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Minimum Energy Con� gurations of the
2-Dimensional HP-Model of Proteins by

Self-Organizing Networks
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ABSTRACT

We use self-organizing maps (SOM) as an ef� cient tool to � nd the minimum energy con� g-
urations of the 2-dimensional HP-models of proteins. The usage of the SOM for the protein
folding problem is similar to that for the Traveling Salesman Problem. The lattice nodes
represent the cities whereas the neurons in the network represent the amino acids moving
towards the closest cities, subject to the HH interactions. The valid path that maximizes the
HH contacts corresponds to the minimum energy con� guration of the protein. We report
promising results for the cases when the protein completely � lls a lattice and discuss the
current problems and possible extensions. In all the test sequences up to 36 amino acids,
the algorithm was able to � nd the global minimum and its degeneracies.
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1. INTRODUCTION

Aprotein is a chain of amino acid residues that folds into a speci� c three-dimensional structure
(native state or tertiary structure), under favorable physiological conditions. The three-dimensional

structure of a protein greatly determines the protein’s functionality, but determining the three-dimensional
structure experimentally is dif� cult and time consuming. Several research groups are working on com-
putational methods for predicting the native state of a protein from its primary structure, the sequence
of amino acid residues along the chain, commonly believed to uniquely determine the native structure.
However, protein structure prediction is a dif� cult problem even with simpli� ed models. If one assumes
three possible rotational isomeric states for each amino acid, there are 3N possible con� gurations, only one
of which is the minimum free energy conformation determining the native state. Furthermore, the energy
and the stability of the protein greatly depends on nonlocal interactions between amino acids far from
each other along the chain. In fact, it is shown that � nding the minimum free energy conformation of even
a simpli� ed model of a protein, speci� cally the 2D HP model studied in this paper, is an NP-complete
problem (Crescenzi et al., 1998).
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Molecular dynamics simulation is the most detailed, but also the most time consuming computational
technique applied to determine the three-dimensional minimum energy structure of real proteins. Recently,
a small protein of 36 residues was brought from a random initial con� guration to within a root mean square
deviation of 1.5 Ångstroms from the known minimum energy con� guration; however, the calculations took
more than a year on a supercomputer (Duan et al., 1998). Faster but coarser-scale simulation techniques
such as the Monte Carlo technique and simulated annealing are also used in protein structure prediction
(Li and Scheraga, 1987). Due to the complexity of the problem, scientists have also studied various
simpli� cations. In particular, Dill et al. (1995) introduced the two- and three-dimensional hydrophobic-
polar (HP) model which abstracts the problem by grouping the 20 possible amino acids used in proteins as
hydrophobic (H) or hydrophilic (polar or P). As a further simpli� cation, the lattice HP-models restrict the
possible conformations to self-avoiding paths on a lattice where each amino acid residue along the chain
occupies a vertex of the lattice. Two- and three-dimensional square lattice models using protein chains with
hydrophobic and polar centers are the most widely studied simple models. Recently, the protein folding
problem has been formulated in the form of the Traveling Salesman Problem (TSP) and approached using
the elastic net algorithm (Ball et al., 2001). This approach was successful in predicting the minimum
energy structures of several real proteins and the simulation time scaled linearly with chain length.

In the present paper, we apply the Self-Organizing Map (SOM) algorithm to predicting the minimum
energy con� gurations of simple 2D HP models of proteins. To our knowledge, this is the � rst use of
SOM in the literature for determining compact minimum energy structures of proteins. SOM has been
widely used for tasks such as clustering of protein sequences (Hanke et al., 1996), classi� cation of protein
families (Andrade et al., 1997), determination of structural motifs of protein backbones (Schuchhardt et al.,
1996) and gene expression (Tamayo et al., 1999). It has also been successfully applied to optimization
problems such as the well known Traveling Salesman Problem (Angeniol et al., 1988; Jeffries et al., 1994;
Budinich 1996; Altinel et al., 2000). Also, recently, Wriggers et al. (1998) applied the SOM algorithm
for the � rst time to characterize the shape and density distribution of the occupied volume of large-scale
protein assemblies in order to reconstruct blurred data from electron microscope images. On the other
hand, Bohr and Brunak approach the protein conformation problem from a TSP perspective, but using
relaxation techniques (Bohr et al., 1989).

The present approach is similar in spirit to the elastic net approach of Ball et al. (2001) Speci� cally,
given a sequence of residues of type H or P, we try to � nd the minimum energy con� guration of the
protein by posing the problem as that of � nding the Hamiltonian path of the lattice nodes, maximizing the
attraction between the hydrophobic residues. Similar to the elastic net algorithm, the simulation time for
the present approach scales linearly with sequence length, making it possible to apply the algorithm a large
number of times and to choose the predicted structure with the least energy. The reason for choosing a 2D
lattice HP model, rather than three-dimensional real proteins, as was the case in the elastic net problem,
is to illustrate the basic features of SOM as applied to a minimization problem. Here, we show, in the
form of a proof of principle, that SOM can enumerate the compact structures and degeneracies of the
HP model, up to 36mers, in an ef� cient way. Its application to three-dimensions and to real proteins is
straightforward, and work in this direction is in progress.

2. THE HP MODEL

A real protein molecule is a sequence of amino acids chosen from an alphabet of twenty different amino
acids. Each amino acid (bead) consists of the repeating unit of the backbone and a unique side chain
determining the properties of the amino acid and bonded to the backbone carbon atom (the alpha carbon).
The simplest model that is used to represent the real protein chain is the HP model, which consists of
beads along the chain such that each bead is either hydrophobic (H) or polar (P). Thus, the HP model
partitions the twenty amino acids into H and P classes, according to statistically determined preferences
of amino acids with respect to hydrophobicity—whether the amino acid likes to be near or away from the
water in the three-dimensional protein structure. The HP model is a simple exact model, introduced by
Dill et al. (1995), to study features important to the folding of proteins.

In a real protein, every neighboring bead along the chain is joined by a covalent bond. Once covalent
bonds are formed, the primary structure of the chain is � xed. The tertiary structure of the chain, on the
other hand, keeps changing during folding, until the biologically favorable three-dimensional con� guration
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is obtained. As the tertiary structure keeps changing, two beads separated by several beads along the chain
may come close to each other and form an intramolecular bond, also referred to as a nonbonded contact.
Unlike covalent bonds, which do not break once they are formed, the intramolecular bonds may form,
break, and reform during folding. An ith and a j th bead can make an intramolecular bond only if ji¡j j ¸ 3.

In the HP model, there are three different types of intramolecular bonds: H–H, H–P and P–P. Hydrophobic
(H) amino acids try to escape the water and bury themselves in the interior of the three dimensional protein
molecule. This is equivalent to maximizing the number of H–H bonds in the HP-model. Polar (P) amino
acids, on the other hand, tend to remain at the surface of the molecule where their tendency to contact
water molecules is maximized. The hydrophobic properties of amino acids are commonly enforced in the
HP-model by considering the H–H bond as favorable and the other two as neutral. Here, we follow the
same practice and take the energy of the H–H bond as ¡²HH , a negative quantity, and the energies of the
H–P and P–P bonds as zero.

Lattice embedding

Further simpli� cation is possible by embedding the HP model on a lattice, where each chain con� guration
is a self-avoiding walk on the lattice. Two- or three-dimensional square lattices, as well as triangular and
hexagonal lattices, have been used in different models. For the sake of simplicity, we consider HP chains
which have their minimum energy states on a 2D plane, though the approach may readily be extended
to the three-dimensional case, using a 3D topology for the Self-Organizing Network. Embedding of the
protein in a lattice allows the de� nition of the intramolecular bond length as the length of the lattice edge.
In the HP lattice models, the minimum energy con� guration of the protein is uniquely de� ned as the lattice
structure with maximum number of H–H bonds.

3. OUR APPROACH

We try to predict the structure of 2D proteins that are designed HP sequences such that the minimum
energy con� guration lies on a 2D square lattice. In this simpli� ed model, the problem of � nding the
structure is equivalent to � nding which bead occupies which lattice vertex. In the minimum free energy
conformation, each city can be occupied by only one bead (satisfying the excluded volume effect) and the
HH contacts are maximized.

Simply speaking, we formulated the problem to be similar to the solution of the Traveling Salesman
Problem (TSP) by SOM, where neurons in a one-dimensional ring move towards the cities such that when
the network converges, the mapping between the ordered neurons on the ring and the cities indicate the
order of the cities to be visited (Angeniol et al., 1988; Jeffries et al., 1994; Budinich et al., 1996; Altinel
et al., 2000).

TSP by SOM

Given the locations of N cities, the TSP is to � nd a closed path that goes through all of these cities
such that the travel distance is minimum. In the SOM approach to TSP, the cities are presented one by
one, randomly, to the network and the closest neuron (bead) and its topological neighbors update their
weights (or coordinates) to move closer to the input city, in proportion with their distance to the city and
with their distance to the closest neuron. These topology-preserving updates to the SOM help � nd good
(within a few percent of the optimal) approximate solutions to the TSP and are computationally ef� cient.
More speci� cally, at each iteration of the algorithm, a randomly selected input city, k, is presented to the
network. Then, the neuron, i , minimizing

kri ¡ ro
k k (1)

is selected as the winning neuron. Then, each bead j will move towards the input city, k, in proportion
to its distance to the input city and the winning neuron, according to the following update rule, following
Angeniol’s notation (Angeniol et al., 1988).

1rj D e
¡n2

j
=G2

.rj ¡ ro
k / (2)
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Here, G, which is the only adjustable parameter, is a gain variable and nj is the distance of node j

to node i along the line of beads. G works as a temperature variable: it is decreased from a high initial
value, attracting the winning bead and its neighbors with almost equal strength, to 0, at which point only
the winning bead moves towards the input city. The distance nj of the bead, j , to the winning bead, i,
de� ned as the number of amino acids in between the two beads, also affects the strength with which the
bead, j , is pulled: as nj gets larger, bead j is pulled with less strength.

Protein structure prediction by SOM

In our problem, the lattice vertices form the cities, and the beads form the neurons. We formulated the
problem so that the minimum energy conformation corresponds to the Hamiltonian path of the vertices of
the lattice, maximizing the HH contacts. When the algorithm converges, the location of the visited cities
indicates the shape of the protein.

The Hamiltonian path of n nodes (cities) is a path passing through the given n cities, such that the path
length is minimal. The minimum path length criterion implies that each city is visited only once. The
Hamiltonian path problem differs from the TSP in that in the former there is a starting and an ending
point in the path and these two may be far apart from each other, whereas the TSP considers cyclic
paths. Inasmuch as the protein molecule has two unique termini, called the N-terminal and the C-terminal,
and since these two termini are not necessarily close in space in the minimum energy conformation, the
Hamiltonian path formulation is more suitable than the TSP formulation.

Speci� cally, we choose a square lattice with M vertices in one dimension and N vertices in the other.
We try to embed a linear protein chain of MxN beads of known primary structure on this lattice, such
that (i) each bead coincides with one and only one city, (ii) each covalent bond coincides with a lattice
edge, and (iii) the number of nonbonded H–H contacts in the � nal folded structure is maximum. The
lattice embedding provides the excluded volume effect and the Hamiltonian path criterion satis� es the
near equality of covalent bond lengths (3.9 Å on the average in real life, represented by one edge of the
lattice). The total of MxN vertices constitutes the cities in the Traveling Salesman Problem, and the beads
represent the neurons in the Self Organizing Map.

We tried two approaches: (i) using the HH attraction as a penalty term, in addition to the update
mentioned above, and (ii) using three separate iterations, where the standard SOM algorithm is followed
by two iterations designed to exclusively introduce the protein interactions. The second method achieved
better results that are described in this paper.

Let ri D .xi ; yi/ and ro
j D .x0

j ; y0
j / represent the Cartesian coordinates of the ith bead and the j th city.

With the lattice edge taken as unity, the initial con� guration of the chain (neurons) is chosen randomly
according to

xi D M.0:5 ¡ ui/; 1 · i · M

yi D N.0:5 ¡ ui/; 1 · i · N (3)

where ui and vi are uniformly distributed random numbers in the interval (0,1). The cities (x0
j ; y0

j ) are the
coordinates of the uniformly distributed vertices of the lattice.

In the � rst approach, (i), the simple SOM solution to the TSP is adopted with a penalty term derived from
the HH attractions. Given a randomly selected input city, k, the winning neuron, i, and the displacements
are chosen according to the modi� ed SOM:

®.ri ¡ ro
k / C ³

X

j

0ij .ri ¡ rj / (4)

Here, 0ij is equal to ²HH if i and j are both hydrophobic and zero if one of them is polar or if ji ¡j j < 3.
The second term is intended to incorporate the force received by the ith bead in response to all the HH-
attraction it receives. In other words, the winning neuron, i , is the one closest to the input city, subject
also to the total HH-interaction it receives. However, convergence with this approach was more dif� cult
than the approach described below.
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In the second approach, (ii), which is found to be more successful, the SOM algorithm (without the
penalty term) is followed by two other phases, inside a main loop of N iterations. The idea is to inde-
pendently execute three steps to accomplish the various goals (excluded volume and equal covalent bond
lengths, maximized HH-contacts). The � rst internal loop moves the beads and their covalently bonded
neighbors towards the selected city, using the simple SOM algorithm, as follows:

1. Randomly choose a city, k.
2. Pick the bead, i, which is closest to the chosen city.
3. Move the bead, i , towards the city, k, according to

1ri D ®.ri ¡ ro
k / (5)

and move its neighbors j , such that ji ¡ j j D 1, according to

1rj D ®e¡¯.ri ¡ ro
k / (6)

where ® modulates the size of the increment and ¯ is a constant that decreases linearly with the number
of steps N of the algorithm.

In the second internal loop, the lengths of the covalent bonds are pushed towards unity according to:

1ri D ° e¡¯ [.li;iC1 ¡ 1/.riC1 ¡ ri/ ¡ .li;i¡1 ¡ 1/.ri ¡ ri¡1/] (7)

where, li;iC1 is the length of the bond between residues i and i C 1 and ° modulates the increments of r

under the bond potential. If bead i is a terminal bead, then Equation 5 is applied only partly, as is obvious
from the de� nition. In the third internal loop, the H–H bonds are turned on. If a pair of beads i and j is
an HH pair, then the ith bead is moved according to:

1ri D ³e¡¯
X

j

.rj ¡ ri/ (8)

where, the summation is over j and ³ modulates the increments of ri under the attractive H–H potential
coming from all other H’s. At the end of the three internal loops, the main loop is iterated until convergence
to the given lattice. Our use of the SOM algorithm is similar to the KNIES algorithm of Altinel et al. (1999)
in that it also preserves the global statistics of the problem at each iteration: we found that pulling the
center of the locations of the beads to the center of the locations of the cities helps with the convergence.

4. RESULTS

Here we give results for three sequences, a 20mer embedded to a 4 £ 5 lattice and two 36mers, 36-a
and 36-b, each embedded to a 6x6 lattice, using the second approach. The corresponding native structures
on the 2D square lattice are shown in Figures 1 and 2, where the black beads denote the H’s and the white
beads denote the P’s. For the three cases, the same parameters are used: ® D 0:02, ° D 0:01, ³ D 0:002,

FIG. 1. Two minimum energy con� gurations for the 20mer, HHHHHPHHHHHHPHHHHPHH, on the 2D square
lattice. The black beads denote the H’s and the white beads denote the P’s.
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FIG. 2. a) Four minimum energy con� gurations with 21 HH-contacts, for the sequence 36-a, HPHHHHPHHP-
PHPHHHHPHPPHHPPHHPPHHHHHHH, on the 2D square lattice. b) Four minimum energy con� gurations with
20 HH-contacts, for the sequence 36-b, HHHHHHHPHPHHPHPPHHPPHHPPHPHHPHPPHHPH, on the 2D square
lattice. The black beads denote the H’s and the white beads denote the P’s.

the starting value of ¯ D 5, N D 100; 000. Here, ¯ is decremented linearly, such that it equates to zero
at the end of N iterations. At the end of N steps, the number of H–H contacts is recorded and a new run
is started. A total of 1,200 runs with different initial random con� gurations are performed for each of the
three sequences. We report the distribution of the predicted con� gurations at different energy levels, after
eliminating those runs that result in either bond crossings or diagonal crossings (diagonal edges of the
lattice).

(i) The 20mer: The sequence of the 20mer is chosen as HHHHHPHHHHHHPHHHHPHH. Figure 1
shows the two different minimum energy con� gurations obtained for this 20mer on the 4 £ 5 lattice,
with the maximum number of contacts of 12. Out of the 1,200 runs that started with different
random con� gurations, the algorithm found four con� gurations with 12 contacts, two for each of the
con� gurations shown in Fig. 1. The distribution of the predicted con� gurations at different energy
levels (number of contacts) were as follows: 12:4, 11:36, 10:295, 9:428, 8:187, and 7:60, where the
number before the colon is the number of contacts and the one after is the frequency obtained in
1,200 runs.

(ii) The sequence 36-a: This sequence is chosen as HPHHHHPHHPPHPHHHHPHPPHHPPHHPPHHH-
HHHH. In Figure 2a, the four different minimum energy con� gurations for this 36mer on the 6 £ 6
lattice are shown. The maximum number of contacts is 21. In 1,200 runs, the algorithm found four
con� gurations with 21 contacts shown in Figure 2a. Using the above notation, the degeneracies are
obtained with the following frequencies: 21:4, 19:1, 18:1, 17:2, 16:8, 15:13, 14:15, 13:33, 12:26,
11:26, 10:33, 9:8.

(iii) The sequence 36-b: This sequence is chosen as HHHHHHHPHPHHPHPPHHPPHPPHPHHPHP-
PHHPH. In Figure 2b, the two different minimum energy con� gurations for the 36-b are shown.
The maximum number of contacts is 20. In 1,200 runs, the algorithm found two con� gurations with
20 contacts shown in Figure 2b. The degeneracies are obtained as 20:2, 17:2, 15:5, 14:3, 13:18, 12:39,
11:64, 10:48, 9:47, 8:20, 7:6.
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FIG. 3. Distributions of the con� gurations with different number of HH-contacts, found using the SOM approach.
The x-axis is in relation to the (maximum) number of HH-contacts in the native state.

In Fig. 3, the frequency distribution of contacts is presented as a function of the ratio of number of
contacts nc to the maximum number of contacts, nc;max . The curves are Gaussian � ts to the data points
for the 20mer and for 36-a. The results for the 36-b were similar to those for the 36-a and are not shown.
The vertical dotted line represents the lower bound obtained by Hart and Istrail (1996) for 2D HP chains,
discussed in more detail below.

5. CONCLUSION AND DISCUSSION

In the present paper, we showed that SOM may be adopted as an optimization technique for determining
the minimum energy con� gurations of model proteins. The method is ef� cient, as its running time scales
linearly with the chain length. It also found the global minimum for all the test cases we have studied within
the context of the present work, as well as the degeneracies of the minimum energy con� gurations. We are
aware of a single previous study by Hart and Istrail (1996), where near-optimality has been quanti� ed for
HP-models. Though their algorithm guarantees a solution within 3/8 of the optimal, our approach using
the SOM found the global minimum in all the test cases up to 36mers. Figure 3 shows that all of the
results of calculations with the SOM algorithm fall above the 3/8 line.

The present approach is based on generating several con� gurations which are expected to yield low
energy states. The temperature is high at the start of the simulations and is decreased gradually. At some
value of the temperature, the chain � nds a local energy minimum to which it settles. The distribution of
energies obtained in this manner is shown in Fig. 3. Unlike the canonical distribution, this distribution is
not a Boltzmann distribution, which is apparently due to the fact that the mechanisms of energy exchange
between the chain and the lattice are not optimized. The only energy � ow from the chain to the lattice is
through a spring-like coupling of a given bead to its closest city. This energy exchange between the chain
and the lattice is propagated to the chain only through the � rst covalently bonded neighbors of the chosen
bead. The H–H pairs are also coupled to each other by linear springs. The changes in the HH energy are
not coupled to the lattice, however. At each step, the H–H pairs are attracted towards each other by a
small amount. Probably due to these assumptions, the relaxation of the chain energy is not as ef� cient as
a system that obeys Boltzmann statistics.

We have been able to apply the SOM algorithm to the case of compact proteins, where the chain
completely � lls the lattice. We were not successful in obtaining the global energy minimum structures



620 YANIKOGLU AND ERMAN

where the number of lattice points is larger than the number of beads and parts of the lattice nodes need to
be unvisited. In this case, since the beads (nodes of the SOM) try to cover the input space (lattice), a bead is
often located in between two lattice points. One solution to this problem may be to � ll the N lattice points
by N1 beads and N ¡ N1 solvent molecules. Another solution might be to use modi� ed SOM algorithms
where the number of nodes (beads) are adjusted as needed (Angeniol et al., 1988), possibly using dummy
beads to � ll the parts of the lattice that need to be empty. Our work in devising such a modi� ed SOM
algorithm is in progress. The same approach would also address the simpler issue of unknown lattice
dimensions for compact proteins.
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