues have van der Waals contacts with Val226. To establish the effect of these interactions on catalysis, and in an attempt to change enzyme activity without directly mutating residues involved in catalysis, we mutated Val226 to Gly, Ala and Leu. The Val226Ala and Val226Leu mutants had a 2.5-fold higher catalytic rate for 1,2-dibromoethane than the wild-type enzyme. A pre-steady state kinetic analysis of the Val226Ala mutant enzyme showed that the increase in kcat could be attributed to an increase in the rate of a conformational change that precedes halide release, causing a faster overall rate of halide dissociation. The kcat for 1,2-dichloroethane conversion was not elevated, although the rate of chloride release was also faster than in the wild-type enzyme. This was caused by a 3-fold decrease in the rate of formation of the alkyl-enzyme intermediate for 1,2-dichloroethane. Val226 seems to contribute to leaving group (Clα or Brα) stabilization via Trp125, and can influence halide release and substrate binding via an interaction with Phe172. These studies indicate that wild-type haloalkane dehalogenase is optimized for 1,2-dichloroethane, although 1,2-dibromoethane is a better substrate.
Recommended from our members
Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences
Advances in the technologies and informatics used to generate and process large biological data sets (omics data) are promoting a critical shift in the study of biomedical sciences. While genomics, transcriptomics and proteinomics, coupled with bioinformatics and biostatistics, are gaining momentum, they are still, for the most part, assessed individually with distinct approaches generating monothematic rather than integrated knowledge. As other areas of biomedical sciences, including metabolomics, epigenomics and pharmacogenomics, are moving towards the omics scale, we are witnessing the rise of inter-disciplinary data integration strategies to support a better understanding of biological systems and eventually the development of successful precision medicine. This review cuts across the boundaries between genomics, transcriptomics and proteomics, summarizing how omics data are generated, analysed and shared, and provides an overview of the current strengths and weaknesses of this global approach. This work intends to target students and researchers seeking knowledge outside of their field of expertise and fosters a leap from the reductionist to the global-integrative analytical approach in research
Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth.
Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of \u3b1 catalytic and \u3b2 regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2\u3b1 immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-\u3baB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL
Green protein from locally grown crops (OK-Net EcoFeed Practice Abstract)
• Choose an appropriate type of green crop, such as clover-grass or alfalfa, with an expected high protein and amino acid content. Consider soil types and weather patterns to grow a crop with a good and high quality yield.
• Harvest the field at regular intervals in order to achieve good plant growth and to obtain batches with more high quality protein and less fibre
• Harvesting procedures, which minimise soil content in the green material obtained from the field are necessary to obtain good quality green protein and to avoid wear of machinery and technical equipment
• Cooperation with a bio-refinery plant is a prerequisite in order to concentrate the protein into a green paste that can be dried and used in poultry feed.
• If not dried, the wet green paste can be stored in closed containers/plastic bags in cool conditions for a shorter period.
• Chemical analysis of the green protein concentrate is important in order to replace other protein sources such as soya and to carry out the correct feed formulation. This can be done together with advisors or feed companies
- …
