56,278 research outputs found

    Protection for DC Distribution System with Distributed Generator

    Get PDF
    DC distribution system has advantages of high power quality, large transmission capacity, high reliability, simple structure, economy and low energy consumption, and so forth. It has been a key part of smart grid nowadays. However, the development of DC distribution system is constrained by the lack of operational experience in DC system, the small interrupting capacity of DC circuit breaker (CB), and the lack of protection schemes for system itself. In this paper, protection for DC distribution system with distributed generator (DG) is fully investigated and verified. Firstly, the electromagnetic transient model of DC distribution system with DG is presented. Simulation based on the electromagnetic transient model is carried out. Both the step response and the steady-state performance verify the accuracy of the model. Then the fault characteristic mechanism is analyzed, and the protection principles and scheme are investigated in detail, including voltage mutation principle as protection starting component, differential current protection principle for DC bus, and two-section current protection for distribution lines. Finally, transient responses with protection scheme are analyzed during faults. The results present that the protection principles and scheme are feasible for DC distribution system with DG

    Advanced Control of Small-Scale Power Systems with Penetration of Renewable Energy Sources

    Get PDF
    Stability, protection, and operational restrictions are important factors to be taken into account in a proper integration of distributed energy. The objective of this research is presenting advanced controllers for small-scale power systems with penetration of renewable energy sources resources to ensure stable operation after the network disturbances. Power systems with distributed energy resources are modeled and controlled through applying nonlinear control methods to their power electronic interfaces in this research. The stability and control of both ac and dc systems have been studied in a multi-source framework. The dc distribution system is represented as a class of interconnected, nonlinear discrete-time systems with unknown dynamics. It comprises several dc sources, here called subsystems, along with resistive and constant-power loads (which exhibit negative resistance characteristics and reduce the system stability margins.) Each subsystem includes a dc-dc converter (DDC) and exploits distributed energy resources (DERs) such as photovoltaic, wind, etc. Due to the power system frequent disturbances this system is prone to instability in the presence of the DDC dynamical components and constant-power loads. On the other hand, designing a centralized controller may not be viable due to the distance between the subsystems (dc sources.) In this research it is shown that the stability of an interconnected dc distribution system is enhanced through decentralized discrete-time adaptive nonlinear controller design that employs neural networks (NNs) to mitigate voltage and power oscillations after disturbances have occurred. The ac power system model is comprised of conventional synchronous generators (SGs) and renewable energy sources, here, called renewable generators (RGs,) via grid-tie inverters (GTI.) A novel decentralized adaptive neural network (NN) controller is proposed for the GTI that makes the device behave as a conventional synchronous generator. The advantage of this modeling is that all available damping controllers for synchronous generator, such as AVR (Automatic Voltage Regulator) + PSS (Power System Stabilizer), can be applied to the renewable generator. Simulation results on both types of grids show that the proposed nonlinear controllers are able to mitigate the oscillations in the presence of disturbances and adjust the renewable source power to maintain the grid voltage close to its reference value. The stability of the interconnected grids has been enhanced in comparison to the conventional methods

    Description of a 20 Kilohertz power distribution system

    Get PDF
    A single phase, 440 VRMS, 20 kHz power distribution system with a regulated sinusoidal wave form is discussed. A single phase power system minimizes the wiring, sensing, and control complexities required in a multi-sourced redundantly distributed power system. The single phase addresses only the distribution link; mulitphase lower frequency inputs and outputs accommodation techniques are described. While the 440 V operating potential was initially selected for aircraft operating below 50,000 ft, this potential also appears suitable for space power systems. This voltage choice recognizes a reasonable upper limit for semiconductor ratings, yet will direct synthesis of 220 V, 3 power. A 20 kHz operating frequency was selected to be above the range of audibility, minimize the weight of reactive components, yet allow the construction of single power stages of 25 to 30 kW. The regulated sinusoidal distribution system has several advantages. With a regulated voltage, most ac/dc conversions involve rather simple transformer rectifier applications. A sinusoidal distribution system, when used in conjunction with zero crossing switching, represents a minimal source of EMI. The present state of 20 kHz power technology includes computer controls of voltage and/or frequency, low inductance cable, current limiting circuit protection, bi-directional power flow, and motor/generator operating using standard induction machines. A status update and description of each of these items and their significance is presented

    Editorial: Grid Connection of Converters in Renewable Applications

    Get PDF
    Energy generated from renewable sources is fed into the grid by means of electronic power converters. These can be supervised at system (grid) level to coordinate all productions points together with storages and loads. Regulations impose power supply quality requirements regarding harmonics, grid fault response and low voltage ride through (LVRT). The progress of distributed generation presents challenges to converters such as island mode operation, voltage and frequency regulation, simulation, etc. New collaborative solutions for “more smart” microgrids must be included to improve power quality, reliability, service quality and duty. Wind turbines employing double-fed induction generators (DFIG) use two converters, one for the rotor side and one for the generator side. To improve the performance during severe grid failures, in Okedu and Barghash the advantages of using alternative configurations to the two-level converter, such as the parallel interleaved 2-level inverter, and the 3-level inverter, have been investigated. It has also been investigated to replace the classical dq-PLL with a new PLL, and to include a series dynamic braking resistor (SDBR) between the converters and the three-phase connections. Wind turbines must meet strict requirements, in terms of their behavior, in the event of grid failures, which are regulated by the LVRT regulations in each country. These regulations indicate, by means of voltage and time graphs, how long the wind turbines must remain connected depending on the depth of the faults. In addition, the limits of active and reactive power that can be exchanged during faults are established. The aim is to avoid cascading disconnections of wind turbines that would compromise the stability of the grid. In Okedu and Barghash, the effect of various elements in improving the behaviour of a DFIG against grid faults has been investigated. The first of these elements is the parameters of the IGBTs, concluding that the on-resistance has the greatest influence. The second is the use of a new PLL, and the third is the use of a SDBR during a grid failure. It was found that all of them could improve the performance of the generator in the event of a grid failure. When a wind turbine uses a permanent magnet synchronous generator (PMSG), 100% of the energy generated passes through both converters. In Okedu and Barghash, the control systems of the generator-side and grid-side converters have been considered; several scenarios regarding the turn on resistance of the IGBTs have been considered, and their behaviour during grid faults has been analysed. Generator performance has also been studied with and without the use of a DC-DC converter for overvoltage protection. The main generators used in wind turbines are DFIG and PMSG. In Okedu et al., a comparison of the behaviour of both wind turbines against grid faults has been carried out in various scenarios with different values of generator parameters. The number of converters, associated with renewable generation, connected to the grid has increased significantly lately. This can affect the dynamic response, especially during disturbances, but it can also provide new grid support functionalities if information on the oscillation characteristics is available. Through the use of artificial intelligence, in Baltas et al. the abilities to predict and damp electromechanical oscillations have been improved. With the constant increase in the number of wind turbines connected to the grid, it is very important to have the ability to maintain grid frequency control. In Okedu and Barghash, a work has been presented to stabilise the wind farm during periods of wind speed change by using capacitors connected via a DC-DC converter and a grid-connected DC-AC converter. It was concluded that higher values of the DC-DC converter time constant lead to better performances during load transients. A system including two steam turbines and two squirrel cage induction generators was used in the experiments. Microgrids bring power generation closer to the places of consumption to reduce the saturation of distribution lines. They consist of renewable generation, energy storage and fossil fuel generation. They have three levels of control, where the primary level is the closest to the converters, and the tertiary level, the most external and slowest, performs general monitoring functions. The paper (Buraimoh et al.) focuses on the secondary control functions related to grid failure performance. It proposes a distributed control between inverters and is based on fast detection techniques (fast Delayed Signal Cancellation, DSC), with the objective of a fast control of active and reactive power. A robust transition method between fault mode and normal mode is proposed. Accurate coordination and power sharing between distributed energy resources is achieved. Some energy conversion systems are so complex that they are very difficult to build and test in the laboratory. These include the study of high voltage direct current (HVDC) transmission when several modular multilevel converters (MMC) are involved together with DC grid failure protection elements. In Wang et al., a system including a simulated part (two digitally simulated MMC) and a physical part (two MMC) has been experimented with. The coupling between the two parts has been carried out by means of A/D and D/A converters and power amplifiers

    Effects of energy storage systems grid code requirements on interface protection performances in low voltage networks

    Get PDF
    The ever-growing penetration of local generation in distribution networks and the large diffusion of energy storage systems (ESSs) foreseen in the near future are bound to affect the effectiveness of interface protection systems (IPSs), with negative impact on the safety of medium voltage (MV) and low voltage (LV) systems. With the scope of preserving the main network stability, international and national grid connection codes have been updated recently. Consequently, distributed generators (DGs) and storage units are increasingly called to provide stabilizing functions according to local voltage and frequency. This can be achieved by suitably controlling the electronic power converters interfacing small-scale generators and storage units to the network. The paper focuses on the regulating functions required to storage units by grid codes currently in force in the European area. Indeed, even if such regulating actions would enable local units in participating to network stability under normal steady-state operating conditions, it is shown through dynamic simulations that they may increase the risk of unintentional islanding occurrence. This means that dangerous operating conditions may arise in LV networks in case dispersed generators and storage systems are present, even if all the end-users are compliant with currently applied connection standards

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identiïŹ cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and ïŹ‚ exible, inverter-equipped testing microgrids. To this end, the combination of ïŹ‚ exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries

    Power Management Strategies for a Wind Energy Source in an Isolated Microgrid and Grid Connected System

    Get PDF
    This thesis focuses on the development of power management control strategies for a direct drive permanent magnet synchronous generator (PMSG) based variable speed wind turbine (VSWT). Two modes of operation have been considered: (1) isolated/islanded mode, and (2) grid-connected mode. In the isolated/islanded mode, the system requires additional energy sources and sinks to counterbalance the intermittent nature of the wind. Thus, battery energy storage and photovoltaic (PV) systems have been integrated with the wind turbine to form a microgrid with hybrid energy sources. For the wind/battery hybrid system, several energy management and control issues have been addressed, such as DC link voltage stability, imbalanced power flow, and constraints of the battery state of charge (SOC). To ensure the integrity of the microgrid, and to increase its flexibility, dump loads and an emergency back-up AC source (can be a diesel generator set) have been used to protect the system against the excessive power production from the wind and PV systems, as well as the intermittent nature of wind source. A coordinated control strategy is proposed for the dump loads and back up AC source. An alternative control strategy is also proposed for a hybrid wind/battery system by eliminating the dedicated battery converter and the dump loads. To protect the battery against overcharging, an integrated control strategy is proposed. In addition, the dual vector voltage control (DVVC) is also developed to tackle the issues associated with unbalanced AC loads. To improve the performance of a DC microgrid consisting wind, battery, and PV, a distributed control strategy using DC link voltage (DLV) based control law is developed. This strategy provides simpler structure, less frequent mode transitions, and effective coordination among different sources without relying on real-time communication. In a grid-connected mode, this DC microgrid is connected to the grid through a single inverter at the point of common coupling (PCC). The generated wind power is only treated as a source at the DC side for the study of both unbalanced and balanced voltage sag issues at a distribution grid network. The proposed strategy consists of: (i) a vector current control with a feed-forward of the negative-sequence voltage (VCCF) to compensate for the negative sequence currents; and (ii) a power compensation factor (PCF) control for the VCCF to maintain the balanced power flow between the system and the grid. A sliding mode control strategy has also been developed to enhance the overall system performance. Appropriate grid code has been considered in this case. All the developed control strategies have been validated via extensive computer simulation with realistic system parameters. Furthermore, to valid developed control strategies in a realistic environment in real-time, a microgrid has been constructed using physical components: a wind turbine simulator (WTS), power electronic converters, simulated grid, sensors, real-time controllers and protection devices. All the control strategies developed in this system have been validated experimentally on this facility. In conclusion, several power management strategies and real-time control issues have been investigated for direct drive permanent magnet synchronous generator (PMSG) based variable speed wind turbine system in an islanded and grid-connected mode. For the islanded mode, the focuses have been on microgrid control. While for the grid-connected mode, main consideration has been on the mitigation of voltage sags at the point of common coupling (PCC)

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de EconomĂ­a y Competitividad ENE2017-84813-RUniĂłn Europea (Programa Horizonte 2020) 76409

    Experimental Test bed to De-Risk the Navy Advanced Development Model

    Get PDF
    This paper presents a reduced scale demonstration test-bed at the University of Texas’ Center for Electromechanics (UT-CEM) which is well equipped to support the development and assessment of the anticipated Navy Advanced Development Model (ADM). The subscale ADM test bed builds on collaborative power management experiments conducted as part of the Swampworks Program under the US/UK Project Arrangement as well as non-military applications. The system includes the required variety of sources, loads, and controllers as well as an Opal-RT digital simulator. The test bed architecture is described and the range of investigations that can be carried out on it is highlighted; results of preliminary system simulations and some initial tests are also provided. Subscale ADM experiments conducted on the UT-CEM microgrid can be an important step in the realization of a full-voltage, full-power ADM three-zone demonstrator, providing a test-bed for components, subsystems, controls, and the overall performance of the Medium Voltage Direct Current (MVDC) ship architecture.Center for Electromechanic
    • 

    corecore