
ABSTRACT

Title of thesis: PREVENTING BUFFER OVERFLOWS
WITH BINARY REWRITING

Pádraig O’Sullivan, Master of Science, 2010

Thesis directed by: Professor Rajeev Barua
Department of Electrical and Computer Engineering
Professor Angelos Keromytis
Department of Computer Science, Columbia University

Buffer overflows are the single largest cause of security attacks in recent times.

Attacks based on this vulnerability have been the subject of extensive research and

a significant number of defenses have been proposed for dealing with attacks of this

nature. However, despite this extensive research, buffer overflows continue to be

exploited due to the fact that many defenses proposed in prior research provide

only partial coverage and attackers have adopted to exploit problems that are not

well defended. The fact that many legacy binaries are still deployed in production

environments also contributes to the success of buffer overflow attacks since most, if

not all, buffer overflow defenses are source level defenses which require an application

to be re-compiled. For many legacy applications, this may not be possible since the

source code may no longer be available. In this thesis, we present an implementation

of a defense mechanism for defending against various attack forms due to buffer

overflows using binary rewriting. We study various attacks that happen in the real

world and present techniques that can be employed within a binary rewriter to

protect a binary from these attacks.

Binary rewriting is a nascent field and little research has been done regard-

ing the applications of binary rewriting. In particular, there is great potential for

applications of binary rewriting in software security. With a binary rewriter, a vul-

nerable application can be immediately secured without the need for access to it’s

source code which allows legacy binaries to be secured. Also, numerous attacks on

application software assume that application binaries are laid out in certain ways or

have certain characteristics. Our defense scheme implemented using binary rewrit-

ing technology can prevent many of these attacks. We demonstrate the effectiveness

of our scheme in preventing many different attack forms based on buffer overflows

on both synthetic benchmarks and real-world attacks.

PREVENTING BUFFER OVERFLOWS WITH
BINARY REWRITING

by

Pádraig O’Sullivan

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2010

Advisory Committee:
Professor Rajeev Barua, Chair/Advisor
Dr. Peter Petrov
Dr. Gang Qu

c© Copyright by
Pádraig O’Sullivan

2010

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 3

2 Related Work 4
2.1 Catalog of Attack Techniques . 4

2.1.1 Buffer Overflow Attacks . 4
2.1.2 Return-to-libc Attacks . 6
2.1.3 Return-Orientated Programming 7

2.2 Catalog of Defense Techniques . 8
2.2.1 Compile Time Defenses . 8
2.2.2 Instruction Set Randomization 9
2.2.3 Address Space Layout Randomization 10
2.2.4 Control Flow Integrity . 10
2.2.5 Program Sheperding . 11

2.3 Related Work in Binary Rewriting 12
2.4 Summary . 13

3 Binary Rewriting and Our Protection Scheme 15
3.1 Binary Rewriting . 15

3.1.1 Architecture of Binary Rewriter 18
3.2 Stack Canary Insertion . 19
3.3 Base Pointer Elimination . 20
3.4 Return Address Protection . 21
3.5 Function Pointer Protection . 22
3.6 longjmp/setjmp Protection . 23
3.7 Summary . 24

4 Experimental Results 25
4.1 Synthetic Results . 25

4.1.1 Benchmark Description . 25
4.1.2 Methodology . 27
4.1.3 Results and Analysis . 28

4.2 Overheads . 28
4.2.1 Binary Rewriting Overhead 28
4.2.2 Security Related Overheads 33

4.3 Real World Attacks . 34

5 Conclusions and Future Work 36

ii

Bibliography 37

iii

List of Tables

4.1 Results on the Wilander and Kamkar Benchmarks. 29
4.2 Application Characteristics . 30

iv

List of Figures

3.1 SecondWrite system . 18

4.1 Normalized runtime of rewritten binary as compared to input binary
(runtime=1.0) that is un-optimized 31

4.2 Normalized runtime of rewritten binary as compared to input binary
(runtime=1.0) that is optimized . 32

4.3 Runtime overhead of rewritten binaries after inserting security checks. 34

v

Chapter 1

Introduction

The dominant form of software security vulnerability is the buffer overflow

vulnerability. Attacks based on this vulnerability have been the subject of extensive

research and a significant number of defenses have been proposed for dealing with

attacks of this nature. Despite this extensive research, buffer overflows continue to

be exploited in real world attacks. This is because most buffer overflow defenses

provide only partial coverage, and the attacks have adopted to exploit problems

that are not well defended.

Numerous schemes have been proposed for dealing with buffer overflow attacks.

In our eyes, the applicability of such schemes depends on a number of factors,

including:

1. Ease of use

2. Availability

3. Robustness

4. Applicability to all binaries

5. Low overheads

In this thesis, we present a scheme which meets the applicability requirements

for a good security scheme. Our scheme is implemented using a binary rewriter

1

developed within our research group named SecondWrite. A binary rewriter takes a

binary executable program as input, and produces a modified, improved executable

as output.

Two of the novel aspects of SecondWrite are: 1) the input binary is translated

into an existing compiler’s intermediate representation (IR); and 2) binaries without

relocation or symbolic information can be rewritten.

The ability to translate a binary to a high-level IR allows SecondWrite to insert

security mechanisms that would otherwise require access to source code. Using a

rewriter to insert security in a binary is important for consumers/users of software,

who are otherwise at the mercy of the vendor when it comes to using security

mechanisms or fixing known problems (patch management). With a binary rewriter,

an administrator can (in principle) modify a binary to fix or mitigate a vulnerability.

1.1 Contributions

The contributions of this thesis are primarily in demonstrating a key applica-

tion of binary rewriting. To this end, this thesis makes two major contributions:

1. A scheme is presented for protecting against commong buffer overflow attacks

using a sophisticated and novel static binary rewriter

2. The scheme presented is practical, effective, and immediately deployable

2

1.2 Outline

In Chapter 2, we discuss some of the common attack forms and survey existing

defenses for these attacks. We also briefly discuss some previous work in the field of

binary rewriting. In Chapter 3, we describe how our binary rewriter works and how

the various components of our scheme are implemented. In Chapter 4, we present

experimental results which demonstrate the practicality of our scheme. Finally, in

Chapter 5, we present our conclusions and discuss directions for future work.

3

Chapter 2

Related Work

Our work is related to many techniques that attempt to defend against ma-

licious applications and vulnerabilities in applications which present attackers with

an opportunity to attack. In this chapter, we elaborate on some of the pieces of work

most closely related to ours. First, we present the various attack techniques utilized

by attackers that are relevant for this thesis and then we go on to present vari-

ous techniques proposed for mitigating these attack techniques. When discussing

defenses, we draw attention to the drawbacks of each technique. We also briefly

discuss related work in binary rewriting.

2.1 Catalog of Attack Techniques

2.1.1 Buffer Overflow Attacks

A buffer overflow refers to a situation that can occur when a function contains a

local bounded array, or buffer, and writes into that buffer are not correctly guarded.

Since C and C++ compilers typically use the stack for local variables as well as

parameters, frame pointers, and saved return addresses, writes into a buffer that

are not correctly guarded may overwrite and corrupt the return address stored on

the stack. Data copied into the buffer whose length is larger than the buffer’s size

is referred to as a buffer overflow.

4

If an attacker controls the data used by the function, attackers can exploit

buffer overflows and change the function’s return address to an arbitrary value. In

this case, when the function returns, the attacker can direct execution to code of

their choice. This technique was first described in detail by AlephOne in 1996 [15].

However, attacks of this kind date back to before 1988 when the technique was used

in the fingerd exploit of the Morris worm.

An example of a function with a buffer overflow vulnerability adopted from [8]

follows:

int is_file_my_file(char *one, char *two)

{

char tmp[MAX_FILE_LEN];

strcpy(tmp, one);

strcat(tmp, two);

return (strcmp(tmp, "/home/posulliv/my_file"));

}

The above (somewhat unrealistic) function compares the concatentation of

two input strings against /home/posulliv/my file. If the input strings to the above

function can be chosen by an attacker, then the attacker can change the program’s

flow of control by overflowing the tmp buffer and changing the return address stored

on the stack to an address of the attacker’s choosing.

Commonly, an attacker would choose their input data so that the machine code

for an attack payload would be present at the modified return address. When the

vulnerable function returns, and execution of the attack payload begins, the attacker

has gained control of the behavior of the target software. The attack payload is often

called shellcode, since a common goal of an attacker is to launch a command line

5

interpreter (referred to as a shell in UNIX like environments) under their control.

2.1.2 Return-to-libc Attacks

As an alternative to supplying executable code (referred to as direct code in-

jection), an attacker might be able to craft an attack that executes existing machine

code (indirect code injection). This class of attacks has been referred to as jump-

to-libc or return-to-libc (arc injection [6] has also been used to refer to this class of

attacks) because the attack often involves directing execution towards machine code

in the standard C library (libc) [6]. The standard C library is often the target for

attacks of this type since it is loaded in nearly every UNIX program and it contains

routines of the sort that are useful for an attacker. This technique was first suggested

by Solar Designer in 1997 [7]. Attacks of this kind can evade defense mechanisms

that protect the stack such as stack canaries and it is also effective against defenses

that only allow memory to be writable or executable.

An example of a function vulnerable to such an attack adopted from [8] follows:

int median(int *data, int len, void *cmp)

{

int tmp[MAX_INTS];

/* copy the input integers */

memcpy(tmp, data, len * sizeof(int));

/* sort the local copy */

qsort(tmp, len, sizeof(int), cmp);

/* median is in the middle */

return tmp[len / 2];

}

The above function is vulnerable to a buffer overflow as outlined in the previous

6

sub-section. However, an attacker can also corrupt the comparison function pointer

cmp before it is passed to the qsort library function. If an attacker is able to

accomplish this, he/she can gain control of execution at the point where the qsort

function calls its copy of the corrupted cmp argument.

Traditionally, attacks of this kind have targeted the system function in the

standard system library which allows the execution of an arbitrary command with

arguments. However, recent attacks have been demonstrated which do not depend

on calling functions in the standard C library.

2.1.3 Return-Orientated Programming

The technique of return-oreintated programming was introduced by Shacham

[19]. Using this technique, an attacker can induce arbitrary behavior in a pro-

gram whose control flow he/she has diverted without injecting any code. A return-

orientated program chains together short instruction sequences already present in

a program’s address space, each of which ends in a return instruction. Several

instructions can be combined into a gadget which is the basic block within a return-

orientated program that performs operations. Gadgets are self-contained and per-

form one well-defined step of a computation. An attacker uses these gadgets to craft

stack frames that can then perform arbitrary computations.

Shacham et al. [3] showed that the standard C library in both Linux running

on the x86 platform and Solaris running on the SPARC platform contain enough

useful intructions to construct meaningful gadgets. They manually analyzed the

7

standard C library on both platforms and constructed a library of gadgets that is

Turing complete.

2.2 Catalog of Defense Techniques

2.2.1 Compile Time Defenses

StackGuard [4] places a ’canary’ on the stack between local variables and

the return address. This canary value is designed to warn of stack corruption since

validating the integrity of the canary value is an effective means of ensuring that the

function return address has not been corrupted. Microsoft’s compiler also supports

the insertion of stack canaries with the /GS option.

ProPolice [9] is similar to StackGuard in that it places a canary value on the

stack. However, ProPolice also places arrays and other function-local buffers above

all other function-local variables on the stack. Copies of all function arguments are

also made into new, function-local variables that also sit below any buffers in the

function. As a result, these variables and arguments are not subject to corruption

through an overflow of these buffers.

StackGuard, PointGuard, and ProPolice involve compile-time analysis and

transformation. Thus, unless the source code for an application is available, these

techniques can not be used thereby hindering the ability to easily deploy these

techniques. Our techniques do not suffer from this drawback since they can be

easily deployed on any binary produced from any source language and compiler.

8

2.2.2 Instruction Set Randomization

Instruction-set randomization [1] is a promising technique for protecting against

buffer overflows (and many kinds of code injection attacks). This approach random-

izes the underlying system’s instructions so that foreign code injected by an attacker

would fail to execute correctly since the attacker does not know the instruction set of

the target system. However, as mentioned by the authors in [1], the main drawback

of this technique as applied to binary code that is meant to execute on a hard-

ware processor is the need for special support by the processor. Thus, even though

instruction-set randomization offers a strong defense against buffer overflow attacks

the fact that unless it is supported by specialized hardware, it incurs significant

overheads means that it is inlikely to see adoption in practice for the foreseeable

future. However, when applied to interpreted languages (such as SQL), it can prove

to be very effective. However, interpreted languages are not vulnerable to the buffer

overflow attacks being discussed in this thesis.

In [12], the authors utilized Strata and Diablo to implement instruction set

randomization. Diablo is used to prepare a binary for string encryption and in-

troduce the information necessary to detect foreign code. Strata is then used to

provide the necessary virtual execution environment for safe execution. The main

contribution of this work is that the instruction-set randomization implementation

is efficient while requiring no special hardware support. However, the runtime over-

heads reported are still high and likely to limit the practical adoption of such a

system.

9

A binary rewriter such as the one used for our research suffers from none of

these issues. No special hardware is required in order to utilize a binary rewriter

and overheads are relatively low. In fact, if an original binary was compiled without

optimizations, it is likely to see a runtime improvement when rewritten.

2.2.3 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) can be seen as a relatively

coarse grained form of software diversity [21]. ASLR shuffles, or randomizes, the

layout of software in the memory address space. It is effective at preventing remote

attackers that have no existing means of running code on a target system from

crafting attacks that depend on addresses. ASLR is not intended to defend against

attackers that are able to control the software execution and its utility on 32-bit

architectures is limited by the number of bits available for address randomization

[20].

A binary rewriter could easily be used to provide a similar defense mechanism

as ASLR. In fact, an interesting future avenue of research is to investigate software

diversity through binary rewriting.

2.2.4 Control Flow Integrity

Control Flow Integrity (CFI) [13] is a basic safety property that can prevent

attacks from arbitrarily controlling program behavior. CFI dictates that software

execution must follow a path of a control-flow graph that is determined ahead of time

10

by analysis (in this case, static binary analysis is performed). CFI is enforced using

static verification and binary rewriting (with Microsoft’s Vulcan tool) that instru-

ments software with runtime checks. These checks aim to ensure that control flow

remains within a given control-flow-graph. CFI is a very effective defense against

buffer overflow attacks (and any attack which attempts to change a program’s con-

trol flow) since any attempt by an attacker to divert the control flow of a program

will be caught by CFI. However, the main barrier to CFI’s adoption seems to be

the overhead associated with the scheme. In [13], the authors state that the average

overhead of CFI (as implemented by them) is 16% on the SPEC2000 benchmarks.

Also, the binary rewriter used by CFI depends on a binary being compiled with

debug information which may not always be available. If a binary is not compiled

with debug information then the implemenation of CFI in [13] cannot be utilized.

Our schemes implemented through our binary rewriter can provide the same

level of protection as CFI. An additional advantage of our scheme is that our binary

rewriter does not require access to any special information in an input binary unlike

the binary rewriter used in CFI which requires access to debug information.

2.2.5 Program Sheperding

Program sheperding employs an efficient machine-code interpreter (DynamoRIO

[2]) for implementing a security enforcement mechanism. A broad class of security

policies can be implemented using a machine interpreter such as DynamoRIO. For

example, DynamoRIO could be used to enforce control-flow integrity. Program

11

shepherding enforces a similar policy that imposes certain runtime restrictions on

control flow such that an attacker can not alter a program’s flow of control.

Program sheperding can experience significant memory and runtime over-

heads, particularly on the Windows platform. The scheme requires an application

and interpreter to be run simultaneously. The high overheads in some cases are

likely to limit adoption of program sheperding.

2.3 Related Work in Binary Rewriting

Binary rewriting and link time optimizatizers have been considered by a num-

ber of researchers. Binary rewriting research is being carried out in two directions:

static rewriting and dynamic rewriting. Dynamic binary rewriters rewrite the binary

during its execution. Examples are PIN [5], BIRD [17], DynInst [11], DynamoRIO

[2] and Valgrind [14]. None of the dynamic binary rewriters we found employ a com-

piler like intermediate representation. This is not surprising since dynamic rewriters

construct their internal representation at run-time, and hence they would not have

the time to construct a compiler IR. Dynamic rewriters are hobbled since they do not

have enough time to perform complex compiler transformations either; they have

been primarily used for code instrumentation and simple security checks in the past.

We do not discuss dynamic rewriters further since the methods used for rewriting

in this thesis are primarily directed at static binary rewriters such as SecondWrite.

Existing static binary rewriters related to our approach include Etch [16],

ATOM [10], PLTO [18], and Diablo [22]. None of the existing rewriters employ a

12

compiler level intermediate representation; rather they define their own low-level

custom intermediate representation. Diablo defines an augmented whole program

control-flow-graph based intermediate representation with program registers as glob-

als and memory as a black box. It does not attempt to obtain high-level information

like function prototypes and is geared mainly towards optimizations like code com-

paction. Taking memory as a black box limits its applicability to architectures like

x86 which have a limited set of registers. ATOM defines a symbolic RTL-based

intermediate representation with infinite registers but does not make any attempt

of analyzing or modifying the stack layout. Its mainly targeted towards RISC ar-

chitectures. PLTO employs a whole program CFG based IR and implements stack

analysis to determine the use-kill depths of each function. However, this information

is not used for converting it into high-level IR; rather it is only used for low-level

custom optimizations like load/store forwarding. Etch does not explicitly build an

intermediate representation build an intermediate representation and allows users

to add new tools to analyze binaries. The primary goal of Etch appears to be in-

strumentation and has only been shown to be applicable for simple optimizations

like profile-guided code layout.

2.4 Summary

Current defenses have a number of weaknesses:

• They are not easily deployable

– Source code for an application is required

13

– An application needs to be compiled with certain information

– Hardware support is required

• Most are not readily available for use and evaluation

• Some suffer from un-acceptable overheads

• No scheme is immediately applicable to all binaries

Using the novel binary rewriting techniques developed within our research

group, we have developed a scheme with the following characteristics:

• It is immediately deployable

• It is applicable to any binary

• Access to an application’s source code is not required

• An application does not need to be compiled in any way such that it contains

special information e.g. debug or relocation information

• It has low overheads

• Many common stack-based buffer overflow attacks are prevented

14

Chapter 3

Binary Rewriting and Our Protection Scheme

The cornerstone of our scheme is a binary rewriter which has been developed

within our research group. In this chapter, we first discuss binary rewriting, give an

overview of the binary rewriter we have developed in our research group, and then

go on to discuss the various components of our scheme that we have implemented

as part of our binary rewriter.

3.1 Binary Rewriting

Binary rewriters are pieces of software that accept a binary executable program

as input, and produce an improved executable as output. The output executable

typically has the same functionality as the input, but is improved in one or more

metrics, such as run-time, energy use, memory use, security or reliability.

In recognition of its potential, binary rewriting has seen much active research

over the last decade. The reason for great interest in this area is that binary rewriting

offers additional advantages over compiler-produced optimized binaries:

• Ability to do inter-procedural optimization. Although compilers in the-

ory can do whole-program optimizations, the reality is that they do little if

any. Many commercial compilers - even highly optimizing ones - limit them-

selves to separate compilation, where each file (and sometimes each function)

15

is compiled in isolation. Inter-procedural link-time optimizations are often ab-

sent, and even when present, are usually far less powerful than compile-time

optimizations since they work on low-level object code without the benefit

of the extensive optimizations on IR available in the compiler. In contrast,

binary rewriters have access to the complete application all at once, including

libraries. This allows them to perform aggressive whole-program optimizations

to exceed the performance of even optimized code.

• Ability to do optimizations missed by the compiler. Some binaries,

especially legacy binaries or those compiled with inferior compilers, often

miss certain optimizations. Binary rewriters can perform these optimizations

missed by the compiler while preserving the optimizations the compiler did

actually perform.

• Increased economic feasibility. It is cheaper to implement a code transfor-

mation once for an instruction set in a binary rewriter, rather than repeatedly

for each compiler for the instruction set. For example, the ARM instruction

set has over 30 compilers available for it, and the x86 has a similarly large num-

ber of compilers from different vendors and for different source languages. The

high expense of repeated compiler implementation often cannot be supported

by a small fraction of the demand.

• Portable to any source language and any compiler. A binary rewriter

works for code produced from any source language by any compiler.

16

• Works for hand-coded assembly routines. Code transformations cannot

be applied by a compiler to hand-coded assembly routines, since they are never

compiled. In contrast, a binary rewriter can transform such routines.

However, binary rewriters today have fallen far short of this desired vision.

Binary rewriters remain relatively crude tools today, capable of no more than simple

program transformations such as peephole optimization and code instrumentation.

Complex transformations such as extensive whole-program optimizations, automatic

parallelization and sophisticated security enforcement, which we study in this thesis,

remain outside the capabilities of current rewriters.

The binary rewriter developed by our group and utilized for this research

is named SecondWrite. Our binary rewriter employs the widely used open-source

LLVM compiler infrastructure and in particular, LLVM’s high-level intermediate

representation to represent code. Our custom binary reader and de-compiler mod-

ules read a binary and produce requivalent LLVM IR code using some of the tech-

niques we will briefly describe in Section 3.1.1.

For this thesis, we study using binary rewriting to retroactively add security

to a vulnerable binary. When this extra security is added, a binary is no longer

vulnerable to common buffer overflow attacks.

Two notable properties of using binary rewriting to enforce security are low-

overhead and real-time prevention of malicious behaviors as will be seen when we

present our experimental results.

17

ISA
XML

Original
Input

Binary

Internal
Pass

Optimization
Passes
(Serial,
Parallel,
Security)

LLVM
CodeGen

Binary
Frontend

LLVM IR
Richer
LLVM IR

Optimized
LLVM IR Output

Binary

Figure 3.1: SecondWrite system

3.1.1 Architecture of Binary Rewriter

Figure 3.1 presents an overview of the SecondWrite system. The SecondWrite

system consists of a frontend module for reading binary executables and generating

an initial LLVM IR, an internal pass module for extracting more information about

the underlying program, optimizing passes to implement various optimizations, and

the LLVM code generator (codegen) for producing the rewritten binary.

The frontend module consists of a disassembler and a custom binary reader

which processes the individual instructions and generates an initial LLVM IR. This

initial representation is void of the desired IR features like function prototypes,

abstract stack and virtual registers. The internal pass module analyzes this initial

IR to obtain an improved IR which has all the information and features mentioned

previously. Various optimization passes can be written on the above IR to obtain

an optimized IR. Finally, the optimized IR is passed to the existing LLVM code

generator to obtain the rewritten binary.

Various inherent characteristics of executables such as the unavailability of

function prototypes, the use of a phyiscal stack and the use of the set of phyiscal

18

registers make it difficult to obtain a high-level IR from an input executable. A

number of techniques have been developed within our group to extract this high-

level information from executables whenever possible. We will not discuss those

techniques in this thesis as the techniques are explained in detail elsewhere [].

3.2 Stack Canary Insertion

The first component of our scheme is the simplest. LLVM provides the ability

to insert stack canaries during code generation. Utilizing this capability from LLVM

allows us to easily provide the same level of protection to an un-protected binary as

StackGuard would provide when given an application’s source code.

Essentially, a random canary value is generated and placed on the stack during

a function’s prolog. In the function epilog, the value stored on the stack is compared

with the random canary value for this process. If there is any difference, execution

is halted as the canary value has been corrupted.

While this component of our scheme is simple, it demonstrates a key advantage

of SecondWrite. By translating the input binary to LLVM’s high-level intermediate

representation, we were able to take advantage of features LLVM already provides.

Thus, to achieve the same level of protection as StackGuard, we had to do very little

once the binary was translated to LLVM’s IR.

19

3.3 Base Pointer Elimination

The next component of our scheme is again due to existing LLVM optimiza-

tions. LLVM is an optimizing compiler and the binaries produced by LLVM are

highly optimized. One common optimization applied by modern compilers on the

x86 platform is to free up the EBP register for register allocation by removing the

base (or frame) pointer.

Eliminating the base pointer also removes the ability for an attacker to craft

an attack by modifying the old base pointer stored in a stack frame. In a binary

which has not been compiled at a high optimization level, base pointers may still

be used. In this case, the value of the base pointer will be pushed on the stack

upon function entry in order for the value to be restored on function return. If an

attacker is able to modify the value of the base pointer, he/she could have a fake

stack frame they created be used thereby allowing the attacker to alter the flow of

control of the program.

When the base pointer is eliminated by LLVM, any attack of this form is

immediately prevented. There will be no base pointer for an attacker to modify.

While corruption of the stack may still occur if an attacker overflows a buffer in

order to attempt to overwrite the base pointer, no attack will be successful.

Again, the elimination of the base pointer highlights the advantages of Second-

Write. By utilizing an existing compiler framework, we are able to produce highly

optimized binaries which eliminate the ability for an attacker to perform an attack

on a base pointer.

20

3.4 Return Address Protection

Given that stack canaries as inserted by LLVM do not provide the same level

of protection as the ProPolice mechanism that comes with GCC, we decided to

implement a more complete solution for protecting against corruption of the return

address.

The basic idea of our return address protection scheme is as follows:

1. During the function prolog, store the return address of the current function in

a global variable

2. In function epilog, compare the current return address on the stack with the

value saved in a global variable

3. If there is any difference between these values, execution is halted

This simple scheme will detect if the return address has been modified either

directly or indirectly. One complication with this scheme is the fact that a global

variable is used for storing the return address. If a separate global variable was

created for each function, memory overhead would become quite high. One solution

is to use an array of global variables of a bounded size for saving return values.

However, if function nesting is deep as in recursive functions, issues can still occur.

We applied an optimization for relieving this problem. We observed that this

protection mechanism is only necessary if a function contains a write to a buffer.

Thus, we analyze a function to look for any write to a buffer. If a function does not

contain any write to a buffer then there is no need for the return address protection

21

mechanism to be inserted. During our experimental evaluation of our scheme, we

have not yet come across a recursive function, which could cause issues for our

scheme, that required return address protection to be inserted.

3.5 Function Pointer Protection

One common attack method used by attackers is to overwrite a function

pointer so that when it is de-referenced, code of the attacker’s choosing will be

executed. In a binary executable, function pointers will appear as indirect calls.

Thus, another component of our scheme concentrates on protecting all indirect calls

and branches.

We have a scheme implemented which works correctly as will be seen in the

experimental results chapter. However, research within our group is currently on-

going that will convert all indirect calls and branches in a binary to direct calls and

branches. We will discuss how this affects our scheme after first describing what we

have implemented.

Our initial scheme adds checking code before all indirect calls and branches. A

global variable is declared in the data segment and its address is used as a boundary

value. The checks inserted before any indirect call or branch ensure that the target

of the indirect call or branch points to memory below the address of the global

boundary variable. If the target points above the address of this global bondary

variable then execution is halted.

With the new research occuring within our group, there will be no need to

22

insert checks into a binary. Basically, an indirect call in an input binary will be

replaced by a large switch statement. This switch statement will contain a number

of cases which are direct calls. SecondWrite will determine by analysis what all the

valid targets of this indirect call are and each valid target will be a case in the switch

statement. Thus, if at runtime, the target is not valid, execution will be abort.

3.6 longjmp/setjmp Protection

The paired functions setjmp and longjmp provide a means to alter a program’s

control flow besides the usual subroutine call and return sequence. First, setjmp

saves the environment of the calling function into a data structure, and then longjmp

can use this structure to jump back to the point it was created, at the setjmp call.

A typical use for setjmp/longjmp is exception handling.

The data structure used by setjmp for saving the execution state is referred

to as a jmp buf. Within this structure, enough information is stored to restore a

calling environment. In particular, one member of this structure saves the value of

the program counter which is used when restoring the calling environment.

An attack method used by attackers is to overwrite the value of the member of

a jmp buf structure after a call to setjmp and before a call to longjmp. If an attacker

has the ability to change the value of the program counter member of the jmp buf

structure then when longjmp is called, control will be transferred to an address of

the attacker’s choosing.

Our method for dealing with attacks of this kind is as follows:

23

• create a hash table within the global segment of the rewritten binary.

• after a call to setjmp use the current value of the program counter member of

the jmp buf structure as the key to the hash table.

• before a call to longjmp get the current value of the jmp buf structure that

will be used. Attempt to perform a lookup in the hash table for the value of

the program counter.

• if the lookup in the hash table fails, then the value of the program counter has

been modified and so we abort; otherwise execution continues

For now, the hash table created is of a fixed size. We have not experimented

with binaries that have many calls to setjmp and longjmp.

The above scheme effectively mitigates attacks of this kind as demonstrated

in the experimental results section.

3.7 Summary

In this chapter, we gave an overview of the binary rewriter developed within

our group. We also described each of the individual components which make up

our protection scheme. Together, these components can provide a high level of

protection as demonstrated in the next chapter.

24

Chapter 4

Experimental Results

In this chapter, we present a number of experimental results. First, we examine

the effectiveness of our security schemes as implemented in our binary rewriter on

a set of security benchmarks previously proposed for evaluating the effectivness

of buffer overflow defenses. Next, we examine the overheads of both the binary

rewriter and our security scheme. Finally, we examine how effective our scheme is

in protecting against a real-world attack.

4.1 Synthetic Results

In order to test how effective our scheme is, we utilized the benchmarks pro-

vided by Wilander and Kamkar [].

4.1.1 Benchmark Description

Wilander and Kamkar developed twenty buffer overflow attack forms in order

to evaluate the effectiveness of tools available at the time that aimed to stop buffer

overflows. An attack form is defined as a combination of a technique, location, and

an attack target. These terms are in turn defined by Wilander and Kamkar as:

• Technique - either the buffer is overflowed all the way to the attack target

or the buffer is overflowed to redirect a pointer to the target

25

• Location - the types of location for the buffer overflow are the stack or the

heap/BSS/data segment

• Attack target - there are four targets - 1) the return address, 2) the old base

pointer, 3) function pointers, and 4) longjmp buffers

Considering all practically possible combinations gives the twenty attack forms

listed below:

1. Buffer overflow on the stack all the way to the target

(a) Return address

(b) Old base pointer

(c) Function pointer as a local variable

(d) Function pointer as parameter

(e) Longjmp buffer as local variable

(f) Longjmp buffer as function parameter

2. Buffer overflow on the heap/BSS/data segment all the way to the target

(a) Function pointer

(b) Longjmp buffer

3. Buffer overflow of a pointer on the stack and then pointing at target

(a) Return address

26

(b) Old base pointer

(c) Function pointer as a local variable

(d) Function pointer as parameter

(e) Longjmp buffer as local variable

(f) Longjmp buffer as function parameter

4. Buffer overflow of a pointer on the heap/BSS/data segment and then pointing

at target

(a) Return address

(b) Old base pointer

(c) Function pointer as a local variable

(d) Function pointer as parameter

(e) Longjmp buffer as local variable

(f) Longjmp buffer as function parameter

Of the twenty attack forms, we obtained the source code to only eighteen of

these attack targets.

4.1.2 Methodology

We compiled the benchmarks using gcc 4.4. We compiled two versions of the

benchmarks - one version had the -fno-stack-protector flag while the other had the

-fstack-protector flag. The -fstack-protector flag creates a binary with the ProPolice

protection mechanism embedded within it.

27

4.1.3 Results and Analysis

The results we recorded are shown in Table 4.1. In the table, ”prevented”

means that the process execution is unharmed. ”halted” means that the attack is

detected but the process is terminated. ”missed” means the attack was successful.

We refer to each attack form by the number assigned to it in Section 4.1.1.

As can be seen from the results in Table 4.1, the security inserted by our

binary rewriter surpasses what is achieved by the ProPolice mechanism in the GCC

compiler.

4.2 Overheads

4.2.1 Binary Rewriting Overhead

A subset of SPEC benchmarks and other benchmarks were selected to substan-

tiate the performance of our binary rewriter. The benchmarks were selected purely

at random, and are limited only by the criteria that they are correctly rewritten by

our still-early prototype. Table 4.2 lists the set of benchmarks which are used for

carrying out the experiments. All the benchmarks are compiled with GCC v4.4.1.

In the first experiment, all binaries executed correctly after rewriting thereby

demonstrating the robustness of our binary rewriter. We were able to correctly

apply the standard suite of LLVM optimization passes without any changes. These

include CFG simplification, global optimization, global dead-code elimination, inter-

procedural constant propagation, instruction combining, condition propagation, tail-

28

Attack Form ProPolice Binary Rewriter

1 (a) halted halted

1 (b) missed on ¡= O1/prevented ¿ O1 prevented

1 (c) prevented halted

1 (d) prevented halted

1 (e) prevented halted

1 (f) missed halted

2 (a) missed halted

2 (b) missed halted

3 (a) prevented halted

3 (b) missed prevented

3 (c) prevented halted

3 (d) prevented halted

3 (e) prevented halted

3 (f) prevented halted

4 (a) missed halted

4 (b) missed prevented

4 (c) missed halted

4 (e) missed halted

Table 4.1: Results on the Wilander and Kamkar Benchmarks.
29

Application Source Lines of C Source Code

perm None 56

laplace None 40

dijkstra MiBench 134

tsp Olden 473

lbm SpecFP2006 1155

mcf SpecInt2006 2685

libquantum SpecInt2006 4357

Table 4.2: Application Characteristics

call elimination, induction variable simplification and selective loop unrolling.

Besides correctness, the next most important metrics are the run-time speedup

or overhead of the rewritten binaries versus the input binaries. Two scenarios are

of interest: when the input binaries were un-optimized, and when they were highly

optimized. Both scenarios are discussed in turn below.

Figure 4.1 shows the normalized run-time of each rewritten binary compared

to an input binary produced using GCC with no optimization (-O0 flag). We obtain

an average improvement of 31% in execution time on our benchmarks with an im-

provement of over 40% in some cases. This result shows that our rewriter is useful

for binaries that are not highly optimized, such as legacy binaries from older com-

pilers, or binaries from compilers that are inferior compared to the best available

30

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Per
m

Lap
la

ce

Diji
ks

tra TSP
Lbm M

cf

Lib
qua

ntu
m

AVERAGE

Benchmarks

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

o
f

re
w

ri
tt

en
 b

in
ar

ie
s

Figure 4.1: Normalized runtime of rewritten binary as compared to input
binary (runtime=1.0) that is un-optimized

compilers. In most cases, after rewriting we raised the performance close to that

of an optimized binary produced directly by GCC, showing the effectiveness of our

approach.

Next, we study the performance of our rewriter on already optimized binaries.

Figure 4.2 shows the normalized execution time of each rewritten binary compared to

an input binary produced using GCC with the highest available level of optimization

(-O3 flag). In this case, the results are mixed, with most benchmarks nearly breaking

even or showing a small slowdown, one benchmark showing a larger slowdown of

13%, and one benchmark actually shows a speedup of 10%. The average is 4%

slowdown.

We consider this near break-even performance on highly optimized binaries a

31

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Per
m

Lap
la

ce

Diji
ks

tra TSP
Lbm M

cf

Lib
qua

ntu
m

AVERAGE

Benchmarks

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

o
f

re
w

ri
tt

en
 b

in
ar

ie
s

Figure 4.2: Normalized runtime of rewritten binary as compared to input
binary (runtime=1.0) that is optimized

good result for the following three reasons:

1. our initial goal was not necessarily to get a speedup, but to generate correct

IR without without introducing too much overhead. This would enable the IR

to be a starting point for various custom compiler transformations we wanted

to perform thereafter, such as automatic parallelization or security as covered

in this thesis. Ultimately, these optimizations determine the utility of the

rewriter.

2. these numbers represent our first cut implementation devoid of any attempt

at producing a better IR more geared towards optimization. We believe these

numbers can be substantially improved with more detailed IR and are explor-

ing several related avenues.

32

3. we have currently not implemented any custom serial optimizations that are

likely to improve performance further, such as the inter-procedural versions of

common sub-expression elimination and loop-invariant code motion, changing

the compiler-enforced calling convention for registers for better run-time, and

more aggressive inlining. We believe these optimizations hold promise as the

inter-procedural optimization abilities of current compilers are very limited

compared to their intra-procedural performance.

One additional advantage of the binary rewriter is that it accumlates optimiza-

tions accross two compilers - rewritten binaries have an optimization if it is either

present in the compiler that produced the input binary, or in the rewriter. In our

case, if either GCC or LLVM had an optimization, the output binary should have

it. This is why, for example, one of our rewritten binaries (libquantum) had a 10%

speedup versus the input binary. Although GCC with the -O3 optimization flag is

known to produce good code, in some cases it missed promoting structure fields to

registers whereas LLVM did, explaining the speedup in libquantum. With better

IR and more aggressive optimizations, we expect to see more consistent speedups in

output binaries in the future.

4.2.2 Security Related Overheads

We measured the overhead of the security schemes we implemented. These

results are presented in Figure 4.3. As seen the average overhead introduced is low

at only 18%.

33

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Per
m

Lap
lac

e

Dijik
st

ra TSP
Lbm

Mcf

Lib
qu

an
tu

m

AVERAGE

Benchmarks

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

Original Runtime Overhead with security checks

Figure 4.3: Runtime overhead of rewritten binaries after inserting security checks.

4.3 Real World Attacks

Ultimately, the success of the scheme presented in this thesis is only valuable

if it is applicable to real-world attacks i.e. whether it can prevent attacks that have

been observed in practice. In this section, we reproduce a real-world attack and

demonstrate that our rewriter halts this attack.

A HTTP server, GHTTPD, has a stack buffer overflow vulnerability in its

logging function. We produced an exploit for this server which overflows a stack-

based buffer and corrupts the return address.

Using the return address protection component of our scheme, we were able to

rewrite the GHTTPD server, add protection of the return address and prevent the

attack which uses the buffer overflow vulnerability to corrupt the return address.

When our protection scheme is enabled, the return address corruption is detected

34

and the application is aborted.

35

Chapter 5

Conclusions and Future Work

We presented a scheme developed using binary rewriting that can defend

against a number of buffer overflow attacks. Our scheme is practical and easy to

deploy with the only factor limiting deployment right now is maturity of the binary

rewriter.

We demonstrated the effectiveness of our scheme using the benchmarks devel-

oped by Wilander and Kamkar by successfully defending against all attack methods

in those benchmarks. A real-world attack on a lightweight HTTP server was also

mitigated using our scheme.

Future work involves extending the binary rewriter to work on larger binaries

and testing against more real-world attacks. Interesting avenues for future research

are software diversification with a binary rewriter and self-healing techniques with

binary rewriting.

36

Bibliography

[1] S.W. Boyd, G.S. Kc, M.E. Locasto, A.D. Keromytis, and V. Prevelakis. On The
General Applicability of Instruction-Set Randomization. IEEE Transactions on
Dependable and Secure Computing (TDSC), 2006.

[2] D.L. Bruening. Efficient, transparent, and comprehensive runtime code manip-
ulation. PhD thesis, 2004.

[3] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions
go bad: Generalizing return-oriented programming to RISC. In Proceedings
of the 15th ACM conference on Computer and communications security, pages
27–38. ACM, 2008.

[4] D. Maier J. Walpole P. Bakke S. Beattie A. Grier P. Wagle Q. Zhang C. Cowan,
C. Pu and H. Hinton. Stackguard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proc. 7th USENIX Security Symposium,
pages 63–78. USENIX Association, 1998.

[5] R. Muth H. Patil A. Klauser G. Lowney S. Wallace V. J. Reddi C.-K. Luk,
R. Cohn and K. Hazelwood. Pin: Building customized program analysis tools
with dynamic instrumentation. In PLDI’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming Language design and implementation,
pages 190–200, 2005.

[6] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows:
Attacks and defenses for the vulnerability of the decade. In discex, page 1119.
Published by the IEEE Computer Society, 2000.

[7] S. Designer. return-to-libc attack. Bugtraq, Aug, 1997.

[8] U. Erlingsson. Low-level software security: Attacks and defenses. Foundations
of Security Analysis and Design IV, 4677:92–134, 2007.

[9] H. ETO and K. Yoda. propolice: Improved Stack-smashing Attack Detection.
Transactions, 43(12):4034–4041, 2002.

[10] Alan Eustace and Amitabh Srivastava. Atom: a flexible interface for build-
ing high performance program analysis tools. In TCON’95: Proceedings of
the USENIX 1995 Technical Conference Proceedings on USENIX 1995 Techni-
cal Conference Proceedings, pages 25–25, Berkeley, CA, USA, 1995. USENIX
Association.

[11] JK Hollingsworth, BP Miller, and J. Cargille. Dynamic program instrumenta-
tion for scalable performance tools. In Scalable High-Performance Computing
Conference, 1994., Proceedings of the, pages 841–850, 1994.

37

[12] W. Hu, J. Hiser, D. Williams, A. Filipi, J.W. Davidson, D. Evans, J.C. Knight,
A. Nguyen-Tuong, and J. Rowanhill. Secure and practical defense against code-
injection attacks using software dynamic translation. In Conference on Virtual
Execution Environments, Ottawa, Canada, 2006.

[13] U. Erlingsson M. Abadi, M. Budiu and J. Jigatti. Control-flow integrity. In CCS
’05: Proceedings of the 12th ACM conference on Computer and communications
security, pages 340–353. ACM, 2005.

[14] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. ACM SIGPLAN Notices, 42(6):100, 2007.

[15] A. One. Smashing the stack for fun and profit. Phrack magazine, 7(49):1996–11,
1996.

[16] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and
B. Chen. Instrumentation and optimization of Win32/Intel executables using
Etch. In Proceedings of the USENIX Windows NT Workshop on The USENIX
Windows NT Workshop 1997, page 1. USENIX Association, 1997.

[17] L.-C. Lam S. Nanda, W. Li and T. Chiueh. Bird: Binary interpretation using
runtime disassembly. In CGO’06: Proceedings of the International Symposium
on Code Generation and Optimization, pages 358–370. IEEE Computer Society,
2006.

[18] B. Schwarz, S. Debray, G. Andrews, and M. Legendre. Plto: A link-time
optimizer for the Intel IA-32 architecture. In Proc. 2001 Workshop on Binary
Translation (WBT-2001). Citeseer, 2001.

[19] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM conference
on Computer and communications security, page 561. ACM, 2007.

[20] H. Shacham, M. Page, B. Pfaff, E.J. Goh, N. Modadugu, and D. Boneh. On the
effectiveness of address-space randomization. In Proceedings of the 11th ACM
conference on Computer and communications security, pages 298–307. ACM,
2004.

[21] P.X. Team. Documentation for the PaX project. Homepage of The PaX Team,
2003.

[22] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen
De Bosschere. Diablo: a reliable, retargetable and extensible link-time rewriting
framework. In Proceedings of the 2005 IEEE International Symposium On
Signal Processing And Information Technology, pages 7–12, Athens, December
2005. IEEE.

38

