184 research outputs found

    Survey: Leakage and Privacy at Inference Time

    Get PDF
    Leakage of data from publicly available Machine Learning (ML) models is an area of growing significance as commercial and government applications of ML can draw on multiple sources of data, potentially including users' and clients' sensitive data. We provide a comprehensive survey of contemporary advances on several fronts, covering involuntary data leakage which is natural to ML models, potential malevolent leakage which is caused by privacy attacks, and currently available defence mechanisms. We focus on inference-time leakage, as the most likely scenario for publicly available models. We first discuss what leakage is in the context of different data, tasks, and model architectures. We then propose a taxonomy across involuntary and malevolent leakage, available defences, followed by the currently available assessment metrics and applications. We conclude with outstanding challenges and open questions, outlining some promising directions for future research

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl

    A Survey of Privacy Attacks in Machine Learning

    Full text link
    As machine learning becomes more widely used, the need to study its implications in security and privacy becomes more urgent. Although the body of work in privacy has been steadily growing over the past few years, research on the privacy aspects of machine learning has received less focus than the security aspects. Our contribution in this research is an analysis of more than 40 papers related to privacy attacks against machine learning that have been published during the past seven years. We propose an attack taxonomy, together with a threat model that allows the categorization of different attacks based on the adversarial knowledge, and the assets under attack. An initial exploration of the causes of privacy leaks is presented, as well as a detailed analysis of the different attacks. Finally, we present an overview of the most commonly proposed defenses and a discussion of the open problems and future directions identified during our analysis.Comment: Under revie

    MACE: A Flexible Framework for Membership Privacy Estimation in Generative Models

    Full text link
    In this work, we formally study the membership privacy risk of generative models and propose a membership privacy estimation framework. We formulate the membership privacy risk as a statistical divergence between training samples and hold-out samples, and propose sample-based methods to estimate this divergence. Unlike previous works, our proposed metric and estimators make realistic and flexible assumptions. First, we offer a generalizable metric as an alternative to accuracy for imbalanced datasets. Second, our estimators are capable of estimating the membership privacy risk given any scalar or vector valued attributes from the learned model, while prior work require access to specific attributes. This allows our framework to provide data-driven certificates for trained generative models in terms of membership privacy risk. Finally, we show a connection to differential privacy, which allows our proposed estimators to be used to understand the privacy budget 'epsilon' needed for differentially private generative models. We demonstrate the utility of our framework through experimental demonstrations on different generative models using various model attributes yielding some new insights about membership leakage and vulnerabilities of models

    A Critical Overview of Privacy in Machine Learning

    Get PDF
    This article reviews privacy challenges in machine learning and provides a critical overview of the relevant research literature. The possible adversarial models are discussed, a wide range of attacks related to sensitive information leakage is covered, and several open problems are highlighted
    • …
    corecore