View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Columbia University Academic Commons

Retrofitting Security in COTS Software with Binary Rewriting

Padraig O’Sullivan', Kapil Anand!, Aparna Kotha , Matthew Smithsorl, Rajeev Barua, and Angelos D.
Keromytis?

1 Electrical and Computer Engineering Department, University of Madylan
2 Department of Computer Science, Columbia University

We present a practical tool for inserting security featagainst low-level software attacks into third-party, pro-
prietary or otherwise binary-only software. We are moteaby the inability of software users to select and use
low-overhead protection schemes when source code is Ualaleaio them, by the lack of information as to what (if
any) security mechanisms software producers have useéindioichains, and the high overhead and inaccuracy of
solutions that treat software as a black box.

Our approach is based @econdWritean advanced binary rewriter that operates without needldébugging
information or other assist. Using SecondWrite, we inseragety of defenses into program binaries. Although the
defenses are generally well known, they have not generagnhused together because they are implemented by
different (non-integrated) tools. We are also the first tmdestrate the use of such mechanisms in the absence of
source code availability. We experimentally evaluate tifeectveness and performance impact of our approach. We
show that it stops all variants of low-level software attelt a very low performance overhead, without impacting
original program functionality.

1 Introduction

Despite considerable research and work on programmer golu@nd tools, programming language and compiler
support for security, hardware and operating system featlow-level software vulnerabilities remain an impottan
source of compromises and a perennial threat to systemityedMhile other sources of vulnerability have emerged
more recently, such as SQL injection, cross-site scripfff§S) and cross-site request forgery (XSRF), binary-level
vulnerabilities continue to be discovered in very poputitvgare and to be exploited for fun and profit [12].

The lack of convergence to a comprehensive solution carttileuaed to several factors, consisting of a mix of the
technical and non-technical. At the core, there exists ddorental dichotomy in the capabilities and motivation of
producers and consumers of software, vendors and endac®igistrators respectively. On the one hand, software
producers are probably in the best position to both proalgtand reactively prevent and mitigate such vulnerabaiti
they have access to the source code, the compiler tool chaghthe developers themselves. As a result, they can
apply security mechanisms that offer high coverage andt@fémess at low overhead, because they are applied at
the point where the most semantic knowledge about the progral the code is available. On the other hand, it is
software consumers that face the risk and bear the costsmfromise due to software vulnerabilities and are the
most motivated to take action, often localized, to mitigateewly discovered vulnerability. However, consumersrofte
only have access to the program binary and configuration filegs, absent vendor patches (which can often take a
long time and may contain bugs [32]) consumers can only usgritg mechanisms that treat the software as a black
box. Inevitably, such mechanisms resort to isolatiey.(through a virtual machine) or to behavioral detectierg(,
system call monitoring), with attendant costs, compleaitd risk. Even security-conscious software consumera ofte
cannot properly evaluate the risks they face because theptknow what security mechanisms, if any, a producer
has used in their development process and tool-chain [22].

We present a new mechanism based on advanced binary rewtfitih seeks to bridge the gap between incen-
tive/motivation and capabilities on the consumer side. @pproach allows end users to retrofit powerful security
mechanisms into third-party, binary-only software. Thesrhanisms are well-known, and some of them have been
partially integrated in separate tools and development environnferggsProPolice ingccand the optionalGSflag
in Visual Studio). Our system allows end-users to ensurettiesoftware they run on their systems uses any and
all such features, regardless of the choices or capabilitievendord. Furthermore, our approach allows end-users
to selectively apply different defense mechanisms to iiffeparts of the program, based on their own analysis, risk

3 Not all development tool-chains support a given security featurédewhndors and products are often intimately tied to them.
As a result, there is considerable reluctance by vendors to switch to ar'"luettepiler, for example, even if such existed.

https://core.ac.uk/display/161438225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

assessment, and knowledge of potential or actual vulrgiedin the code. Essentially, we provide the nearly the
same self-defense capabilities that open-source softweamscan utilize to users of binary-only softwate

The contributions of this paper are twofold. First, we presepowerful binary-rewriting framework in the context
of software security. Specifically, we investigate theigbdf such a system to retrofit known invasive, powerful and
low-overhead security mechanisms to program binariefierabsence of source code or even debugging symbols.
Second, we evaluate the effectiveness and efficiency of chense and of the retrofitted security mechanisms, as
compared to other ways in which these and similar securitghaue@isms can be applied to software. We conclude
that a system such as ours would enable software consumerstezt themselves at the same level of effectiveness
as if vendors had taken similar stepe(used the same security techniques) and at equally low caerfidus, we
believe that we have removed a significant factor in imprgvire overall security posture of systems against low-level
software compromises.

An additional contribution of this paper is that we have &@ahg chosen a set of complementary and effective
schemes that, taken together, achieve the goal of defeadiaigst all types of buffer overflow attacks at the lowest
combined run-time cost. The totality of our schemes pratgetinst buffers on the global, stack, and heap segments
from overflowing onto a variety of (usually code) pointerdtions that are vulnerable to attack, including return
addresses, function pointers, indirect branch poinkengjmpbuffers, and base pointers. This is an important practical
contribution in itself, as this is the first solution in theeliature to retrofit a comprehensive set of protectionsnagai
buffer overflow attacks, which are still very common, intbitrary new and legacy binaries. We intend to make this
tool available publicly soon.

The remainder of this paper is organized as follows. Se&igines an overview of related work in binary rewriting
and binary-only software security mechanisms. Sectiore8gmts background on binary rewriting, and how rewriting
relates to security. We describe the methods we have cho&attion 5, and discuss experimental results in Section 6.
We conclude with our thoughts for future work in Section 7.

2 Related Work

Our work is related to many techniques that attempt to defggainst attacks on vulnerabilities in applications. In
this section, we elaborate on some of the pieces of work mlosely related to ours. We present the various attack
techniques utilized by attackers that are relevant for isiarch and then we go on to present various techniques
proposed for mitigating these attack techniques. We algflypdiscuss related work in binary rewriting.

2.1 Catalog of Attack Techniques

Buffer Overflow Attacks A buffer overflow refers to a situation that can occur whenecudlites into a bounded
array, or buffer, and the writes are not correctly guardeairesy overflow. Data copied into the buffer whose length
is larger than the buffer's size is referred to as a bufferfbms. Writes into a buffer that are not correctly guarded
may overwrite and corrupt a variety of vulnerable locatitieg may also be stored nearby the buffer, including return
addresses, base pointers, function pointers,langjmp buffers. Although buffer overflows have historically most
often occurred on the stack, they are also possible on hahglabal segment buffers. For example a global buffer’s
overflow may overwrite a function pointer tangjmpbuffer also in the global segment.

Buffer overflow attacks work by changing the value of the cpditer stored in vulnerable locations such as
return addresses, function pointers dmdgjmp buffers. The code pointer is overwritten by a new value pogto
code of the attacker’s choice. Base pointers are also \aliteeeven though they are not code since they can be used
for attacks [31]. A return address attack was first describetail by AlephOne in 1996 [1]. However, attacks of this
kind date back to before 1988 when the technique was useé fingferdexploit of the Morris worm.

Commonly, an attacker would choose their input data so tietrtachine code for an attack payload would be
present at the modified return address. When the vulnerabtgidn returns, and execution of the attack payload
begins, the attacker has gained control of the behavior eftdihget software. The attack payload is often called
shellcode, since a common goal of an attacker is to launctmanamd line interpreter (referred to as a shell in UNIX
like environments) under their control.

Return-to-libc Attacks As an alternative to supplying executable code (referredstairect code injection), an
attacker might be able to craft an attack that executesimgistachine code (indirect code injection). This class of

4 Just because open-source software usamsdoes not mean they generatlp assess or modify/secure their installations.

attacks has been referred to as jump-to-libc or returrbimfarc injection [9] has also been used to refer to thissotdis
attacks) because the attack often involves directing gi@ttowards machine code in the standard C library (libt) [9
The standard C library is often the target for attacks of tyjie since it is loaded in nearly every UNIX program and
it contains routines of the sort that are useful for an attackhis technique was first suggested by Solar Designer in
1997 [27]. Attacks of this kind can evade defense mechanihatsprotect the stack such as stack canaries and it is
also effective against defenses that only allow memory tetitable or executable.

Traditionally, attacks of this kind have targeted the systenction in the standard system library which allows the
execution of an arbitrary command with arguments. In thgecthe return address of a vulnerable function would be
modified to point to the address of the system function whiohldithen be executed with attacker supplied arguments.
Since the system function executes a command on a systemaifacker can control the arguments to this function,
they could execute an arbitrary command on the system uttdekaHowever, recent attacks have been demonstrated
which do not depend on calling functions in the standard afip

2.2 Catalog of Defense Techniques

Compile Time Defenses StackGuard [8] places a 'canary’ (a memory location) on thelsbetween local variables
and the return address. This canary value is designed toafatack corruption since validating the integrity of the
canary value is an effective means of ensuring that the fsmceturn address has not been corrupted. Microsoft's
compiler also supports the insertion of stack canaries thghGS option.

ProPolice [10] is similar to StackGuard in that it places aarg value on the stack. However, ProPolice also
changes the stack layout to place arrays and other funtd@ai-buffers above all other function-local variables.
Copies of all function arguments are also made into new,tfomdocal variables that also sit below any buffers in the
function. As a result, these variables and arguments arsutjéct to corruption through an overflow of these buffers.

PointGuard [7] protects all code pointers within a progrdime defense consists of encrypting pointer values in
memory and only decrypting the pointers when they are loadiedCPU registers. The encryption key used is a
randomly generated during process creation and is thusowrkto an attacker. Without knowledge of the encryption
key, an attacker can not modify any value stored in memona Fesult, pointer values are not subject to corruption.

StackGuard, PointGuard, and ProPolice involve compiteetanalysis and transformation. Thus, unless the source
code for an application is available, these techniques atibenused thereby hindering the ability to easily deplog¢he
techniques. In practice only the developer can use thesasief, and only if the compiler his or her organization uses
supports it. Our techniques do not suffer from this drawlscke they can be easily deployed on any binary produced
from any source language and compiler, by not only the dpesg]dut the end-user as well.

Instruction Set Randomization Instruction-set randomization [5] is a technique for pctitey against buffer over-
flows (and many kinds of code injection attacks). This apgiaandomizes the underlying system’s instructions so
that foreign code injected by an attacker would fail to exe@orrectly since the attacker does not know the instruc-
tion set of the target system. However, as mentioned by theomuin [5], the main drawback of this technique as
applied to binary code that it needs specialized hardwagspatiin the processor. Thus, even though instruction-set
randomization offers a strong defense against buffer @wedittacks the fact that unless it is supported by specihlize
hardware, it incurs significant overheads means that itlikelyp to see adoption in practice for the foreseeable fitur

Strata (a dynamic binary translation framework) and Didhltink-time binary rewriter) were used to implement
instruction set randomization [16]. Diablo is used to pregabinary for string encryption and introduce the informa-
tion necessary to detect foreign code. Strata is then usprbtade the necessary virtual execution environment for
safe execution. The main contribution of this work is thatitistruction-set randomization implementation is efficie
while requiring no special hardware support. However, th@ime overheads reported are still high because of the
necessary software ISA translation at run-time, and theriit overheads of a dynamic translator. These run-time
overheads and likely to limit the practical adoption of sackystem. Moreover any user of a dynamic binary rewriter
must install it in addition to the application desired, mmakit inconvenient to use.

The static (off-line) binary rewriter we use suffers fromneoof these issues. No special hardware is required
to utilize a binary rewriter and overheads are relatively kince no ISA translation is done, and since no dynamic
translator is used, no additional software in addition ® ajpplication is needed for execution. In our system, if an
original binary was compiled without optimizations, weesftsee a significant run-time improvement when rewritten.
Address Space Layout Randomization Address Space Layout Randomization (ASLR) can be seen datizely
coarse-grained form of software diversity. ASLR shufflesamdomizes, the layout of software in the memory address
space. The common implementation of this scheme is at thee@% IThus, when a process is launched the address

space layout of the process will be different from a previouscation of the same process. It is effective at preventin
remote attackers that have no existing means of running aodetarget system from crafting attacks that depend on
addresses. ASLR is not intended to defend against attattiarare able to control the execution of a piece of software;
it is mainly intended to hamper remote attackers from attergpo use the same attack repeatedly. Finally, its utility
on 32-bit architectures is limited by the number of bits Elae for address randomization [25].

A binary rewriter could easily be used to provide a similafedse mechanism as ASLR. An interesting future
avenue of research is to investigate software diversityutin binary rewriting.

Control Flow Integrity Control Flow Integrity (CFI) [3] is a basic safety propertyat can prevent attacks from
arbitrarily controlling program behavior. CFl dictatesatlsoftware execution must follow a path of a control-flow
graph that is determined ahead of time by analysis (in thég,cstatic binary analysis is performed). CFl is enforced
using static verification and binary rewriting (with Miciafs Vulcan [28] tool) that instruments software with rime
checks. These checks aim to ensure that control flow remaihsna given control-flow-graph. CFl is a very effective
defense against buffer overflow attacks (and any attackhwdttempts to change a program’s control flow) since any
attempt by an attacker to divert the control flow of a prograith e caught by CFI. However, the main barrier to
CFI's adoption seems to be the overhead associated wittctie®. The average overhead of CFl in the prototype
implementation is 16% on the SPEC2000 benchmarks. AlsikeiSlecondWrite, the binary rewriter used by CFl
depends on a binary being compiled with debug informatioitkvis usually not available in production binaries. If a
binary is not compiled with debug information then CFI catnio® currently applied.

Our schemes implemented through our binary rewriter caxigeathe same level of protection as CFl. An ad-
ditional advantage of our scheme is that our binary rewdtexs not require access to any special information in an
input binary unlike all previous binary rewriters (inclagi the binary rewriter used in CFI) which require access to
relocation or debug information.

Program Shepherding Program Shepherding [17] employs an efficient dynamic sofwnachine-code interpreter
(DynamoRIO [6]) for implementing a security enforcementcimenism. A broad class of security policies can be
implemented using a machine interpreter such as DynamoRiDexample, DynamoRIO could be used to enforce
control-flow integrity. Program shepherding enforces ailainpolicy that imposes certain runtime restrictions on
control flow such that an attacker can not alter a programve dibcontrol.

Program Shepherding can experience significant memory @amtihne overheads, particularly on the Windows
platform. The scheme requires an application and intezptetbe run simultaneously. The high overheads of interpre-
tation in some cases are likely to limit adoption of Programe@erding. Further, unlike using off-line rewriters like
SecondWrite, Program Shepherding requires the installafian extra piece of heavyweight software (DynamoRIO)
in addition to the application to be run.

2.3 Related Work in Binary Rewriting

Binary rewriting and link time optimizers have been consgdiby a number of researchers. Binary rewriting research
is being carried out in two directions: static rewriting agghamic rewriting. Dynamic binary rewriters rewrite the
binary during its execution. Examples are PIN [19], BIRD][2DynInst [13], DynamoRIO [6], Valgrind [21], and
the translation phase of VMWare [2]. Dynamic rewriters apbliied since they do not have enough time to perform
complex compiler transformations; they have been primaskd for code instrumentation and simple security checks
in the past. Moreover dynamic rewriters do not have the topetform deep code analysis needed to discover program
features needed for static optimization of security cheleksally dynamic rewriters encounter run-time overheaadfr
the act of rewriting, which can be substantial. Given thesavblacks, we do not discuss dynamic rewriters further.

The methods in this research are primarily directed atcstatiary rewriters such as our rewriter, SecondWrite.
Existing static binary rewriters include Etch [23], ATOMI[ll PLTO [24], Diablo [29], and Vulcan [28]. Three points
of novelty for our work are as follows. First, we are not awafeny rewriter adding our particular set of existing
compile-time security schemes to binaries. Second, notieaXxisting rewriters employ a compiler level intermegliat
representation; rather they define their own low-level nrastcode-like custom intermediate representation. Tass h
several downsidegi) most existing rewriters cannot modify the stack layout sitiey do not distinguish individual
objects on the stack. Hence they cannot implement secufitgrses that modify the stack; afd) most existing
rewriters recognize functions, but not their argumentsturn values, and hence cannot deploy security schemes that
employ these schemes. SecondWrite overcomes both thedemsodis we will describe in section 4.

A third point of novelty of our work is that all existing rewers can only rewrite binaries that contain re-
location or debug information. This information, presentiak-time, is usually discarded in COTS binaries for

two reasons — it is not needed for execution; and vendorsirteggely fear it can be used to reverse engineer
their binaries. Indeed of twenty commercial and open-soinioaries we surveyedione contained either reloca-
tion or debug informationAs a result, existing binary rewriters would not be abledwnite those binaries at all.
In effect, existing binary rewriters can only be deployedieyelopers, not end-users contrast our rewriter (Sec-
ondWrite) can rewrite arbitrary binaries even without relben or debug information, as we will describe in section 4.
This renders our platform a uniquely powerful tool for allog anyone to rewrite binaries from any source to enable
any security scheme they want.

3 Background on binary rewriting

This section presents some background on binary rewritiigdéiscusses how security enforcement interacts with it.
Our approach relies on innovative binary rewriting schepgs] incorporated into our binary rewriting infrastruog
called SecondWrite. Binary rewriters are pieces of softvthed accept a binary executable program as input, and
produce an improved executable as output. The output exdgleutypically has the same functionality as the input, but
is improved in one or more metrics, such as run-time, enesgy memory use, security or reliability.

Advantages of binary rewriting In recognition of its potential, binary rewriting has seeunah active research over
the last decade. The reason for great interest in this ardeatisinary rewriting offers additional advantages over
compiler-produced optimized binaries:

— Ability to do inter-procedural optimization. Although compilers in theory can do whole-program optirtitass,
the reality is that they do little if any. Many commercial cpiters - even highly optimizing ones - limit themselves
to separate compilation, where each file (and sometimesfaaction) is compiled in isolation. In contrast, binary
rewriters have access to the complete application all at,omcluding libraries. This allows them to perform
aggressive whole-program optimizations to exceed theopeence of even optimized code. This ability can be
useful for security schemes as well; in particular for theskkemes that rely on whole-program information such
as call graphs and inter-procedural properties to eithekaball, or to optimize fully.

— Ability to do optimizations missed by the compiler.Some binaries, especially legacy binaries or those codhpile
with inferior older compilers, often miss certain optintinas. Binary rewriters can perform these optimizations
missed by the compiler while preserving the optimizatidres¢ompiler did perform. This property may help the
rewriter overcome some of the overheads of security enfioecé by improvements in program run-time.

— Increased economic feasibilitylt is cheaper to implement a code transformation once fonatmtiction set in a
binary rewriter, rather than repeatedly for each compibetlie instruction set. For example, the ARM instruction
set has over 30 compilers available for it, and the x86 hasndasly large number of compilers from different
vendors and for different source languages. The high expefinepeated compiler implementation often cannot be
supported by a small fraction of the demand. This implenogwte property is useful for security schemes as well.

— Portable to any source language and any compileA binary rewriter works for code produced from any source
language by any compiler. This is a significant advantage feecurity scheme such as the one presented in this
paper. A scheme would not need to be ported to various coralilé would instead only need to be implemented
once within a binary rewriter. Portability of rewriters aidecurity schemes implemented in them as well.

— Works for hand-coded assembly routinesCode transformations cannot be applied by a compiler to-{caded
assembly routines, since they are never compiled. In cetmtagbinary rewriter can transform such routines. Ap-
plying security in a binary rewriter has the advantage ofkivay for hand-coded assembly versus compiler imple-
mentation of security, which does not.

Architecture of Binary Rewriter The binary rewriter developed by our group and utilized fis tesearch is named
SecondWrite. Figure 1 presents an overview of the SecondWwygeem. SecondWrite’s custom binary reader and
de-compiler modules translate the input x86 binary intoitilermediate representation (IR) of the LLVM compiler.
LLVM is a well-known open-source compiler [18] developedtat University of lllinois, and is now maintained by
Apple Inc. LLVM IR is language- and machine-independenterBafter the LLVM IR produced is optimized using
LLVM’s pre-existing optimizations, as well as our enhanegns, including security enforcement in this paper. Finall
the LLVM IR is code generated to output x86 code using LLVMsséing x86 code generator.

The front-end module consists of a disassembler and a custary reader which processes the individual instruc-
tions and generates an initial LLVM IR. This module readsftienat of instructions from Instruction Set Architecture
(ISA) XML files for the ISA in question, allowing for targetinof the rewriter to different ISAs. Currently Second-
Write rewrites x86 and ARM binaries. To give an idea of the effeeeded for retargeting, consider that the sizes of

EXISTING LLVM COMPILER
I N\

C++ T LLVM LLVM IR LLVM IR Optimized LLVM code > Output
Ada——» frontend optimizations LLVM IR generation binary
—>
Fortran — %
Soo U J
/OUR NEW CODE
Original Binary reader Binary-aware Binary layout
input T & LLVM IR modifications
binary disassembler LLVM IR optimizations
K library XML /

Fig. 1. SecondWrite system

the x86 and ARM XMLs are approximately 14000 and 1500 linesaafe (LOC), respectively. The XML for x86 is
much larger since it is a complex CISC ISA whereas ARM is RIB@s is a relatively small portion of the total size
of SecondWrite, which exceeds 120,000 LOC (mostly C++). Filoisiwe can see the effort required for retargeting
to a new RISC ISA is relatively modest (1-2 person-monthalinastimate).

4 Innovations in SecondWrite

SecondWrite has three innovations that make it especiallyefal, and a good platform for security enforcement.
To be practical for security enforcement, a rewriter musisBathree requirements. First, it must be able to rewrite
stripped binariesif., those without relocation information) since most reaHadinaries are stripped. Second, it
must be able to rewrite the entire code, not just discoverphits of it, thus achieving 100% code coverage. Third, it
should rewrite the code to high-level IR, since some secsdhemes rely on high-level constructs such as functions,
arguments, return values, and symbols. Below we descrilyeewisting static rewriters do not provide any of these
three capabilities, but SecondWrite does. We note that $&tdte (and any similar tool) does not work with software
that is either self-modifying or performs integrity setiexks.

Rewriting without relocation information A key innovation in SecondWrite is that it can rewrite strigfgenaries,

i.e., those without relocation or symbolic information, unlgdsting rewriters such as ATOM [11], PLTO [24], Diablo
[29], and Vulcan [28] which cannot. Relocation informatismgenerated by the compiler to help the linker in resolving
addresses that can change when files are linked. Symboticmiation may be inserted for debugging. However,
production binaries almost never contain such informasioce linkers delete relocation information by defaulteTh
programmer may instruct the linker to retain such informmatiHowever corporations almost never release binaries
with relocation and symbolic information since they areesessary for execution, and they fear such information can
be used to reverse-engineer information about their code.

The requirement for relocation information in existing riers arises from the need to update the target addresses
of control-transfer instructions (CTIs) such as branches @alls. When rewriting binaries, code may move to new
locations because instructions may be added, deleted ngedacompared to the original code. Hence the targets of
CTIs must be changed to their new locations. Doing so is easglifect CTIs, since their targets are available in the
CTl itself; the target can be changed to its new address inutput binary. However for indirect CTls, the target may
be computed many instructions before ataaliress creation pointACP). It is impossible to find all possible ACPs
for each CTI using dataflow analysis since they may be in miffefunctions and/or propagated through memory
(memory is not tracked by dataflow analysis.) Hence exigténgriters require relocation information to identify all
possible ACPs. All ACPs must be present in relocation infatfon since ACPs are precisely the list of addresses that
need relocation during linking.

SecondWrite has devised technologies to rewrite binarisowt relocation information. Details are in [26]; here
we briefly summarize the intuition of our method. Rather thging to discover ACPs, our basic method relies on
inserting run-time checks at indirect CTls that translatedld target to its corresponding new address using metadat
tables that store such translations for all possible oldditand call targets. Aggressive alias analysis on thegotir
CTI target is used to prune the list of such possible targets $mall number. Further, compile-time optimizations
are applied when possible to reduce the number of run-tireeksh The result is a method than can rewrite arbitrary

binaries without relocation or symbolic information witery low overhead. The rewriter can then perform security
enforcement on arbitrary binaries for the first time.
Achieving 100% speculative code coverageA key challenge in binary rewriters is discovering whichtpaf the
code section in the input binary are definitely code, and ghauld be rewritten. This is complicated since code
sections often contain embedded data such as literal tahtbgump tables which if rewritten by mistake will result
in an incorrect program. The only way to be sure a portion efdbde section is indeed code is to find a control-
flow path from the entry point of execution to that portionvitwer portions of code may be reachable only through
indirect control-transfer instructions (CTIs). Unforataly the precise value set of CTI targets cannot be disedver
statically in all cases; hence not all code may be discovéridting rewriters may not discover all the code, yielding
incomplete code coverage — undiscovered code cannot beteswand thus security cannot be enforced on it.
SecondWrite overcomes this problem by speculatively revgiportions of the code segment which cannot be
determined to be surely code, thus achieving 100% speetiledide coverage. The detailed scheme is in [26]; but the
intuition is that portions of the code segment which canmopioven to be code are speculatively disassembled as if
they are code anyway. If the speculative code turns out teddde code at run-time, then it is executed, achieving
100% speculative code coverage. Instead, if the specailetide arose from disassembling data bytes, that incorrect
speculative code will never be executed since control vallar transfer to it at run-time; preserving correctness.
Instead the data is accessed from a copy of the original imaintained in the rewritten binary. Maintaining this
code copy increases code-size, but not the I-cache fobfgrine only the data portions of it are actually accessed,
thus run-time is not affected. Since machines today hawiyvasre resources than even a few years ago, an increase
in code size without increasing run-time is tolerable, eggly given the payoff of being able to rewrite any binary.
Rewriting to high-level intermediate representation (IR) Unlike SecondWrite which represents programs in the
high-level compiler IR, existing rewriters represent tlieay using binary-like low-level code in the rewriter, mak
ing the program harder to analyze and modify. For examptg)-tével program features required for some security
schemes, such as function arguments and return valuesytaapparent in the binary. Further, existing rewritersireta
register and memory accesses as-is, unlike SecondWritdnwtaces both by symbolic accesses. Having memory
accesses is problematic since it forces the layout of memadng retained exactly in the rewritten binary, preventing
modifications and optimizations of the stack and global sags) and additions to the stack segment. This too is
inconvenient for security check insertion since such chaglty allocate their own stack memory in some cases.
SecondWrite overcomes these programs by representingribeyliiode internally in compiler IR. Our method,
described in [4], relies primarily on two technologies.sEithigh-level program features such as functions, and thei
arguments and return values are discovered from the birsing uleep static analysis. Second, registers and memory
locations are replaced by symbols as in high-level progratewing easy compiler modification of the memory
allocation. With the resulting high-level IR, security che become easy to apply.

5 Methods

One of the contributions of this paper is that we have calsefiliiosen a set of complementary and effective schemes
that, taken together, achieve the goal of defending agalhsstpes of buffer overflow attacks at the lowest combined
run-time cost. The totality of our schemes protect againstonly the commonly known stack buffer overflow into
return addresses, but is much more general than that, ithaprotect against buffers on the global, stack and heap
segments from overflowing onto a variety of code pointertiocs that are possible in any data segment, including
return addresses, function pointers, indirect branchtpmitiongjmpbuffers, and base pointéts

We implement our scheme by adding various passes that egardtigh-level IR inside our binary rewriter. Our
overall scheme consists of a number of components that weildesn detail in this section.

Stack Canary InsertiorThe first component of our scheme is the simplest. LLVM presithe ability to insert stack
canaries during code generation. Utilizing this capabditows us to provide nearly the same level of protectionto a
un-protected binary as StackGuard [8] would provide wheemgan application’s source code.

Essentially, a random canary value is generated at rundimdgplaced on the stack during a function’s prologue.
In the function epilogue, the value stored on the stack isp@oed with the random canary value for this process. If
there is any difference, execution is halted as the candng Veas been corrupted.

5 Base pointers are not code pointers but lead to a similar vulnerability [31].

Base Pointer EliminationThe old base pointewhich resides on the stack is a data pointer that points tbalse of
the parent function’s stack frame. Compilers sometimeasdhice it since it makes it convenient to restore the stack
pointer at the end of the function and to address differexgksiocations with the same offset even as the stack grows
and shrinks in the function. When it is present in the inputibpmit introduces a vulnerability just as dangerous as a
code pointer [31]. This is because the old base pointer caitheked by building a fake stack frame with a return
address pointing to attack code, followed by overflowinglihffer to overwrite the old base pointer with the address
of this fake stack frame. Upon return, control will be pastethe fake stack frame which immediately returns again
redirecting flow of control to the attack code.

Given our unigue use of LLVM IR in SecondWrite, the eliminatiaf the base pointer in the output binary becomes
a simple matter even when the input binary has base poirte¥8M is an optimizing compiler and the binaries
produced by LLVM are highly optimized. One common optimiaatapplied by modern compilers on the x86 platform
is to free up the EBP register for register allocation by reimgthe base (or frame) pointer. We used this LLVM pass
to eliminate the base pointer from the binary.

When the base pointer is eliminated by LLVM, any attack rejyam overwriting the base pointer is immediately
prevented. There will be no base pointer for an attacker tdifypd/Vhile corruption of the stack may still occur if an
attacker overflows a buffer in order to attempt to overwtite base pointer, no attack will be successful.

Return Address Protectiofsiven that stack canaries as inserted by LLVM do not providesame level of protection
as the ProPolice mechanism that comes with GCC, we decidetbtement a more complete solution similar to the
protection scheme in StackShield [30], that protects agaiarruption of the return address. The basic idea of our
return address protection scheme is as follows:

1. During the function prologue, push the return addresise€turrent function in a return address stack implemented
in a global data structure. For multi-threaded applicatjonultiple “shadow” stacks are maintained.

2. In function epilogue, compare the current return addoesthe stack with the value popped from the top of the
return address stack.

3. Ifthere is any difference between these values, exetigibalted.

This simple scheme will detect if the return address has beslified either directly or indirectly. We implemented
this scheme as it is relatively simple and protects agaioist direct and in-direct modifications of the return address
It also requires no modification of the stack layout and pmevenodifications of the return address through buffer
overflows in the heap or global segments.

Two challenges with this scheme are as follows. First, ierlogad might be significant since every function has
an associated security overhead incurred every time itlsccaVe found this overhead to be especially significant for
recursive functions since they tend to short-running. 8dcthe size of the return address stack might be significant
for deeply nested recursive functions, and we would havetmd it a-priori, which is hard to do.

We applied an optimization for relieving this problem whieke call thereturn address check optimizatiowe
observed that this protection mechanism is only neceskarfunction contains a write to a stack buffer since return
addresses only exist on the stack. This is hard to determithewt symbolic information, so we conservatively try to
prove that a function only has directly addressed memomreetes to constant addresses. If it finds any indexed
write (base + runtime-variant offset), then it conseneltivassumes that it could be a buffer write, and disables
the optimization. If all writes are provably non-indexedites to a constant offset, it enables the optimizatian,
the protection mechanism is turned off in the function. Tthes optimization saves on run-time overhead without
sacrificing any protection.

We found this optimization surprisingly effective sincevibrks best for small leaf functions in the call graph, and
for recursive functions, which happen to be precisely thefions dynamically called most frequently. During our
experimental evaluation of our scheme, of the many recaifsimctions we found, every one of them had its check
optimized away. This is unsurprising since recursive fiomst tend to be short running, and unlikely to allocate stack
arrays (although they may access portions of global arsay) as in quicksort, but those still are optimized.) As a
result of the optimization, the run-time overhead for schesgreatly reduced, and the required return address stack
depth is also greatly reduced. Of course, the overflow of¢herm address stack is not an error as we add extensions
to it on the heap upon overflow, which slows execution, bukiseenely rarely invoked even for small return address
stack sizes of (say) 256 addresses.

Function Pointer ProtectionOne common attack method used by attackers is to overwritecibn pointer so that
when it is de-referenced, code of the attacker’'s choositigo@iexecuted. In a binary executable, function pointers
will appear as indirect calls. Thus, another component ofsasheme concentrates on protecting all indirect calls and
branches similar to how function pointers are protectedétishield [30].

Our scheme adds checking code before all indirect calls earithes. A global variable is declared at the beginning
of the data segment and its address is used as a boundary Maéuehecks inserted before any indirect call or branch
ensure that the target of the indirect call or branch pomtaémory below the address of the global boundary variable.
If the target points above the address of this global boyndaniable then execution is halted.

An assumption in the above scheme is that a process follosvstindard UNIX layout with the data segment
above the code segment. This scheme does not protect againatto-libc attacks since the target of the indirect cal
will still be within the code segment.

Protection forlongjmpbuffers The paired functionsetjmpandlongjmp present in most C and C++ libraries, provide
a means to alter a program’s control flow in addition to thealisubroutine call and return sequence. Fisstjmp
saves the environment of the calling function ($ag())into a data structure, and théangjmpin another function
(saybar()) can use this structure to jump back to the point it was ceatiethesetjmpcall. As a result, execution will
return frombar() to foo() even wherfoo() is not the immediate parent bfr(). A typical use forsetimglongjmpis
exception handling.

The data structure used sgtjmpfor saving the execution state is referred to asp.buf. Within this structure,
enough information is stored to restore a calling envirommkn particular, one member of this structure saves the
value of the program counter which is used when restoringahlimg environment. An attack method used by attackers
is to overwrite the value of the program counter stored injitiq@buf structure after a call teetjmpand before a call
to longjmp If this happens, control will be transferred to an addrdsh® attacker's choosing when thengjmpis
executed. Our method for defending against attacks of thitik as follows:

1. Create a hash table within the global segment of the rnrkiinary. Protect the hash table with write-protected
(via mprotect() guard pages, to mitigate attacks against it.

2. After each call tesetjmpstore the current value of the program counter injtine buf structure into the hash table.

3. Before a call tdongjmpget the current value of thenp_buf structure that will be used. Attempt to perform a
lookup in the hash table for the value of the program counter.

4. If the lookup in the hash table fails, then the value of thegpam counter has been modified and so we abort;
otherwise execution continues

We expect the run-time overhead of this scheme to be veryrigwectice, sinceetjmpandlongjmpcalls are very
rare. To the best of our knowledge, this scheme is the firséption scheme designed to protect against longjmp buffer
attacks in the manner described. We intend to extend ounsehe cover theicontexit buffers and thegetcontext(),
setcontext(), swapcontex{PI that is meant eventually to replace tetjmp/longjmpAPI.

6 Experimental Evaluation

We now present and discuss experimental results from oluagi@n of our system. First, we examine the effectiveness
of our security schemes as implemented in SecondWrite on af sstcurity benchmarks previously proposed by
Wilander and Kamkar [31] for evaluating the effectiveneduffer overflow defenses. Second, we examine how
effective our scheme is in protecting against real-wordakis on widely-used real code (not benchmarks). Third, we
examine the overheads of both the binary rewriter and owrggscheme on some SPEC2006 and other benchmarks.
Synthetic Results In order to test how effective our scheme is, we utilized thadhmarks provided by Wilander
and Kamkar [31]. Twenty buffer overflow attack forms wereeleped, in order to evaluate the effectiveness of tools
available at the time that aimed to mitigate buffer overflataeks. The attack forms covered every combination of
buffer overflow attacks on global, stack, and heap buffeesfewving to a return addresses, base pointers, function
pointers, andongjmpbuffers. An attack form is defined as a combination of a tepljlocation, and an attack target.
Of the twenty attack forms, we obtained the source code peaighteen of these.é., the other two were not available

to us for evaluation). We then compiled the programs intatyitode which we then rewrote using SecondWrite. Our
schemes in SecondWrite successfully defended againstadkegbrms in the Wilander and Kamkar benchmarks.

Real World Attacks Ultimately, the success of our scheme depends on whethetattacks that are observed in
the real world can be prevented or not. Two real-world agacére tested.

The first application we tested was GHTTPD — an HTTP serveis Web server has a stack buffer overflow
vulnerability in its logging function [15]. We obtained arptoit for GHTTPD which overflows a stack-based buffer
and corrupts the return address. Using the return addretscfion component of our scheme, we were able to protect
the return address and prevent the attack that uses the bwdfélow vulnerability to corrupt the return address. When
our scheme is enabled, the return address corruption istddterhen the attack occurs and the application is aborted.

The second application we tested was another HTTP servezch@oreHTTP. This application contains a buffer-
overflow vulnerability where it fails to adequately checlerssupplied data before copying it to an insufficiently dize
buffer [14]. We obtained an exploit for this application amgplied our protection scheme to the application. Again,
when our protection scheme is enabled, the attack is detaottthe application is aborted.

Binary Rewriting Overhead A subset of SPEC benchmarks and other benchmarks wereezklecsubstantiate
the performance of our binary rewriter. The benchmarks 8elected at random, and are limited only by the criteria
that they are correctly rewritten by our still-early prgtog. Table 1 lists the set of benchmarks that are used in the
experiments. All the benchmarks are compiled with gcc 4.Atlthis point, Secondwrite is hot mature enough to
rewrite large real-world commercial applications whick &ence not included; debugging is ongoing. There are no
fundamental limitations we know of in rewriting such progsa

[Application] Source [Lines of C Source Cod¢

lbm SpecFP2006 1155

art OMP2001 1914
mcf Specint2006 2685
libguantum|SpecInt2006 4357
sjeng |SpecInt2006 13847
hmmer [Specint2006 35992
h264 |Specint2006 51578

Table 1. Application Characteristics

In the first experiment, all binaries executed correctlgrfewriting thus demonstrating SecondWrite’s robust-
ness. The standard suite of LLVM optimization passes rahawit any changes in SecondWrite. These include CFG
simplification, global optimization, global dead-codemghation, inter-procedural constant propagation, ircitoun
combining, condition propagation, tail-call eliminatianduction variable simplification and selective loop uhing.

Besides correctness, the next most important metrics ameithtime speedup or overhead of the rewritten binaries
versus the input binaries. For this paper, we study the pegoce of our rewriter on already optimized binaries. Fégur
2 shows the normalized execution time of each rewrittenrgioampared to an input binary produced using GCC with
the highest available level of optimization (-O3 flag). Tlesults are mixed, with most benchmarks nearly breaking
even or showing a small slowdown, one benchmark showinggaidaiowdown of 20%, and one benchmark actually
shows a speedup of 16%. The average is 2.7% slowdown.

We consider this near break-even performance on highlymipgid binaries a good result for three reasons:

— Our initial goal was not necessarily to get a speedup, bueteerate correct IR without without introducing too
much overhead. This would enable the IR to be a starting fointarious custom compiler transformations we
wanted to perform thereafter, such as automatic paradkida or security as covered in this paper. Ultimately, ¢hes
optimizations determine the utility of the rewriter.

— These numbers represent our first-cut implementation dexfoiny attempt at producing a better IR more geared
towards optimization. We believe these numbers can be awiity improved with more detailed IR and are
exploring several related avenues.

— We have currently not implemented any custom serial op#tions that might improve performance further, such
as the inter-procedural versions of common sub-expresdionination and loop-invariant code motion, changing
the compiler-enforced calling convention for registensfetter run-time, and more aggressive inlining. We believe

6 Rewriting unoptimized input binaries produced using GCC -O0 yields arageespeedup of 27% using SecondWrite (not
shown) due to its optimizations.

115
1.4 _
11
@
£ 12 2
g T 1.05-
S S
o 1+ :
° 2 1
o N
s :
g 08 £ 0.95]
E 2
o
Z o6 094
art libquantum hmmer AVERAGE art libquantum hmmer AVERAGE
Ibm mcf sjeng h264 Ibm mcf sjeng h264
Benchmarks Benchmarks

Fig. 2. Normalized runtime of rewritten binary as compared to Fig.3. Normalized runtime of rewritten binary with security
optimized input binary (runtime=1.0). scheme added.

these optimizations hold promise as the inter-procedyntitnization abilities of current compilers are very limite
compared to their intra-procedural performance.

One additional advantage of the binary rewriter is that tumeulates optimizations across two compilers—
rewritten binaries have an optimization if it is either gresin the compiler that produced the input binary, or in
the rewriter. In our case, if either GCC or LLVM had an optiatinn, the output binary should have it. This is why, for
example, one of our rewritten binaridsnimej had a 16% speedup versus the input binary. Although GCC tivih
-O3 optimization flag is known to produce good code, in sonsesd missed promoting structure fields to registers
whereas LLVM did, explaining the speeduplimmer With better IR and more aggressive optimizations, we expec
to see more consistent speedups in output binaries in theefut
Security Related Overheads The overhead of the security schemes was measured on theapalitations as used
for measuring the overhead of the binary rewriter. The tesare presented in Figure 3 and show overhead versus
rewritten binaries without security schemes inserted. densthe average run-time overhead of 6.7% introduced by
the protection scheme is low.

7 Conclusions

We have presented a new mechanism using an advanced bimaiterdhat allows end users to retrofit powerful
security features into third-party, binary-only softwarée particular mechanisms we used are well known, and some
have been partially implemented in other tools. Our systalnallow end-users to retrofit program-level security
protections for the first time in a highly customizable maremxording to their needs and environment.

We demonstrated the effectiveness of our mechanism viaiexpetal evaluation, begining with the benchmarks
developed by Wilander and Kamkar. We successfully mitidialéthe attack forms in the benchmarks. We then went
on to demonstrate how our mechanism successfully deferaiissignultiple real-world attacks. We also measured the
overheads of our binary rewriter in isolation and then wensttbwhat the overhead of adding the security mechanism
to a binary is. In both cases, we demonstrated that the cagih&roduced is quite low.

Future work involves extending the binary rewriter to workmore substantial applications and demonstrating
that the mechanism defends against more real-world attuttgo better handle multi-threaded code and the new
ucontexit API. Other interesting avenues for future research areveodt diversification and self-healing techniques
using the binary rewriter we have developed.

Acknowledgements This work was supported by the Air Force, DARPA and the NSBugh Contracts AFRL-
FA8650-10-C7024, AFOSR-MURI-FA9550-07-1-0527, DARPA&750-10-2-0253 and NSF-CNS-09-14845, re-
spectively. Any opinions, findings, conclusions or recomdsions expressed herein are those of the authors, and
do not necessarily reflect those of the US Government, th&dtice, DARPA, or the NSF.

References

1. Smashing the stack for fun and profit. Phrack magazine 7(495§199

w N

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

29.

30.
31.

. http://communities.vmware.com/docs/DOC 2601: List of VMWare WhiteePa
. Abadi, M., Budiu, M., Erlingsson, U., Jigatti, J.: Control-flow integrity: Proceedings of the2!* ACM Conference on

Computer and Communications Security (CCS). pp. 340-353. ACM5(j200

. Anand, K., Smithson, M., Kotha, A., Elwazeer, K., Barua, R.ecBmpilation to Compiler High IR in a Bi-

nary Rewriter. Tech. rep., University of Maryland (November 2018ttp://www.ece.umd.edu/ ~barua/
high-IR-technical-report10.pdf

. Boyd, S., Kc, G., Locasto, M., Keromytis, A., Prevelakis, V.: Ore General Applicability of Instruction-Set Randomization.

IEEE Transactions on Dependable and Secure Computing (TDSCWZ{$)-September 2010)

. Bruening, D.: Efficient, transparent, and comprehensive rurtode manipulation. Ph.D. thesis (2004)
. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuardid#eding pointers from buffer overflow vulnerabilities. In:

Proceedings of the2*" Usenix Security Symposium (2003)

. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., BeattieG8er, A., Wagle, P., Zhang, Q., Hinton, H.: StackGuard:

Automatic Adaptive Detection and Prevention of Buffer-Overflow AttadksProceedings of the' USENIX Security Sym-
posium. pp. 63-78. USENIX Association (1998)

. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffarfloves: Attacks and defenses for the vulnerability of the decade.

In: Proceedings of DARPA DISCEX. p. 1119. Published by the IEEEh@ater Society (2000)

. Eto, H., Yoda, K.: propolice: Improved Stack-smashing AttacteBt@on. Transactions of Information Processing Society of

Japan 43(12), 4034-4041 (2002)

. Eustace, A., Srivastava, A.: Atom: a flexible interface for buildifgh performance program analysis tools. In: Proceedings

of the USENIX Technical Conference. pp. 25-25 (1995)

. Foster, J.: Buffer Overflow Attacks: Detect, Exploit, Prevent.g8gss Media Inc. (2005)
. Hollingsworth, J.K., Miller, B.P., Cargille, J.: Dynamic programtinmentation for scalable performance tools. In: Proceed-

ings of the Scalable High-Performance Computing Conference. ip-850 (1994)

. http://www.securityfocus.com/bid/25120/info: CoreHTTP Http.C Bu@®verflow Vulnerability
. http://www.securityfocus.com/bid/5960/info: ghttpd log() Functionf@&u®verflow Vulnerability
. Hu, W., Hiser, J., Williams, D., Filipi, A., Davidson, J., Evans, Rnjght, J., Nguyen-Tuong, A., Rowanhill, J.: Secure and

practical defense against code-injection attacks using software dytramslation. In: Proceedings of the USENIX Conference
on Virtual Execution Environments (VEE) (2006)

Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure exenwtia program shepherding. In: Proceedings oftfeUSENIX
Security Symposium (2002)

Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong@gram analysis & transformation. In: Proceedings of the
International Symposium on Code Generation and Optimization (GCOY}587 (2004)

Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, ®8/allace, S., Reddi, V.J., Hazelwood, K.: PIN: Building
Customized Program Analysis Tools with Dynamic Instrumentation. Incé&dings of the ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI). pp. 18D{2005)

Nanda, S., Li, W., Lam, L.C., Chiueh, T.: BIRD: Binary Intesfation using Runtime Disassembly. In: Proceedings of the
International Symposium on Code Generation and Optimization (CGO3583-370 (2006)

Nethercote, N., Seward, J.: Valgrind: a framework for heaigit dynamic binary instrumentation. ACM SIGPLAN Notices
42(6) (2007)

Rescorla, E.: Security Holes...Who Cares? In: Proceedingsed2t” USENIX Security Symposium. pp. 75-90 (August
2003)

Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., Ledy, Bershad, B., Chen, B.: Instrumentation and optimization of
Win32/Intel executables using Etch. In: Proceedings of the USENIX @iisd\NT Workshop on The USENIX Windows NT
Workshop (1997)

Schwarz, B., Debray, S., Andrews, G., Legendre, M.: Pltniktime optimizer for the Intel IA-32 architecture. In: Proceed-
ings of the Workshop on Binary Translation (WBT) (2001)

Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, NneB, D.: On the effectiveness of address-space randomization. |
Proceedings of the1** ACM conference on Computer and Communications Security (CCSP98-307 (2004)

Smithson, M., Anand, K., Kotha, A., Elwazeer, K., Giles, N.,rida R.. Binary Rewriting without Reloca-
tion Information. Tech. rep., University of Maryland (November @Qlhttp://www.ece.umd.edu/ ~ barua/
without-relocation-technical-report10.pdf

Solar Designer: "return-to-libc” attack. Bugtrag Mailing List (Augi897)

. Srivastava, A., Edwards, A., Vo, H.: Vulcan: Binary transfation in a distributed environment. Tech. Rep. MSR-TR-2001-50,
Microsoft Research (2001)

Van Put, L., Chanet, D., De Bus, B., De Sutter, B., De Bosscher®iablo: a reliable, retargetable and extensible link-time
rewriting framework. In: Proceedings of the IEEE International Sgsippm On Signal Processing And Information Technol-
ogy. pp. 7-12 (December 2005)

Vendicator: Stack shield technical info file v0.7. (2001p://www.angelfire.com/sk/stackshield/

Wilander, J., Kamkar, M.: A comparison of publicly available toolsdfgnamic buffer overflow prevention. In: Proceedings of
the 10" Network and Distributed System Security Symposium. pp. 149-162 2003

. Witten, B., Landwehr, C., Caloyannides, M.: Does open sourpeove system security? IEEE Software 18(5), 57-61 (2001)

