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Abstract

This article reviews privacy challenges in machine learn-
ing, providing an overview of the relevant research liter-
ature. We discuss possible adversarial models and set-
tings, cover a wide range of attacks related to private and/or
sensitive information leakage, and highlight several open
problems in this space.

1 Prologue

Providers like Google, Microsoft, and Amazon provide
customers with access to software interfaces to easily em-
bed machine learning (ML) tasks into their applications.
Overall, organizations can use Machine Learning as a Ser-
vice (MLaaS) engines to outsource complex tasks, e.g.,
training classifiers, performing predictions, etc. They can
also let others query models trained on their data. Nat-
urally, this approach can also be used and is often ad-
vocated in other contexts, including government collabo-
rations, citizen science projects, and business-to-business
partnerships. Alas, if malicious users could recover data
used to train these models, the resulting information leak-
age would create serious issues. Likewise, if the model’s
parameters are secret, or considered proprietary informa-
tion, then access to the model should not allow an adver-
sary to learn such parameters. In this article, we set to
review privacy challenges in this space, providing a sys-
tematic review of the relevant research literature.

We discuss possible adversarial models and settings,
cover a wide range of attacks related to private and/or sen-
sitive information leakage, and briefly point to recent re-
sults attempting to defend against such attacks. Finally, we
conclude with a list of open problems that require more
work, including the need for better evaluations, targeted
defenses, and the study of the relation to policy and data
protection efforts.

NB: This article is not meant to present a comprehensive
survey of literature in the field, nor an exhaustive list of all
threat models and attacks of privacy in machine learning;
interested readers may refer to existing surveys, e.g., [1].

2 ML Background

ML approaches. ML models can also be categorized de-
pending on the probability distributions they learn. In su-
pervised learning, assuming one has some input data x
(e.g., pictures of animals) and wants to classify it into la-
bels y (e.g., type of animal), then, roughly speaking, one
can use either:
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Figure 1: A simple illustration of how one can use discriminative
vs generative models. The former learns to distinguish between
two classes, i.e., pictures of cats or dogs. The latter estimates
the underlying distribution of a dataset (pictures of cats) and ran-
domly generate realistic, yet synthetic, samples according to their
estimated distribution.

e Discriminative models to learn the conditional proba-
bility distribution p(y|z), and ultimately learn to dis-
tinguish between different classes (e.g., cats vs dogs).

o Generative models to learn the joint probability distri-
bution p(z,y). Among these, Generative Adversarial
Networks (GANs) have become very popular to learn
to generate new data with the same (statistical) prop-
erties as the training set. The two kinds of models are
exemplified in Figure 1.

Another distinction is based on whether the learning task
is centralized or (somewhat) distributed:

o Centralized learning: in conventional ML method-
ologies, all training data is pooled and stored at a sin-
gle entity, and models are trained on this joint pool.

o Collaborative/federated learning: multiple partici-
pants, each with their own training dataset, construct
a joint model by training a local model on their own
data, but periodically exchange model parameters,
updates to these parameters, or partially constructed
models with the other participants. This intuition is il-
lustrated in Figure 2. There are several techniques in
this category, including federated learning deployed
by Google and Apple on millions of devices, e.g.,
to train predictive keyboards on character sequences
users type on their phones.

Machine Learning as a Service (MLaaS). Many cloud
providers, including Microsoft, Amazon, and IBM, have
launched Machine Learning as a Service (MLaaS) offer-
ings, aimed to help clients benefit from machine learn-
ing without the cost, time, and risk of building in-house
infrastructure from scratch. MLaaS offers ready-made,
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Figure 2: An overview of the federated learning approach.

generic machine learning tools, such as predictive analyt-
ics, APIs, data visualization, and natural language pro-
cessing, that can be adapted by small and medium-sized
companies according to their needs. Users who purchase
MLaaS services can access these tools via prediction APIs
on a pay-per-query basis. Typical image classification ser-
vice costs around $1-$10 per 1,000 queries, depending on
the customization and sophistication of the machine learn-
ing model.

MLaaS services vary a lot across different providers. In
some cases, providers enable clients to download and de-
ploy machine learning models locally, while others only
allow clients to access machine learning models via a pre-
diction query interface, which provides both the predicted
label and the confidence score. The latter is much more
popular. Some platforms also allow clients to upload their
own models and charge others for using their models.

3 Privacy in ML

The security of any system is measured with respect to the
adversarial goals and capabilities that it is designed to de-
fend against; to this end, we now discuss different threat
models. Then, we attempt to provide a definition of privacy
in ML, focusing on the different types of attacks reviewed
in detail in Section 4.

3.1 Adversarial Models

Overall, we focus on the privacy of the model. (NB: ad-
versarial examples and overall robustness issues are out of
the scope of this article.) In the rest of this section, we
discuss adversarial goals related to extracting information
about the model or training data.

When the model itself represents intellectual property—
e.g., in financial market systems—the model and its pa-
rameters should be kept private. In other contexts, it is im-
perative that the privacy of the training data be preserved,
e.g., in medical applications. Regardless of the goal, the
attacks and defenses relate to exposing or preventing the
exposure of the model and training data.

Access. We first discuss what kind of access the attacker
might have:

e White-Box: she has some information about the
model or its original training data, e.g., the ML algo-
rithm, model parameters, network structure, or sum-
mary, partial, or full training data.

e Black-Box: she has no knowledge about the model.
Rather, she might explore a model by providing a se-
ries of carefully crafted inputs and observing outputs.

Inference vs training. Another variable is where the at-
tack might take place:

e Training Phase: the adversary attempts to learn the
model, e.g., accessing a summary, partial, or all of
the training data. She might create a substitute model
(aka auxiliary model) to mount attacks on the victim
system.

o [nference Phase: the adversary collects evidence
about the model characteristics by observing infer-
ences made by it.

Passive vs. Active. Finally, one can distinguish between
passive and active attacks, roughly mirroring the tradi-
tional distinction in security literature between honest-but-
curious and fully malicious adversaries. Consider, for in-
stance, federated learning, where the attacker is one of the
participants in the collaborative setting:

e Passive attack: the adversary passively observes the
updates and performs inference, e.g., without chang-
ing anything in the training procedure;

e Active attack: the adversary actively changes the way
she operates, e.g., in the case of federated learning,
by extending their local copy of the collaboratively
trained model with an augmented property classifier
connected to the last layer.

3.2 Types of attacks

Before delving into the state of the art of actual attacks, we
define what privacy means in the context of machine learn-
ing or, alternatively, what it means for a machine learning
model to breach privacy.

3.2.1 Inference about members of the population

o Statistical disclosure: the adversary learns something
about the input to the model from the model pre-
dictions; in theory, one would like to control statis-
tical disclosure (this is also known as the “Dalenius
desideratum”), in that a model should reveal no more
about the input to which it is applied than would have
been known about this input without applying the
model. However, any useful model cannot achieve
this.

e Model inversion: an adversary can use the model’s
output to infer the values of sensitive attributes used
as input to the model. Note that it may not be possi-
ble to prevent this if the model is based on statistical
facts about the population. For example, suppose that
training the model has uncovered a high correlation
between a person’s externally observable phenotype
features and their genetic predisposition to a certain
disease; this correlation is now a publicly known fact
that allows anyone to infer information about the per-
son’s genome after observing that person.



e [nferring class representatives: overall, model inver-
sion can be generalized to potential breaches where
the adversary, given some access to the model, infers
features that characterize each class, making it possi-
ble to construct representatives of these classes.

3.2.2 Inference about members of the training dataset

Here the focus is on the privacy of the individuals whose
data was used to train the model. Of course, members of
the training dataset are members of the population, too.
Therefore, one should focus on what the model reveals
about them beyond what it reveals about an arbitrary mem-
ber of the population:

o Membership inference: given a model and an exact
data point, the adversary infers whether this point was
used to train the model or not.

e Property inference: training data may not be identi-
cally distributed across different users whose records
are in the training set; unlike model inversion, the ad-
versary tries to infer properties that are true of a subset
of the training inputs but not of the class as a whole.
For instance, when Bob’s photos are used to train a
gender classifier, she infers that Alice appears in some
photos.

3.2.3 Inferring Model Parameters

As discussed earlier, MLaaS allows model owners to
charge others for queries to their commercially valuable
models. This pay-per-query deployment option exempli-
fies an increasingly common tension: on the one hand, the
query interface of an ML model may be widely accessible,
yet the model itself and the data on which it was trained
may be proprietary and confidential. Moreover, for secu-
rity applications such as spam or fraud detection, an ML
model’s secrecy is critical to its utility; an adversary that
can learn the model can also often evade detection.
In this space, we can distinguish between:

e Model Extraction: a black-box adversary that can
query an ML model to obtain predictions on input fea-
ture vectors and may or may not know the model type
(e.g., logistic regression) or the distribution over the
data used to train the model. The adversary’s goal is
to extract an equivalent or near-equivalent ML model.

e Functionality Stealing: Rather than stealing the
model, here the ultimate goal is to create “knock-offs”
of the (black-box) model solely based on input-output
pairs observed from MLaaS queries.

4 Attacks

4.1 Membership Inference Attack (MIA)
4.1.1 Definition and Relevance

Membership inference relates to the problem of decid-
ing, given a data point, whether or not it was included in

the training dataset. This can constitute a serious privacy
breach in several settings, which we discuss next.

Sensitivity of task/model. First of all, MIA can directly
violate privacy if inclusion in a training set is itself sensi-
tive based on the nature of the task at hand. For example,
if health-related records (or images like MRIs) are used to
train a classifier, discovering that a specific record was used
for training inherently leaks information about the individ-
ual’s health. Similarly, if images from a database of crim-
inals are used to train a model predicting the probability
that one will re-offend, successful membership inference
exposes an individual’s criminal history.

Signal of leakage. When a record is fully known to the ad-
versary, learning that it was used to train a particular model
indicates information leakage through the model. Overall,
MIA is often considered to be a signal—a measuring stick
of sort—that access to a model leads to potentially seri-
ous privacy breaches. In fact, MIAs are often a gateway to
further attacks: e.g., if the adversary infers that data of a
victim is part of the information she has access to, she can
mount other attacks, like profiling, property inference, etc.

Establishing wrongdoing. On the other hand, regulators
can also use MIA to support the suspicion that a model was
trained on personal data without an adequate legal basis
or for a purpose not compatible with the data collection.
For instance, DeepMind was recently found to have used
personal medical records provided by the UK’s National
Health Service for purposes beyond direct patient care; the
basis on which the data was collected.

MIA beyond machine learning. As a side note, we re-
mark that MIAs have been studied not only in the context
of machine learning but also in other fields. Overall, given
a data point and a “function”, one can define membership
inference as the problem of determining whether the point
is part of the input to the function. Often, this function
is some form of aggregation, and in fact, researchers have
demonstrated the existence of successful MIAs against ag-
gregate statistics in the context of genomic studies, loca-
tion data, etc.

4.1.2 State of the Art

Attacking Machine Learning as a Service. MIA against
black-box machine learning models was first studied by
Shokri et al. [2], in the context of supervised learning.
They focus on classification models trained by commercial
Machine Learning as a Service (MLaaS) providers, such as
Google and Amazon, whereby a user has API access to a
trained model.

More specifically, customers in possession of a dataset
and a data classification task can upload the dataset to the
MLaasS service and pay it to construct a model. The service
then makes the model available to the customer—typically
as a black-box API. For example, a mobile app maker can
use such a service to analyze users’ activities and query the
resulting model inside the app to promote in-app purchases
to users when they are most likely to respond. Moreover,
some machine-learning services also let data owners ex-
pose their models to external users for querying or even
sell them.



Inference via overfitting. Shokri et al. [2]’s approach ex-
ploits differences in the model’s response to inputs that
were or were not seen during training. For each class of
the targeted black-box model, they train a shadow model,
with the same machine learning technique; the intuition is
that the model ends up “overfitting” on data used for train-
ing. Overfitting is a modeling error that occurs when a
function is too closely fit to a limited set of data points and
performs better on the training inputs than on the inputs
drawn from the same population but not used during the
training. Therefore, the attacker can exploit the confidence
values on inputs belonging to the same classes and learn to
infer membership.

Generative models. While the research discussed above
focuses on discriminative models, other work targets gen-
erative models. As discussed earlier, they are used to gen-
erate new samples from the same underlying distribution of
a given training dataset, e.g., to artificially generate plausi-
ble images and videos. Here the attacker targets an MLaaS
engine that provides synthetic samples on demand — e.g.,
the user’s query is “provide an image sample of a cat” —
based on a trained generative model. Once again, infer-
ring whether specific data points are part of the training
set for that generative model may constitute a serious pri-
vacy breach. Note that membership inference on gener-
ative models is much more challenging than on discrimi-
native models: in the former, the attacker cannot exploit
confidence values on inputs belonging to the same classes,
and therefore it is more difficult to detect overfitting and
mount the attack.

Hayes et al. [4] consider both black-box and white-box
attacks: in the former, the adversary can only make queries
to the model under attack, i.e., the target model, and has no
access to the internal parameters. In the latter, she also has
access to the parameters. To mount the attacks, they train
a Generative Adversarial Network (GAN) on samples gen-
erated from the target model, i.e., using generative models
to learn information about the target generative model, and
thus create a local copy of the target model from which
they can launch the attack. The intuition is that, if a gen-
erative model overfits, then a GAN—which combines a dis-
criminative model and a generative model-should detect
this overfitting since the discriminator is trained to learn
statistical differences in distributions. Moreover, for white-
box attacks, the attacker-trained discriminator itself can be
used to measure information leakage of the target model.

Federated Learning. In this setting, the attack can be
mounted by an adversary, a participant in the federated
learning, attempting to infer whether a specific record is
part of the training set of either a specific or any partici-
pant. The first MIA against federated learning is presented
by Melis et al. [3], whose main intuition is to exploit unin-
tended leakage from either the embedding layer (all deep
learning models operating on non-numeric data where the
input space is discrete and sparse first use an embedding
layer to transform inputs into a lower-dimensional vector
representation) or the gradients (in deep learning mod-
els, gradients are computed by back-propagating the loss
through the entire network from the last to the first layer).
An illustration of Melis et al. [3]’s attack is in Figure 3.

Then, Nasr et al. [5] design MIAs during the training phase
in a white-box setting, including passive and active attack-
ers based on the different adversary prior knowledge.

4.2 Model Inversion

As mentioned earlier, model inversion techniques aim to
infer class features and/or construct class representatives,
given that the adversary has some access (either black-box
or white-box) to a model.

4.2.1 Definition and Early Work

The concept of model inversion is introduced by Fredrik-
son et al. [6]. First, they show how an attacker can rely on
outputs from a classifier to infer sensitive features used as
inputs to the model itself: given the model and some demo-
graphic information about a patient whose records are used
for training, an attacker might predict sensitive attributes
of the patient. Then, they use so-called “hill-climbing” on
the output probabilities of a computer-vision classifier to
reveal individual faces from the training data.

These techniques are sometimes described as violating
the privacy of the training data, even though the inferred
features characterize an entire class and not specifically the
training data, except in the cases of pathological overfitting
where the training sample constitutes the entire member-
ship of the class.

4.2.2 Further Attacks

Collaborative learning. Hitaj et al. [7] show that a partic-
ipant in collaborative learning can use GANs to construct
class representatives. However, this technique has been
evaluated only on models where all members of the same
class are visually similar (handwritten digits and faces).
Thus, there is no evidence that it produces actual training
images or can distinguish a training image and another im-
age from the same class.

Aono et al. [8] show that, in collaborative deep learn-
ing, an adversarial server can partially recover participants’
data points from the shared gradient updates, although in
a greatly simplified setting where the batch consists of a
single data point.

Unintended Memorization. Song et al. [9] engineer a
machine learning model that memorizes the training data,
which can then be extracted with black-box access to the
model, without affecting the accuracy of the model on its
primary task. Then, Carlini et al. [10] show that deep
learning-based generative sequence models trained on text
data can unintentionally memorize specific training inputs,
which can then be extracted with black-box access. Even
though the models are trained on text, extraction is demon-
strated only for sequences of digits (artificially introduced
into the text), which are not affected by the relative word
frequencies in the language model.

4.3 Property Inference

As mentioned above, work presented in [6, 7, 11] aimed
to infer properties that characterize an entire class: for ex-
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Figure 3: Inference attacks against federated learning (passive adversary) by Melis et al. [3].

Figure 4: Samples from a GAN attack on a gender classification
model where the class is “female.”

ample, given a face recognition model where one of the
classes is Bob, infer what Bob looks like (e.g., Bob wears
glasses). However, while Ateniese et al. [11] are actually
the first, to the best of our knowledge, to reason about ex-
tracting “something meaningful relating to properties of
the training set,” it is not clear that hiding this kind of in-
formation in a good classifier is possible or desirable.

4.3.1 Attacks

By contrast, here, we focus on the adversarial goal of in-
ferring properties that are true of a subset of the training
inputs but not of the class as a whole. For instance, when
Bob’s photos are used to train a gender classifier, can the
attacker infer that Alice appears in some photos? In partic-
ular, Melis et al. [3] focus on the properties that are inde-
pendent of the class’s characteristic features. In contrast to
the face recognition example, where “Bob wears glasses”
is a characteristic feature of an entire class, in their gender
classifier study, they infer whether people in Bob’s photos
wear glasses—even though wearing glasses does not cor-
relate with gender. There is no “legitimate” reason for a
model to leak this information; it is purely an artifact of
the learning process.

The work in [3] studies this kind of property inference
in the context of collaborative/federated learning. More
specifically, their intuition is that a participant’s contribu-
tion to each iteration of collaborative learning is based on
a batch of their training data, and the adversary can infer
single-batch properties, i.e., detect that the data in a given

batch has the property, but other batches do not. She can
also infer when a property appears in the training data,
which has dire privacy implications. For instance, the ad-
versary can infer when a certain person starts appearing in
a participant’s photos or when the participant starts visit-
ing a certain type of doctor. Finally, they infer properties
that characterize a participant’s entire dataset (but not the
entire class), e.g., authorship of the texts used to train a
sentiment-analysis model.

4.4 Model and Functionality Stealing

Finally, we look into adversarial efforts toward inferring
model parameters.

4.4.1 Model Extraction

The concept of model stealing, or extraction, is first pre-
sented by Tramer et al. [12]. In this kind of attack, an ad-
versary with black-box access, but no prior knowledge of
an ML model’s parameters or training data, aims to steal
the model parameters. The intuition behind their attack is
to exploit the information-rich outputs returned by the ML
prediction APIs, e.g., high-precision confidence values in
addition to class labels.

Consider the case of ML algorithms like logistic regres-
sion: the confidence value is a simple log-linear function
1/(1+e~(w=+8)) of the d-dimensional input vector z. By
querying d + 1 random d-dimensional inputs, an attacker
can with high probability solve for the unknown d + 1
parameters w and § defining the model. (Such equation-
solving attacks extend to multi-class logistic regressions
and neural networks).

Overall, Tramer et al. [12]’s work is focused on infer-
ring model parameters, but follow-up work also focuses
on stealing hyperparameters, architectures, etc. In the for-
mer, the focus is on hyperparameters rather than param-
eters, which are configurations external to the model and
whose values cannot be estimated from data. In the latter,
a black-box adversary succeeds to infer (hidden) model ar-
chitectures (e.g., the type of non-linear activation) of neu-
ral networks in MLaaS as well as their optimization pro-
cesses (e.g., stochastic gradient descent or ADAM).

4.4.2 Functionality Extraction

As mentioned in Section 3.2, the goal of functionality ex-
traction is, rather than to steal the model, to create “knock-
offs.” In [13], Orekondy et al. do so solely based on input-
output pairs observed from MLaaS queries. The adversary
interacts with a black-box “victim” Convolutional Neural



Network (CNN) by providing it input images and obtain-
ing respective predictions. The resulting image-prediction
pairs are used to train a knock-off model, e.g., to compete
with the victim model at the victim’s task.

4.5 Defenses

Overall, defenses against attacks discussed above include
advanced privacy-enhancing technologies like cryptogra-
phy and differential privacy as well approaches used as part
of the learning process (mainly, training) to reduce the in-
formation available to the adversary.

Cryptography Cryptography in ML can support confi-
dential computing scenarios where, for instance, a server
has a model trained on its private data and wishes to
provide inferences (e.g., classification) on clients’ private
data. In this context, there are many research proposals
and prototypes in literature, which allow the client to ob-
tain the inference result without revealing their input to the
server while preserving the confidentiality of the server’s
model. For instance, privacy-enhancing tools based on se-
cure multi-party computation (SMC) and fully homomor-
phic encryption (FHE) could be used to train ML models
securely.

Overall, cryptography in ML is really aimed at protect-
ing confidentiality, rather than privacy, which constitutes
the main focus of our report. Confidentiality is an explicit
design property whereby one party wants to keep infor-
mation (e.g., training data, testing data, model parameters,
etc.) hidden from both the public and other parties (e.g.,
clients with respect to servers or vice-versa). Whereas
privacy is about protecting against unintended informa-
tion leakage, whereby an adversary aims to infer sensitive
information through some (intended) interaction with the
victim. In other words, cryptographically-enforced confi-
dential computing does not provide any guarantees about
what the output of the computation reveals.

Differential Privacy (DP). The state-of-the-art method for
providing access to information in a private way is to sat-
isfy differential privacy (DP). DP addresses the paradox of
learning nothing about an individual while learning useful
information about a population; generally speaking, it pro-
vides rigorous, statistical guarantees against what an ad-
versary can infer from learning the result of some random-
ized algorithm. Typically, differentially private techniques
protect the privacy of individual data subjects by adding
random noise when producing statistics. DP guarantees
that an individual will be exposed to the same privacy risk
whether or not her data is included in a differentially pri-
vate analysis.

This applies to ML as well, and more precisely to pro-
viding access to models that have been trained on (sensi-
tive) datasets. However, there is no one-size-fits-all solu-
tion, and, as discussed later, the privacy-utility trade-offs
are not particularly promising across the board. In other
words, as DP in ML relies on adding noise, it does affect
the utility of the learning tasks; alas, settings that provide
limited accuracy loss often provide little privacy, and vice
versa settings that provide strong privacy result in useless
models.

Trusted Execution Environments. A different line of
work focuses on privacy (as well as integrity) guaran-
tees for ML computations in untrusted environments (i.e.,
tasks outsourced by a client to a remote server, including
MLaaS) by leveraging so-called Trusted Execution Envi-
ronments (TEEs), such as Intel SGX or ARM TrustZone.
TEEs use hardware and software protections to isolate sen-
sitive code from other applications while attesting to its
correct execution. The main idea is that TEEs outper-
form purely cryptographic approaches by multiple orders
of magnitude. However, these approaches are increasingly
targeted by side-channel attacks, whereby information can
still leak out of the TEEs, ultimately compromising the
systems’ security.

ML-Specific Approaches. Finally, several ML techniques
are used to reduce the information available to the adver-
sary to mount their attacks. For instance, dropout is a
regularization method for neural networks, often used to
mitigate overfitting in neural networks; as such, this might
reduce the effectiveness of MIAs based on overfitting. Ad-
ditional techniques in this space include weight normal-
ization (re-parameterization of the weights vectors that de-
couples the length of those weights from their direction),
dimensionality reduction (e.g., only using inputs that occur
many times in the training data), selective gradient sharing
(in collaborative learning, participants could share only a
fraction of their gradients during each update), etc. How-
ever, in many settings, these approaches provide very lit-
tle/not particularly robust privacy defenses [3].

5 Discussion

We provided a review on privacy and machine learning,
presenting a wide range of attacks that relate to private
and/or sensitive information leakage. Next, we provide a
discussion of the main takeaways and list areas where fur-
ther work is needed.

5.1 What Do Attacks Mean?

Membership inference attacks are real. As evident from
the above discussion, there has been a very significant
amount of research work on membership inference attacks
against ML. Arguably, this is motivated by 1) the serious-
ness of the privacy risks stemming from such attacks, 2)
the fact that MIA is often just a signal of leakage and can
serve as a canary for broad privacy issues, and 3) the in-
teresting challenges in making attacks more effective, less
reliant on strong assumptions, etc.

Several attacks have been proposed in the context of a
wide variety of datasets (images, text, etc.), models (dis-
criminative, generative, federated), as well as threat mod-
els (API access, white-box, black-box, active, passive,
etc.). Such attacks are realistic, but obviously their effec-
tiveness depends on the actual settings, e.g., adversary’s
knowledge of records, model parameters, etc., and are
likely to affect certain users more than others.

Overall, we are confident in arguing that MIAs are a real
problem that, at the very least, should make practitioners
and researchers question whether deploying ML models



in the wild is a good idea, privacy-wise, whenever train-
ing data is sensitive. However, further work is needed to
provide clear guidelines and usable tools for practitioners
willing to provide access to trained models to fully under-
stand the privacy risks, on their specific data/specific learn-
ing task, for the users whose data is used for training. In
other words, MIAs are very much possible, but it is hard
to grasp the real-world effect on actually deployed models
due to the lack of case studies vis-a-vis impact on actual
users, relation to adversary’s prior knowledge, etc. Much
work is left to be done here — especially considering ways
to provide guidelines and evaluation framework for practi-
tioners.

Limitations of model inversion. Although research
roughly falling in the “model inversion” category is im-
portant, we believe there are some limitations in what they
mean for privacy. Class members produced by model in-
version and GANSs are similar to the training inputs only if
all class members are similar, as is the case for MNIST (the
dataset of handwritten digit used in [7]) and facial recogni-
tion. This does not violate the privacy of the training data;
it simply shows that machine learning works as it should.
A trained classifier reveals the input features characteristic
of each class, thus enabling the adversary to sample from
the class population. For instance, Figure 4 shows GAN-
constructed images for the gender classification task on the
Labeled Faces in the Wild (LFW) dataset, taken from [3].
These images show a generic female face, but there is no
way to tell from them whether an image of a specific fe-
male was used in training or not.

Therefore, the informal property violated by such at-
tacks is, roughly speaking: ‘“a classifier should prevent
users from generating an input that belongs to a particu-
lar class or even learning what such an input looks like.”
However, it is not clear why this property is desirable or
whether it is even achievable. In fact, this motivated us to
study what we defined as property inference attacks.

However, there are also cases where model inversion is
also due to model overfitting on training data, as correla-
tions between multiple attacks occur [14]. To some extent,
this calls for further work to study scenarios where the at-
tacker might indeed benefit from having access to the target
model.

Property inference needs further work. Overall, prop-
erty inference attacks are not to be ignored, even though
their effectiveness depends on the context. As mentioned
earlier, inferring sensitive attributes is really a privacy
breach when the attacker can confidently assess that those
attributes are related to records in the training set. Even
more so if they do not leak simply because the class the
model is learning to classify is strictly correlated.

So really, the only “attack” in this sense we are aware
of is that of Melis et al. [3], which has only been stud-
ied in the context of collaborative learning. Even in that
case, the authors essentially show that the accuracy of the
attack quickly degrades with an increasing number of par-
ticipants. In fact, if this is large enough, then differen-
tially private defenses based on the moments accountant
method [15] could be used to thwart such attacks.

It remains, however, an open research question to inves-

tigate whether property inference attacks: 1) are possible,
as per our definition, in non-collaborative learning settings
and at scale, and 2) can be thwarted in collaborative set-
tings involving a small number of participants.

5.2 Policy Implications and Further Study
Needed

The implication of the attacks covered in this manuscript
vis-a-vis policy and data protection is also largely unex-
plored. The only exception in this context is the work by
Cohen and Nissim [16], which rephrases privacy attacks
in the General Data Protection Regulation (GDPR) frame-
work and, more specifically, within its “singling out” con-
cept. While the GDPR heavily focuses on the concept of
identification, what it means for a person to be “identi-
fied, directly or indirectly” is not clear. As pointed in [16],
Recital 26 sheds a little more light: “To determine whether
a natural person is identifiable, account should be taken of
all the means reasonably likely to be used, such as singling
out, either by the controller or by another person to identify
the natural person directly or indirectly.”

Therefore, singling out is one way to identify a person in
data, and only data that does not allow singling out may be
excepted from the regulation. Clearly, more work linking
up privacy attacks (and defenses) with regulation and data
protection efforts needs to ramp up.

5.3 Need for Better Evaluations

Overall, several defense techniques against privacy attacks
have been proposed over the past few years. However,
it is very hard to assess how generalizable they are and
the trade-off they incur regarding privacy and utility. This
prompts the need for a more thorough evaluation of how
defenses fare in practice, vis-a-vis realistic use cases and
datasets, rather than the standard public ones that, more
often than not, say little or nothing about real-world per-
formance.

In this context, some recent work has taken some good
steps in the right direction; for instance, Jayaraman and
Evans [17] study the impact of variable choices of the ¢ pa-
rameter, different variants of differential privacy, and sev-
eral learning tasks on both utility and privacy (including
in the context of MIAs) for privacy-preserving machine
learning. Alas, however, their main finding is that there is
no way to obtain privacy for free-relaxed definitions of dif-
ferential privacy that reduce the amount of noise needed to
improve utility also increase the privacy leakage. In other
words, current mechanisms for differentially private ma-
chine learning rarely offer acceptable utility-privacy trade-
offs for complex learning tasks: settings that provide lim-
ited accuracy loss provide little effective privacy, and set-
tings that provide strong privacy result in useless models.

Once again, this points to the need to understand better
where trade-offs are possible, in what context, and at what
expenses, rather than hoping to deploy generic, one-size-
fits-all defenses across the board.
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