81 research outputs found

    Control of entanglement dynamics in a system of three coupled quantum oscillators

    Get PDF
    Sem informaçãoDynamical control of entanglement and its connection with the classical concept of instability is an intriguing matter which deserves accurate investigation for its important role in information processing, cryptography and quantum computing. Here we consider a tripartite quantum system made of three coupled quantum parametric oscillators in equilibrium with a common heat bath. The introduced parametrization consists of a pulse train with adjustable amplitude and duty cycle representing a more general case for the perturbation. From the experimental observation of the instability in the classical system we are able to predict the parameter values for which the entangled states exist. A different amount of entanglement and different onset times emerge when comparing two and three quantum oscillators. The system and the parametrization considered here open new perspectives for manipulating quantum features at high temperatures.718Sem informaçãoSem informaçãoSem informaçã

    Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles

    Get PDF
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance and relativistic invariance. Thirdly, we argue that the random discontinuous motion of particles may lead to a stochastic, nonlinear collapse evolution of the wave function. A discrete model of energy-conserved wavefunction collapse is proposed and shown to be consistent with existing experiments and our macroscopic experience. In addition, we also give a critical analysis of the de Broglie-Bohm theory, the many-worlds interpretation and dynamical collapse theories, and briefly analyze the problem of the incompatibility between quantum mechanics and special relativity

    Chirality as Generalized Spin-Orbit Interaction in Spintronics

    Full text link
    This review focuses on the chirality observed in the excited states of the magnetic order, dielectrics, and conductors that hold transverse spins when they are evanescent. Even without any relativistic effect, the transverse spin of the evanescent waves are locked to the momentum and the surface normal of their propagation plane. This chirality thereby acts as a generalized spin-orbit interaction, which leads to the discovery of various chiral interactions between magnetic, phononic, electronic, photonic, and plasmonic excitations in spintronics that mediate the excitation of quasiparticles into a single direction, leading to phenomena such as chiral spin and phonon pumping, chiral spin Seebeck, spin skin, magnonic trap, magnon Doppler, and spin diode effects. Intriguing analogies with electric counterparts in the nano-optics and plasmonics exist. After a brief review of the concepts of chirality that characterize the ground state chiral magnetic textures and chirally coupled magnets in spintronics, we turn to the chiral phenomena of excited states. We present a unified electrodynamic picture for dynamical chirality in spintronics in terms of generalized spin-orbit interaction and compare it with that in nano-optics and plasmonics. Based on the general theory, we subsequently review the theoretical progress and experimental evidence of chiral interaction, as well as the near-field transfer of the transverse spins, between various excitations in magnetic, photonic, electronic and phononic nanostructures at GHz time scales. We provide a perspective for future research before concluding this article.Comment: 136 pages, 60 figure

    Faces of gravity

    Get PDF
    In dieser Dissertation untersuchen wir eine Vielzahl von Themen aus dem Bereich der Kosmologie und der Gravitation. Insbesondere behandeln wir Fragestellungen aus der Inflationstheorie, der Strukturbildung im neuzeitlichen Universum und massiver Gravitation, sowie Quantenaspekte schwarzer Löcher und Eigenschaften bestimmter skalare Theorien bei sehr hohen Energien. Im sogenannten "New Higgs Inflation"-Modell spielt das Higgs-Boson die Rolle des Inflaton-Felds. Das Modell ist kompatibel mit Messungen der Higgs-Masse, weil das Higgs-Boson nichtminimal an den Einstein-Tensor gekoppelt wird. Wir untersuchen das Modell in Hinblick auf die kĂŒrzlich veröffentlichten Resultate der BICEP2- und Planck-Experimente und finden eine hervorragende Übereinstimmung mit den gemessenen Daten. Desweiteren zeigen wir auf, dass die scheinbaren WidersprĂŒche zwischen Planck- und BICEP2-Daten dank eines negativ laufenden Spektralindex verschwinden. Wir untersuchen außerdem die UnitaritĂ€tseigenschaften der Theorie und rĂ€sonieren, dass es wĂ€hrend der gesamten Entwicklung des Universums nicht zu UnitaritĂ€tsverletzung kommt. WĂ€hrend der Dauer der inflationĂ€ren Phase sind Kopplungen in den Higgs-Higgs und Higgs-Graviton-Sektoren durch eine großen feldabhĂ€ngige Skala unterdrĂŒckt. Die W- und Z-Bosonen hingegen entkoppeln aufgrund ihrer sehr großen Masse. Wir zeigen eine Möglichkeit auf, die es erlaubt die Eichbosonen als Teil der Niederenergietheorie zu behalten. Dies wird erreicht durch eine gravitationsabhĂ€ngige nichtminimale Kopplung des Higgs-Felds an die Eichbosonen. Im nĂ€chsten Abschnitt konzentrieren wir uns auf das neuzeitliche Universum. Wir untersuchen den sogenannten sphĂ€rischen Kollaps in Modellen gekoppelter dunkler Energie. Insbesondere leiten wir eine Formulierung des sphĂ€rischen Kollaps her, die auf den nichtlinearen Navier-Stokes-Gleichungen basiert. Im Gegensatz zu bekannten Beispielen aus der Literatur fließen alle wichtigen Fifth-Force Effekte in die Entwicklung ein. Wir zeigen, dass unsere Methode einfachen Einblick in viele SubtilitĂ€ten erlaubt, die auftreten wenn die dunkle Energie als inhomogen angenommen wird. Es folgt eine Einleitung in die Theorien von massiven Spin-2 Teilchen. Hier erklĂ€ren wir die Schwierigkeiten der Formulierung einer nichtlinearen, wechselwirkenden Theorie. Wir betrachten das bekannte Problem des Boulware-Deser-Geists und zeigen zwei Wege auf, dieses No-Go-Theorem zu vermeiden. Insbesondere konstruieren wir die eindeutige Theorie eines wechselwirkenden massiven Spin-2 Teilchens, die auf kubischer Ordnung trunkiert werden kann, ohne dass sie zu Geist-InstabilitĂ€ten fĂŒhrt. Der zweite Teil dieser Arbeit widmet sich bekannten Problemen der Physik schwarzer Löcher. Hier liegt unser Fokus auf der Idee, das schwarze Löcher als Bose-Kondensate von Gravitonen aufgefasst werden können. Abweichungen von semiklassischem Verhalten sind Resultat von starken Quanteneffekten die aufgrund einer kollektiven starken Kopplung auftreten. Diese starke Kopplung fĂŒhrt in bekannten Systemen zu einem QuantenphasenĂŒbergang oder einer Bifurkation. Die quantenmechanischen Effekte könnten der SchlĂŒssel zur Auflösung lang existierender Probleme in der Physik schwarzer Löcher sein. Dies umschließt zum Beispiel das Informationsparadox und das ``No-Hair''-Theorem. Außerdem könnten sie wertvolle Einblicke in die Vermutung liefern, dass schwarze Löcher die Systeme sind, die Informationen am schnellsten verschlĂŒsseln. Als Modell fĂŒr ein schwarzes Loch studieren wir ein System von ultrakalten Bosonen auf einem Ring. Dieses System ist bekannt als eines, dass einen Quantenkritischen Punkt besitzt. Wir demonstrieren, dass am kritischen Punkt Quanteneffekte sogar fĂŒr sehr große Besetzungszahlen wichtig sein können. Hierzu definieren wir die FluktuationsverschrĂ€nkung, die angibt, wie sehr verschiedene Impulsmoden miteinander verschrĂ€nkt sind. Die FluktuationsverschrĂ€nkung ist maximal am kritischen Punkt und ist dominiert von sehr langwelligen Fluktuationen. Wir finden daher Resultate die unabhĂ€ngig von der Physik im ultravioletten sind. Im weiteren Verlauf besprechen wir die Informationsverarbeitung von schwarzen Löchern. Insbesondere das Zusammenspiel von QuantenkritikalitĂ€t und InstabilitĂ€t kann fĂŒr ein sehr schnelles Wachstum von Ein-Teilchen-VerschrĂ€nkung sorgen. Dementsprechend zeigen wir, dass die sogenannte "Quantum Break Time'', welche angibt wie schnell sich die exakte Zeitentwicklung von der semiklassischen entfernt, wie log(N) wĂ€chst. Hier beschreibt N die Anzahl der Konstituenten. Im Falle eines Gravitonkondensats gibt N ein Maß fĂŒr die Entropie des schwarzen Lochs an. Dementsprechend interpretieren wir unsere Erkenntnisse als einen starken Hinweis, dass das VerschlĂŒsseln von Informationen in schwarzen Löchern denselben Ursprung haben könnte. Das Verdampfen von schwarzen Löchern beruht in unserem Bild auf zwei Effekten. KohĂ€rente Anregungen der tachyonischen radialen Mode fĂŒhren zum Kollaps des Kondensats, wĂ€hrend sich die inkohĂ€rente Streuung von Gravitonen fĂŒr die Hawking-Strahlung verantwortlich zeigt. HierfĂŒr konstruieren wir einen Prototyp, der einen bosonischen Freiheitsgrades mit impulsabhĂ€ngigen Wechselwirkungen beschreibt. Im Schwinger-Keldysh-Formalismus untersuchen wir die Echtzeit-Evolution des Kondensats und zeigen, dass der Kollaps und die damit einhergehende Evaporation auf selbst-Ă€hnliche Weise verlĂ€uft. In diesem Fall ist das Kondensat wĂ€hrend des gesamten Kollapses an einem kritischen Punkt. Desweiteren zeigen wir Lösungen, die an einem instabilen Punkt leben, und daher schnelle VerschrĂ€nkung erzeugen könnten. Der finale Teil der Arbeit befasst sich mit RenormierungsgruppenflĂŒssen in skalaren Theorien mit impulsabhĂ€ngigen Wechselwirkungen. Wer leiten die Flussgleichung fĂŒr eine Theorie, die nur eine Funktion des kinetischen Terms enthĂ€lt her. Hier zeigen wir die Existenz von Fixpunkten in einer Taylor-Entwicklung der Funktion auf. Wir diskutieren, inwiefern unsere Analyse fĂŒr Einblick in allgemeinere Theorien mit Ableitungswechselwirkungen sorgen kann. Dies beinhaltet zum Beispiel Gravitation.This thesis covers various aspects of cosmology and gravity. In particular, we focus on issues in inflation, structure formation, massive gravity, black hole physics, and ultraviolet completion in certain scalar theories. We commence by considering the model of New Higgs Inflation, where the Higgs boson is kinetically non-minimally coupled to the Einstein tensor. We address the recent results of BICEP2 and Planck and demonstrate that the model is in perfect agreement with the data. We further show how the apparent tension between the Planck and BICEP2 data can be relieved by considering a negative running of the spectral index. We visit the issue of unitarity violation in the model and argue that it is unitary throughout the evolution of the Universe. During inflation, couplings in the Higgs-Higgs and Higgs-graviton sector are suppressed by a large field dependent cutoff, while the W and Z gauge bosons acquire a very large mass and decouple. We point out how one can avoid this decoupling through a gravity dependent nonminimal coupling of the gauge bosons to the Higgs. We then focus on more recent cosmology and consider the spherical collapse model in coupled dark energy models. We derive a formulation of the spherical collapse that is based on the nonlinear hydrodynamical Navier-Stokes equations. Contrary to previous results in the literature, it takes all fifth forces into account properly. Our method can also be used to gain insight on subtleties that arise when inhomogeneities of the scalar field are considered. We apply our approach to various models of dark energy. This includes models with couplings to cold dark matter and neutrinos, as well as uncoupled models. In particular, we check past results for early dark energy parametrizations. Next, we give an introduction to massive spin-two theories and the problem of their non-linear completion. We review the Boulware-Deser ghost problem and point out the two ways to circumvent classic no-go theorems. In particular, we construct the unique theory of a massive spin-two particle that does not suffer from ghost instabilities when truncated at the cubic order. The second part of this dissertation is dedicated to problems in black hole physics. In particular, we focus on the proposal that black holes can be understood as quantum bound states of soft gravitons. Deviations from semiclassicality are due to strong quantum effects that arise because of a collective strong coupling, equivalent to a quantum phase transition or bifurcation. These deviations may hold the key to the resolution of long standing problems in black hole physics, such as the information paradox and the no hair theorem. They could also provide insights into the conjecture that black holes are the fastest information scramblers in nature. As a toy model for black holes, we study a model of ultracold bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate that at the critical point, quantum effects are important even for a macroscopic number of particles. To this end, we propose the notion of fluctuation entanglement, which measures the entanglement between different momentum modes. We observe the entanglement to be maximal at the critical point, and show that it is dominated by long wavelength modes. It is thus independent of ultraviolet physics. Further, we address the question of information processing in black holes. We point out that the combination of quantum criticality and instability can provide for fast growth of one-particle entanglement. In particular, we show that the quantum break time in a simple Bose-Einstein prototype scales like log(N), where N is the number of constituents. By noting that in the case of graviton condensates, N provides a measure for the black hole entropy, we take our result as as a strong hint that scrambling in black holes may originate in the same physics. In our picture, the evaporation of the black hole is due to two intertwined effects. Coherent excitation of the tachyonic breathing mode collapses the condensate, while incoherent scattering of gravitons leads to Hawking radiation. To explore this, we construct a toy model of a single bosonic degree of freedom with derivative self-interactions. In the Schwinger-Keldysh formalism, we consider the real-time evolution and show that evaporation and collapse occur in a self-similar manner. The condensate is at a critical point throughout the collapse. Moreover, we discover solutions that are stuck at an unstable point and may thus exhibit fast generation of entanglement. The final chapter of this thesis is dedicated to renormalization group (RG) flows in scalar theories with derivative couplings. We derive the exact flow equation for a theory that depends on a function of only the kinetic term. We demonstrate the existence of fixed points in a Taylor series expansion of the Lagrangian and discuss how our studies can provide insight into RG flows in more general theories with derivative couplings, for example gravity

    Applications of Ultrasound-targeted Microbubble Cavitation with Sodium Nitrite and Nitro-alkenes

    Get PDF
    Microvascular obstruction is a common repercussion of percutaneous coronary intervention in treating acute myocardial infarction, and results from a combination of downstream microembolization, ischemia-reperfusion injury, and inflammation. Ultrasound-targeted microbubble cavitation (UTMC) uses external therapeutic ultrasound pulsation to target intravascularly infused microbubble contrast agents to produce shear stresses which mechanically disrupt obstructing microemboli. This work aims to enhance the therapeutic effects of UTMC through synergistic co-administration of nitrite for enhancement of perfusion and nitric oxide bioavailability (Aim 1) and development of a novel microbubble agent using nitro-alkenes for therapeutic reduction of inflammation after ischemia-reperfusion injury (Aim 2). For characterization and optimization of nitrite co-therapy with UTMC, a rat gastrocnemius model was used with contrast-enhanced ultrasound imaging. A nitric oxide porphyrinic membrane catheter probe was inserted into the treatment site for real-time measurement of nitric oxide concentration changes. In addition to nitrite co-therapy, effects of administering an endothelial nitric oxide synthase inhibitor as well as varying microbubble concentration and therapeutic ultrasound pressure were studied. Results showed that UTMC and nitrite demonstrated positive synergy for enhancing nitric oxide concentration and perfusion which depended on functional endothelial nitric oxide synthase. After a novel nitro-alkene microbubble agent was synthesized and characterized, it was applied in both healthy and ischemia-reperfusion injury rat gastrocnemius models. Tissue samples were collected after treatment for quantification of nitro-alkene delivery, changes in inflammatory gene expression, and contrast-enhanced ultrasound imaging was used to quantify changes in hindlimb perfusion after treatment. Results showed that incorporation of the nitro-alkene into a microbubble formulation with UTMC greatly enhanced targeted tissue delivery of the nitro-alkene compared to co-infusion with standard microbubbles and systemic infusion alone. In addition, nitro-alkene microbubble UTMC resulted in greatly enhanced perfusion as well as decreases in inflammatory gene expression. In all, both of these applications of enhancing UTMC therapy demonstrate significant mechanistic interactions with endogenous nitric oxide metabolism and may serve to enhance nitric oxide bioavailability through different pathways. They may also improve the relevance of UTMC in treating the biological sequelae of microvascular obstruction without compromising its mechanical function in disrupting microemboli
    • 

    corecore