438 research outputs found

    HardScope: Thwarting DOP with Hardware-assisted Run-time Scope Enforcement

    Full text link
    Widespread use of memory unsafe programming languages (e.g., C and C++) leaves many systems vulnerable to memory corruption attacks. A variety of defenses have been proposed to mitigate attacks that exploit memory errors to hijack the control flow of the code at run-time, e.g., (fine-grained) randomization or Control Flow Integrity. However, recent work on data-oriented programming (DOP) demonstrated highly expressive (Turing-complete) attacks, even in the presence of these state-of-the-art defenses. Although multiple real-world DOP attacks have been demonstrated, no efficient defenses are yet available. We propose run-time scope enforcement (RSE), a novel approach designed to efficiently mitigate all currently known DOP attacks by enforcing compile-time memory safety constraints (e.g., variable visibility rules) at run-time. We present HardScope, a proof-of-concept implementation of hardware-assisted RSE for the new RISC-V open instruction set architecture. We discuss our systematic empirical evaluation of HardScope which demonstrates that it can mitigate all currently known DOP attacks, and has a real-world performance overhead of 3.2% in embedded benchmarks

    Retrofitting Security in COTS Software with Binary Rewriting

    Get PDF
    We present a practical tool for inserting security features against low-level software attacks into third-party, proprietary or otherwise binary-only software. We are motivated by the inability of software users to select and use low-overhead protection schemes when source code is unavailable to them, by the lack of information as to what (if any) security mechanisms software producers have used in their toolchains, and the high overhead and inaccuracy of solutions that treat software as a black box. Our approach is based on SecondWrite, an advanced binary rewriter that operates without need for debugging information or other assist. Using SecondWrite, we insert a variety of defenses into program binaries. Although the defenses are generally well known, they have not generally been used together because they are implemented by different (non-integrated) tools. We are also the first to demonstrate the use of such mechanisms in the absence of source code availability. We experimentally evaluate the effectiveness and performance impact of our approach. We show that it stops all variants of low-level software attacks at a very low performance overhead, without impacting original program functionality

    Preventing Buffer Overflows with Binary Rewriting

    Get PDF
    Buffer overflows are the single largest cause of security attacks in recent times. Attacks based on this vulnerability have been the subject of extensive research and a significant number of defenses have been proposed for dealing with attacks of this nature. However, despite this extensive research, buffer overflows continue to be exploited due to the fact that many defenses proposed in prior research provide only partial coverage and attackers have adopted to exploit problems that are not well defended. The fact that many legacy binaries are still deployed in production environments also contributes to the success of buffer overflow attacks since most, if not all, buffer overflow defenses are source level defenses which require an application to be re-compiled. For many legacy applications, this may not be possible since the source code may no longer be available. In this thesis, we present an implementation of a defense mechanism for defending against various attack forms due to buffer overflows using binary rewriting. We study various attacks that happen in the real world and present techniques that can be employed within a binary rewriter to protect a binary from these attacks. Binary rewriting is a nascent field and little research has been done regarding the applications of binary rewriting. In particular, there is great potential for applications of binary rewriting in software security. With a binary rewriter, a vulnerable application can be immediately secured without the need for access to it's source code which allows legacy binaries to be secured. Also, numerous attacks on application software assume that application binaries are laid out in certain ways or have certain characteristics. Our defense scheme implemented using binary rewriting technology can prevent many of these attacks. We demonstrate the effectiveness of our scheme in preventing many different attack forms based on buffer overflows on both synthetic benchmarks and real-world attacks

    ROPocop - Dynamic Mitigation of Code-Reuse Attacks

    Full text link
    Control-flow attacks, usually achieved by exploiting a buffer-overflow vulnerability, have been a serious threat to system security for over fifteen years. Researchers have answered the threat with various mitigation techniques, but nevertheless, new exploits that successfully bypass these technologies still appear on a regular basis. In this paper, we propose ROPocop, a novel approach for detecting and preventing the execution of injected code and for mitigating code-reuse attacks such as return-oriented programming (RoP). ROPocop uses dynamic binary instrumentation, requiring neither access to source code nor debug symbols or changes to the operating system. It mitigates attacks by both monitoring the program counter at potentially dangerous points and by detecting suspicious program flows. We have implemented ROPocop for Windows x86 using PIN, a dynamic program instrumentation framework from Intel. Benchmarks using the SPEC CPU2006 suite show an average overhead of 2.4x, which is comparable to similar approaches, which give weaker guarantees. Real-world applications show only an initially noticeable input lag and no stutter. In our evaluation our tool successfully detected all 11 of the latest real-world code-reuse exploits, with no false alarms. Therefore, despite the overhead, it is a viable, temporary solution to secure critical systems against exploits if a vendor patch is not yet available
    • …
    corecore