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Survey: Leakage and Privacy at Inference Time
Marija Jegorova, Chaitanya Kaul, Charlie Mayor, Alison Q. O’Neil, Alexander Weir, Roderick Murray-Smith,

and Sotirios A. Tsaftaris

Abstract—Leakage of data from publicly available Machine Learning (ML) models is an area of growing significance as commercial
and government applications of ML can draw on multiple sources of data, potentially including users’ and clients’ sensitive data. We
provide a comprehensive survey of contemporary advances on several fronts, covering involuntary data leakage which is natural to ML
models, potential malevolent leakage which is caused by privacy attacks, and currently available defence mechanisms. We focus on
inference-time leakage, as the most likely scenario for publicly available models. We first discuss what leakage is in the context of
different data, tasks, and model architectures. We then propose a taxonomy across involuntary and malevolent leakage, available
defences, followed by the currently available assessment metrics and applications. We conclude with outstanding challenges and open
questions, outlining some promising directions for future research.

Index Terms—Data Leakage, Privacy, Inference-Time Attacks, Privacy Attacks and Defences, Feature Leakage, Membership
Inference, Property Inference, Machine Unlearning, Data Anonymization, Adversarial Defences

F

1 INTRODUCTION

Machine Learning (ML) technologies have become prolific
in modern day life, with many ML models made publicly
available. Data leakage is an area of growing significance
as commercial and government applications of ML can
draw on multiple sources of data, potentially including
users’ and clients’ sensitive data. Hence, it is important to
understand the potential leakage scenarios and existing pre-
vention mechanisms in order to safeguard against revealing
information about models’ training data, in particular data
which breaches an individual’s privacy.

To address this need, we present a comprehensive
overview and unified perspective on data leakage in trained
ML models: causes of involuntary leakage, the implications
of these causes being exploited by malevolent users, the
methods for measuring and preventing such attacks, and
finally to identify challenges and opportunities for further
research into data leakage. To the best of our knowledge,
existing surveys on privacy focus on privacy attacks or some
subset of them [1–10], whereas we examine the broader
picture of data leakage. Since the interest of this survey lies
primarily in data leakage from trained models, we review
research focused on inference time leakage and attacks (see
Figure 1). If the reader would like to examine training time
interventions, there are a number of relevant surveys [4, 11–
14]. Our contributions are as follows:

• first comprehensive survey on data leakage, including
involuntary and malevolent leakage methodology,
prevention and defences, assessment metrics, and
applications
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Fig. 1: This paper focuses on inference time involuntary
leakage and attacks, concerning the query dataset D′,
trained modelMθ , its parameters θ, and output - predictions
of Mθ or its confidence scores for the prediction options.

• Acknowledging that leakage is context-specific, we
describe the data leakage research conducted in dif-
ferent task and data type contexts.

• in-depth presentation of current methodologies;
• summary of the challenges and open questions in the

data leakage research field

The paper is structured as follows: Section 2 provides
definitions and notation, discusses what private and sensi-
tive data are in the context of different data types, ML tasks
and models, and defines leakage with respect to the actions
of the user. Section 3 covers causes of natural involuntary
data leakage, whilst Section 4 covers malevolent leakage,
i.e., privacy attacks. Section 5 covers leakage prevention and
defence mechanisms. Section 6 provides an aggregated pic-
ture of currently available metrics for assessing leakage and
privacy. Section 7 outlines applications, such as Machine
Learning as a Service (MLaaS), Data as a Service (DaaS), and
mobile applications. Finally, we end with Sections 8 and 9
on remaining challenges, open questions, and conclusions.
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Fig. 2: Statistics on papers about data leakage, by data type
of training dataset D and by type of leakage. It can be
seen that imaging and time-series data are the most and
least explored domains respectively. In terms of leakage
types, current research is mostly focused around MIAs and
Reconstruction Attacks (see Sec. 4.2 and 4.6).

2 DEFINITIONS

First of all let us define the notation for this article. Every ML
model Mθ , regardless of its task, is trained on some data D,
which consists of the individual data samples di which have
features fj , some of which are sensitive f∗j (i = 1, ...k, where
k is the number of data samples inD, and j = 1, ..., n, where
n is number of features of D). With respect to this notation:

• Data leakage, differential privacy, membership infer-
ence attacks, and data reconstruction attacks, are all
focused around the safety of the individual data sam-
ples di, i.e. the possibility of inferring these training
samples from the model Mθ .

• Feature leakage and property inference attacks are
concerned with inferring some properties of the sen-
sitive features f∗j of the training dataset D.

• Model extraction attacks are interested in inferring
the parameters θ of the trained model Mθ (or their
feasible approximations) in order to steal this model.

The end-user can have different levels of access to the
trained model Mθ . Traditionally, these are separated into
black- and white-box access. Black-box access, also known
as query access, assumes that the user controls the input and
has access to the output of the trained modelMθ . White-box
access assumes that the user has full access to the trained
model Mθ , including its input, output, architecture, and
parameters θ. Gray-box access describes situations which
are in between, e.g. user might not know the model’s
architecture and parameters θ but has access to outputs
from the model’s intermediate layers, or might not know
the parameters θ, but has access to the architecture of the
model Mθ , and so on.

2.1 What is personal (private) and sensitive data?
First of all, we distinguish between personal, personal “sensi-
tive”, and non-personal data.
Personal data are defined in the Article 4(1) of the GDPR,
[15], and, in loose terms, means data that directly or indi-
rectly relates to an identified or identifiable natural person.

Personal data may be collected routinely for legitimate ends.
For example, a National Health Service (NHS) patient will
have many examples of personal data processed during
routine interactions with the healthcare system such as
attendance at an appointment or address details which are
registered with a GP.
Sensitive data are defined by the GDPR as the personal
data revealing racial or ethnic origin, political opinions,
religious or philosophical beliefs; trade-union membership;
genetic data, biometric data processed solely to identify
a human being; health-related data; or data concerning a
person’s sex life or sexual orientation. Such data require
stronger safeguards for data processing, storage, transfer,
etc.
Non-personal data Any personal data is under GDPR
[15] protection, which implies a dichotomy – everything
outside the scope of personal is non-personal data. Thus, non-
personal data become of the utmost importance for any
data-driven research, analysis, and commercial applications.

There are methods to separate personal from sensitive
data. However, since researchers often use unconsented
data, such as healthcare data, it is common to adopt a cau-
tious approach and assume that all of the data provided for
research, even anonymised, falls under the special sensitive
data category, i.e., fj = f∗j and di = d∗i for all j and i.

The challenge is to mitigate against the risk of leaking
any type of personal sensitive data that could be directly
linked back to a real individual’s identity (at the training
sample di level of granularity, such as client/patient record,
isolated sensitive data entries, user profile information, etc).
In fact, we can imagine scenarios where real data is leaked,
but nothing can be linked back to a real person e.g. a list
of postcodes. The real-world risk of linkage back to identity
is complex, and depends on multiple factors including the
frequency of data points, the size of the source dataset,
the availability of public datasets to support general re-
identification strategies, and public domain information that
makes it easier to identify specific individuals.

2.2 Leakage for different data types
Types of data leakage are largely data-specific; we provide
illustrative examples below. Fig. 2 shows the number of
publications per leakage/attack type covering different data
types.
Data leakage in text data Examples are individuals’ names
(users, clients, patients, security personnel, etc.), dates of
birth, full postcodes, full or partial addresses, telephone
numbers, unique identity numbers, and job titles. In the con-
text of training ML models on such data, one can imagine
a predictive model, leaking specific sensitive data entries,
features or full data records when deployed, [16, 17].
Data leakage in images Examples are individuals’ faces
or other identifying features, or embedded disclosive meta-
data (e.g. words overlaid on images containing sensitive
information). When training an ML model with sensitive
image data, a generative model such as [18], trained, for
instance, on X-rays with hand-written notes on them or
recognisable, re-identifiable bone/denture implants, might
occasionally reproduce an identifiable training image look-
alike. Similar type of leakage could apply for other types
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Fig. 3: Statistics on papers about types of data leakage across
several ML tasks. Classification is the most explored type
of ML task. Most current research is focused on MIAs,
MEAs, and Reconstruction Attacks (Sec. 4.2, 4.3, 4.6). MLaaS
(Sec. 7.2) can be of any type of task, but we would like to
show attack distribution in the most practical setting.

of image text, such as personnel names on their security
badges, car license plates, location postcodes.

Data leakage in tabular data Examples of information
leakage are similar to text data; however in tabular data, the
dataset is constrained to predefined variables and values,
therefore the risk of identifying an individual can be more
accurately estimated according to statistical disclosure risks,
based on governing features such as the sensitivity of the
tabular data, geography and population size, zero-value
entries, and small group linkage to specific clinical providers
(see [19]). Whilst, for instance, re-identifying patients from
rare combinations of diagnoses is possible, statistical dis-
closure control, e.g. [19, 20], is relied upon to make such a
possibility distant.

2.3 Leakage for different tasks

Privacy violations and mitigation of such violations is not
only data-specific, but also task- and model-specific. Below
is a detailed (but by no means exhaustive) overview of ML
tasks and corresponding models for which some privacy-
preservation and violation research has been conducted.
Fig. 3 shows the number of publications per leakage/attack
type with respect to some of the most common ML tasks.

Classification is widely used for real world applications
such as retail goods databases [21], face recognition [22],
autonomous target detection, and medical diagnostics [23].
Whilst it seems surprising that data samples might be re-
constructed from as little information as a class label, there
are a few methods – especially if more than plain black-
box query access is possible – which will be described later:
membership inference attacks (MIAs), property inference
attacks, and model extraction.

Classification is the best researched task in terms of
leakage and privacy attacks. A number of different kinds of
attacks have been explored for image classification, on com-
puter vision benchmarks like MNIST [17, 24–42], CIFAR-100
[17, 28–30, 43, 44] and ImageNet [31, 32, 45], as well as more
applied datasets/tasks, such as classification of potential
customer value [17, 41, 44], classification of the income level

based on the Census data [24–26, 33], diagnosing breast
cancer [24–26] and classifying X-rays [27, 46].

There has been less research on leakage from classifiers
trained with tabular/mixed feature data (as opposed to
image classification) [17, 24, 26, 28, 44, 47–51], and even less
involving time-series classification. Notably, a number of
works have targeted UCI’s diabetes dataset [52], exploring
predominantly model extraction attacks [24, 26, 49], and
only touching upon binary classification of text data [50].

Regression / Prediction of unknown/future values of data
samples has broad application in fields such as forecasting
for financial and medical time-series, marketing trends,
weather predictions, etc. A number of papers discuss model-
level leakage for different sorts of data, including financial
and medical time-series [24, 26, 49], numerical tabular data
[29, 48, 49, 49], as well as mixed feature tabular data [29, 53].

Generation/Synthesis of realistic high quality data could
solve the shortage of open-access data in the medical and
financial domains. However, ensuring convincing privacy
guarantees for generative methods is not a trivial demand
[54, 55]. Part of the issue is that a good generative model,
e.g. a well-trained generative adversarial network (GAN)
[18], captures the underlying distribution of the real data,
which means there is nothing stopping it from accidentally
producing a doppelganger of a sensitive record (or a close
enough sample), and simply sampling such a model could
reveal much about both individual records and specific
sensitive features of the training dataset [56, 57]. There are a
number of linkage attacks specifically developed for GANs
[35, 58–60], as well as some defences proposed for all data
types (images, time-series, structured data) [56, 61–63].

Segmentation is important for computer vision tasks such
as autonomous driving and medical imaging diagnostics.
The privacy risks of sharing a medical image segmentation
model publicly have been studied by [64] for linkage attacks,
who showed that most state-of-the-art semantic segmen-
tation models would be vulnerable. Segmentation models’
vulnerability when less than white-box access is available
remains unexplored.

Privacy preservation may also be important for other
tasks such as clustering, translation, transfer, and collabora-
tive learning. We observe that privacy-related research has
been predominantly verified on image classification, and
then somewhat on regression/prediction tasks, and very
sparsely for any other group of tasks and models.

2.4 How do user actions affect leakage?

We differentiate between two types of user, defined below.

Passive / honest-but-curious user interacts with the trained
model as intended by design and in compliance with proto-
cols. All they can reveal is involuntary / involuntary leakage, if
the model has any such vulnerability.

Malevolent user / an adversary attempts to take advantage
of potential vulnerabilities in the trained model, such as
memorization and overfitting, aiming to extract sensitive
data via privacy attacks.
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Fig. 4: Scope of the paper with respect to the user’s actions.
See Sec. 2.4 for more detail on the role of the user.

3 INVOLUNTARY DATA LEAKAGE

There are a few ways in which data can leak without
any malicious intervention from the user, including mem-
orization, overfitting, and feature leakage. Feature leakage
(Sec. 3.3) is characterized by leakage of sensitive features
f∗j of the data D, whereas memorization (Sec. 3.1) and
overfitting (Sec. 3.2) are mostly related to leakage of whole
data samples di.

Although overfitting and memorization are both indica-
tive of a lack of model generalization, it is important to
understand the difference between them. Overfitting and
overtraining [65], manifest in a trained model as higher
accuracy on the training data than on the test data. This
happens due to training an excessively complex model on
a comparatively simple training data set, or training the
model for too long, i.e., after the training loss function has
converged. Memorization involves unintentionally storing
training data samples “memorized” in the model param-
eters, with the potential to leak these at inference time.
Whilst overfitting implies some degree of memorization,
memorization can occur while the model is still learning,
i.e., before the overfitting begins to happen [16].

3.1 Memorization
Memorization of specific training data samples occurs when
the model assigns some sample a significantly higher likeli-
hood than expected by random chance [16]. It raises serious
privacy and legal concerns for sharing trained ML models
publicly or providing them as a service [66, 67].
Measuring memorization In order to detect and prevent
(or exploit) the memorization effect in trained models, one
would need to first estimate it using one of the existing
mechanisms. For example, a metric called exposure, pro-
posed in [16, 68], aims to estimate a model’s potential for
memorizing rare and unique sequences in text data specif-
ically. In a little more detail – [16] embeds the new unique
sequences into the training text, which they call canaries,
and later measure the probability of these canaries coming
up at the inference time. Similarly, déja vu [69] focuses on
estimating the memorization happening in the lower layers
of convolutional neural networks, showing that in practice
commonly applied fine-tuning of the upper layers of the
neural networks is not enough to prevent memorization.

Potential risks of memorization are covered in detail in
Section 4, and include membership inference attacks, sen-
sitive attribute reconstruction, and even training dataset
reconstructions, in the case of malicious intent from the ML-
as-a-Service (MLaaS) provider [67].

Preventing memorization Although there is little research
on explicitly preventing memorization, there is some evi-
dence suggesting that data augmentation somewhat reduces
(but does not eliminate) the memorization capacity of a
network, whereas increasing the size of the architecture
increases its memorization capacity [69]. More specifically
for GANs [18, 70], [56] suggests that limiting the number of
noise vectors at training time reduces memorization.

Nevertheless, as harmful as it is from the perspective of
sensitive data leakage, some degree of memorization is nec-
essary and unavoidable in certain scenarios. For instance,
[57] builds on the premise that a well-trained generative
adversarial network (GAN, [18, 70]) has to learn enough
about the underlying training data distribution to func-
tion properly. It further utilizes that notion to memorize
explicitly with a memory network module, which ensures
stability of the training as well as better understanding of
the separate distribution modes by unsupervised GANs.

3.2 Plain Overfitting

The hallmark of model overfitting is substantially higher
accuracy on the training data than on the test data, usually
caused by overtraining or unnecessarily large models being
trained on smaller datasets [65]. The relationship between
overfitting and privacy risks is not yet completely clear,
due to the lack of research on exactly how overfitting aids
various data and model attacks [29, 71].

Measuring and exploiting overfitting Overfitting has been
shown to be a sufficient but not necessary condition for
aiding membership inference and model inversion attacks
(Sec. 4.2 and 4.6). According to [71], overfitting (high gener-
alization error) inevitably results in a privacy loss for clas-
sification models – they formalize the connection between
the inference advantage of the attacker model and the target
model generalization error for both membership inference
and attribute inference attacks (Sec. 4.2).

Preventing overfitting Preventing overfitting for most
models (but not all GANs [18]) can be achieved through
simply monitoring the generalization error. Nonetheless,
overfitting is but one of the possible reasons for data
leakage, and even stable, well-generalized models can leak
sensitive data, e.g., due to memorization [16, 25, 44]. Specific
model types and architectures, as well as the training dataset
features also have an impact on leakage [17].

3.3 Feature Leakage

Feature leakage occurs when sensitive attributes/features
f∗j of the data D are unintentionally memorized and re-
vealed by the trained model at inference time.

Measuring feature leakage. Explicit feature leakage
through memorization is a concern for models which clas-
sify or predict natural language sequences. Hence, [16, 68]
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introduced an exposure metric (Sec. 3.1) and suggested train-
ing natural language models with this metric as a training
guide to encourage training without memorization.

Another approach for estimating feature leakage is pre-
sented in [72], where they proposed a number of Bayesian
metrics based on universally consistent nearest neighbor
rules from which the metrics should be selected that con-
verge fastest. This results in an estimate of the Bayes risk
of the model in question, i.e. the error of the optimal (ideal
world) classifier for predicting a sensitive attribute given an
output observation from the model.
Potential Risks. Feature leakage implicitly enables prop-
erty inference attacks (Sec. 4.4). For instance, [50] focuses
primarily on leakage of unintended features, i.e. inferring
properties that hold for some subset of the training data
but not in general for the entire class, which are also not
necessarily the properties that the target model intended to
capture in the first place. They show that property infer-
ence attacks are a danger for collaborative learning models
(Sec. 4.4 and 5.9).
Preventing feature leakage Interestingly, although perhaps
not surprisingly, [73] discovers that overlearning, i.e. the
model learning attributes that are not part of the original
objective or that make it sensitive to certain biases, can have
serious negative consequences, such as feature/attribute
leakage, and the model capacity for being re-purposed for a
privacy-violating agenda even in the absence of the original
training data. Importantly, [73] also shows that overlearning
cannot be prevented by merely censoring out the unnec-
essary attributes, meaning that certain defences, e.g., data
obfuscation (Sec. 5.1) will not reliably prevent overlearning.

4 MALEVOLENT LEAKAGE / PRIVACY ATTACKS

To elaborate on Sec. 2.4, we define malevolent leakage (a term
used interchangeably with privacy attacks in this survey) as
the actions of a malevolent user, an adversary who tries to
take an advantage of trained ML model Mθ , which we call
the target model, at inference time.

In this section we assume that the adversary has no
access either to the original training data or to the training
process of the target model. We do not make any assump-
tions beyond this e.g. the adversary’s access to the trained
model Mθ can be either black-box, white-box, or anywhere in
between. Note that some of the methods reviewed in this
chapter also assume access to open-source data that might
or might not come from a similar distribution to the original
(potentially sensitive) training data.

4.1 Attacks Exploiting Memorization and Overfitting
This is not an explicit class of privacy attacks; rather, al-
most all methods of attack have a higher chance of success
when overfitting comes into play, and several will implicitly
exploit overfitting [74, 75]. A large amount of research has
been conducted to show that overfitting alone is enough for
membership inference attacks and more complex attribute
inference attacks to succeed [29, 75] (see Sec. 4.2 for details).

Other examples of exploiting memorization and over-
fitting apply to settings such as collaborative (also known as
federated) learning [50], where model gradient updates can be

used by the adversary – the malicious participant – to leak
sensitive information. Since the adversary provides part of
the training data for the target model, the inference attacks
(Sec. 4.2) are simplified to a supervised learning problem,
i.e., poisoning attacks (Sec. 4.5).

Another malicious setting, explored by [67], features an
adversary model provider (DaaS setting, Sec. 7.1), supply-
ing the model M to a data owner, and receiving back a
trained model Mθ . Model architectures designed by [67],
could deliberately memorize the original training data,
while maintaining reasonable performance on tasks like
face recognition, image classification, and text analysis, even
without the adversary directly controlling the training.

4.2 Membership Inference Attacks

ML models currently do not fall under GDPR protection.
Nonetheless, advances in certain types of attack, such as
membership inference attacks (MIAs, also sometimes called
“linkage attacks”) and reconstruction MIAs2 can be used to
identify the individual records used for training open-access
ML models (see Fig. 5). Hence, MIAs can threaten user data
privacy, supporting the argument that ML models should be
classified according to their sensitive training data content
[66].

Formalization: An MIA is a type of attack (lying anywhere
in the range from white-box to black-box), that assumes the
attacker has access to both:

• the trained target model Mθ – the more information
about the model that is available, the easier to attack.
The adversary must at least have query access.

• some query dataset D′ – ideally containing the training
data samples di, that have potentially been used for
training the target model Mθ , i.e. di ∈ D (as well as
di ∈ D′). The adversary must at least have a dataset
containing samples di similar in distribution to those
in the original training dataset D.

The target of MIA is to re-identify which of the samples di
were used for the training of the target model Mθ .

Risks of query access to Mθ . While large companies take
advantage of their user databases and deploy ML models
on a large scale, there is always a risk of re-identification
or misidentification of a user, given (even just query) access
to the model. Offering ML as a service, i.e. providing the
trained models in open and semi-open access, increases
such risks. Vulnerability under MIAs is largely data-driven
and hence data-specific. Also, it can be performed with just
black-box access to the model [45], and without knowledge
about the structure of the target model [28, 41].

MIAs and Overfitting. In addition to direct information
about the model type, architecture, or parameter values
(black- vs white-box MIAs), overfitting and poor general-
ization can significantly impact the vulnerability of a model.
In fact, MIAs are likely to succeed on an overfitted model
even with only black-box access. For larger class-balanced
multi-class datasets, [17] reports over 70% attack accuracy
for model overfit to a train-test accuracy gap of over 12%,
and up to 100% attack accuracy for over 25% gap. Further,
[29] and [25] provide theoretical and empirical evidence that
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Fig. 5: Membership inference attack (MIA): at inference
time the adversary uses query-prediction pairs obtained
from Mθ to train an attack model capable of telling whether
the data sample di has been included in the original data set
D or not - correspondingly labelling them as 1 or 0.

overfitting alone is sufficient to increase the attacker’s suc-
cess in performing MIAs. The same is proven by [29] for the
attribute inference1 attacks, however controlling overfitting
(by minimizing generalization error) does not necessarily
prevent a successful membership inference. Furthermore,
[25] presents strategies for attacking well-generalised mod-
els via identifying the vulnerable target records and ex-
ploiting their influences on the target model. Finally, [29]
shows that the possibility of attribute inference implies
the possibility of membership inference, thereby making a
connection between MIAs and reconstruction attacks (see
Sec. 4.6).

Potential defences and concerns. There are a variety of
strategies that are usually proposed for defence against
MIAs, such as differential privacy in a federated learning
setting (Sec. 5.6 and 5.9), however none provide absolute
guarantees. For instance, [40] systematically explores attacks
on differentially private models, and finds that differentially
private models can provide strong privacy guarantees at
the expense of model utility. Furthermore, [44] shows that
adversarial participants can run (white-box) MIAs against
other participants in a federated learning setting even on
well-generalized models, which is also evaluated for differ-
ent levels of knowledge and interventions available to the
adversary, coming to conclusions that gradients in the later
layers of the neural nets leak more information compared to
the earlier layers, that gradient norm highly correlates with
the accuracy of membership inference, and that, predictably,
increasing the size of the adversary’s training dataset in-
creases the precision of the attacks. Finally, [28] goes further
and relaxes the assumptions on both the adversary and
the data, showing that MIAs can succeed even without
knowledge of the target model structure and without as-
suming that the query and original training datasets should
come from the same or similar distributions using just the
posterior Mθ(di) of the target point di and the empirically
chosen threshold (based on attackers’ priorities and query
datasets available).

Alternatively, there is a class of adversarial defences
(Sec. 5.5), that use potential attack models as a penalty when
training the target model Mθ [76]. However, they should be

1. Attribute inference attack (or reconstruction attack) assumes access to
the trained ML model and incomplete information about a data point,
and aims to infer the missing information about that point [53].

used with great caution as [77] has shown that training with
some of the state-of-the-art adversarial defense approaches
will make the target ML model more susceptible to MIAs,
compared to the original undefended training strategy.
Applications of MIAs are numerous, both in terms of the
types of the data and the models on which they have been
shown to succeed. Applications which have been explored
include: medical data [78], location data [79], including time-
series [80], translation systems [81], collaborative learning
(especially the case where the adversary performs as one of
the participants) [36, 41], and generative models for various
types of the data synthesis. The latter are usually GAN-
based, in which the discriminator of a shadow model2 is often
used for re-identifying the original training data samples in
the query dataset [58–60].
Measuring the success of MIAs is easy compared to
other privacy attacks. The common metric to use is re-
identification score, i.e. the ratio of training/additional data
samples in the query dataset, that have been correctly identi-
fied by an MIA, or some modification of this metric [82, 83].

4.3 Model Extraction Attacks
Model Extraction Attacks (MEAs) are not designed to steal
the training data D (although it is often a by-product of this
class of attacks [84]); instead their end-goal is to steal the
trained model functionality, see Fig. 6.
Formalization of assumptions for different kinds of
MEAs. Model functionality can be captured in a few ways.
From most to least prior knowledge required, MEAs can:

1) steal just the (trained) model parameters θ, assum-
ing the model architecture (or at least the class) is
known to the attacker,

2) steal the entire model architecture Mθ when it is un-
known – a black-box-style model extraction attack.

3) steal the model functionality – an extraction attack
does not necessarily have to reverse engineer the
target model itself. It might be enough to copy the
functionality of it, e.g. make a different model M∗θ∗ ,
where M∗θ∗(x) ≈ Mθ(x), where x is some data
plausible for a task domain at the inference time.
This class of techniques can succeed without any
assumptions on the model architecture or anything
else except query access to the target model.

Below we present more detail on the above, ordering
from greatest to least stringent requirements for the at-
tacker’s prior knowledge.
1) Stealing parameters θ and hyperparameters θ′ of the
ML models of the known class. This setting assumes that
an attacker is in possession of the most granular level of
knowledge about the target model Mθ across all ME types.

For instance, [49] assumes full white-box access to
Mθ , i.e. Machine Learning as a Service setting (MLaaS),
where the adversary knows everything: the original training
dataset D, the ML algorithm (an objective function) of the
target model, and (optionally) the learned parameters of

2. Shadow model is a term used in privacy attacks, in which a new
model is trained by an adversary to mimic the behaviour of the target
model, based on its query-output pairs.



7

v
...

Model Mθ

Inference

Prediction

Query Data  D'

d'i2

Attack

di1 M*θ*

Fig. 6: Model Extraction Attack (MEA): at inference time
the adversary uses query-prediction pairs either to train
an attack model M∗θ∗ functioning identically to the target
model Mθ , or to reveal the (hyper-)parameters θ of Mθ . A
doppelganger of Mθ then can be attacked for the original
training datasetD, e.g., with MIAs or reconstruction attacks.

the target model θ. Under these assumptions, a method
is proposed for efficiently stealing the hyperparameters θ′

of the target models with both theoretical assessment and
empirical evaluation on Amazon Machine Learning service.

A black-box attack, stealing parameters θ, is possible
without access to the original training data D, assuming
knowledge about the model class, the confidence values
provided as an output of the target model, and/or the
ability to query arbitrary partial inputs. There are two
efficient ways of stealing a trained model’s hyperparameters
with aforementioned assumptions introduced by [26]. These
attacks are also successful when the confidence values are
omitted from the target model output, as a privacy pre-
caution. The reported speeds of extraction of the 100%-
equivalent of the trained models from publicly available
services, Amazon ML and BigML, (for logistic regression
and decision tree target models), is between just over a
minute to just over half an hour [26].

2) Reverse engineering black-box models or functionally
equivalent model extraction. In this case the assumption
of an adversary knowing the model architecture is relaxed,
which makes the extraction attack much harder but not
impossible [31, 84]. Additionally, there is still an implicit
assumption that the adversary has access to some suitable
unlabelled data for querying the target model, not neces-
sarily from the same domain as the original training data,
but from a rich enough distribution to expose the full target
model functionality.

An intuitive approach in this setting, based on creating
an imposter dataset D′ and then training a functional equiv-
alent M∗θ∗ of the target model Mθ on it, is offered by both
[84] and [85]. Both papers query the target model (black-box
CNN)Mθ with some random unlabelled dataD′, asking the
target model itself to label the new dataset. This results in an
imposter dataset D′, theoretically containing the knowledge
of the target network Mθ’ the “copycat” network M∗θ∗ is
then trained on this imposter dataset D′, and should be
able to reproduce the behaviour of the target model Mθ ,
i.e., M∗θ∗(x) ≈ Mθ(x), where x is some data plausible for
a task domain. The empirical results of [84] (for CNN class
models) show at least 93.7% attack accuracy on a variety
of problems (measured as the ability perform in the same
way as the target model), and 97.3% of the performance

when applied to the Microsoft Azure Emotion API. [85]
shows between 92% and 105% performance of the target
model. They explain the additional improvement on the
target model by the regularizing effect of training on soft-
labels, introduced as the “soft targets” in [86].

3) Stealing functionality with minimal assumptions. The
next assumption to relax is access to the unlabeled data used
for querying the target models. [32] assumes no prior data
knowledge, as well as no knowledge of the target model
class. Instead, they train a meta-model capable of inferring
the target model architecture and training hyperparame-
ters (such as the optimization algorithm and the training
dataset) from a series of queries, hence turning the black-box
target models into white-box models, which automatically
makes the target models susceptible to all of the above
mentioned attacks.

Last but not least amongst the minimal assumption
methods, [31] explores the trade-off between accuracy and
fidelity of MEAs, where accuracy stands for performing well
on the underlying task, and fidelity for matching the target
model predictions. They focus on high-fidelity, and claim
the first practical functionally-equivalent model extraction,
i.e. M∗θ∗(x) = Mθ(x), as well as faster querying, compared
to competitors. This is achieved by a learning-based attack
method, that utilizes the target model as an oracle for
training the adversary model.

Model Extraction for some more specific applications.
An important limitation of all of the aforementioned MEA-
related research is that it focuses primarily on classification
and prediction tasks. However, there are other interest-
ing applications in the field. For example [38] investigates
model extraction attacks in a setting where the target model
provides not only traditional outputs, but the gradients with
respect to the input data as an explanation for its outputs.
Active learning for model extraction in MLaaS settings is
covered by [24], both for implementing model extraction
attacks and investigating possible defences. In fact they
find that active learning is very similar to MEAs. There is
also some exciting research on model extraction of natural
language models, such as BERT [87], which finds not only
that simple query access to the target model is sufficient, but
also that no real or semantically plausible data is required
for querying the target model. Random sequence querying
paired with a task-specific heuristic is enough for extracting
approximate models for natural language inference and
question answering.

Model extraction for generative models remains unex-
plored. One can argue that a principle similar to [85] and
[84] could work, i.e. sampling the target model for random
inputs (for instance conditions for the generator in GANs)
in order to create a fake dataset for training a functionally
identical model. However, to our knowledge there is no
published work confirming it in practice.

Defences against model extraction attacks A number of
precautions can be taken in order to protect a model from
MEAs, e.g., [26] originally suggested anything from round-
ing confidence scores outputs, to differential privacy, and/or
using the ensemble methods. However, the efficiency of
these would be model-specific, and they do not guarantee
complete safety from the model extraction attacks. Addi-
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Fig. 7: Property Inference Attack (PIA): the adversary aims
to train a meta-classifier to detect a sensitive feature f∗i in
a target model Mθ . To achieve that the adversary trains
multiple shadow models on datasets with an without proxy
sensitive features, using that as training data for the meta-
classifier. The trained meta-classifier should be able to detect
the presence of sensitive features f∗i in the target model Mθ .

tionally, there is a more active way of defending from model
stealing via open-access APIs called PRADA, [37]. It ana-
lyzes the distribution of consecutive API queries and raises
an alarm when this distribution deviates from benevolent
behaviour. According to [37], PRADA can detect all prior
model extraction attacks with no false positives.

4.4 Property Inference Attacks
Property Inference Attacks (PIAs) can be seen as a sub-class
of model extraction attacks, where instead of trying to learn
all the attributes of a model, an attacker tries to extract a
specific sensitive attribute or feature of interest f∗i from a
given target model Mθ . The overall structure of a Property
Inference Attack is shown in Fig. 7.
Formalization of assumptions PIAs are generally white-
box attribute inference attacks, that assume complete ac-
cess to the target model, including its training information,
model weights, etc. Property Inference Attacks can be for-
malized as follows,

• PIAs are based on the principle that similar models,
trained on similar datasets, exhibit similar properties.

• The goal of PIA is to build a meta-classifier,MC , that
is capable of classifying whether a ML classifier, Mi,
contains the sensitive attribute of interest, f∗i , or not.

• In order to train theMC , an attacker trains a series of
Shadow Classifiers, M = {M1,M2, ..,Mn} on some
shadow dataset, D = {D1, D2, .., Dn}, where only
some of the subsets of D exhibit the property f∗i .

• The shadow models are not explicitly trained to learn
the property P , but learn it as a consequence of the
bias introduced in the dataset.

• During inference, the target model, Mθ , trained on
the original dataset, Dx, is passed into the MC, that
classifies it as either exhibiting f∗i or not.

• Generally, the weights and biases of the models are
used as the features to train the meta-classifier.

The first work on PIA conducted the attack successfully
on Hidden Markov Models and Support Vector Machines
[51]. The weights of the hidden states were used as the
inputs for the HMMs while the weights and biases of

Model Mθ
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Fig. 8: Reconstruction / Model Inversion Attacks: at in-
ference time the adversary leverages query access to the
target model Mθ and to some aggregated publicly available
data D′ in order to reconstruct a private training dataset D,
containing sensitive data d∗i and sensitive features f∗i .

the support vectors were used to train the meta-classifier
for SVMs. The logical transition of this approach to fully
connected networks was shown in [33], where the weights
and biases of the neural networks were used as input to the
meta-classifier. To account for the permutation invariance
in the representations learnt by neural network nodes, the
meta-classifier itself was a network that learnt to account
for all permutations of a particular neural network layer’s
weights and biases. An architecture inspired by Deep Sets
[88] was used for this task.
Applications of PIAs are so far somewhat limited - no
existing approach has applied PIAs to models beyond fully
connected neural networks. Moreover, no publications show
PIAs applied to anything but classification tasks.

4.5 Poisoning Attacks
Depending on access to a target model Mθ , data D, training
objective and other parameters θ, an adversary can poten-
tially pollute the data D or the model M causing a bias in
the target model output, that an adversary can use to their
advantage. This class of attacks is called poisoning attacks.

Poisoning attacks are mostly done at model level [89–
91]. Federated Learning models, for example, are often
susceptible to such attacks due to the nature of their training
algorithms. However, training time model manipulations by
adversary are out of the scope of this survey; we are only
interested in inference time leakage by poisoning attacks.

Data poisoning has also been used to increase the
amount of sensitive information a model leaks about a
particular sensitive attribute. After choosing the property
to attack, an adversary submits the input data according to
the poisoned data distribution. Given only black-box access
(output labels) to a model, the adversary can then infer the
frequency of the sensitive feature in the dataset [92].

4.6 Reconstruction / Model Inversion Attacks
Reconstruction / Model Inversion Attacks are a collection of
methods for partially reconstructing a private dataset from
aggregated publicly available information, which may in-
clude publicly-available or query-only trained ML models.
See Figure 8.
Applications. Reconstruction attacks have been applied to
a variety of scenarios, for instance, to the federated learning
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setting, [93], including an interesting application of GANs
trained with a multitask discriminator that outputs the
reality indicator for the data, its class, and user identity, [94].

A variety of applications of model inversion exist in the
general (centralized) setting, e.g., [95] introduces a technique,
where the second neural network is trained as an inverse of
the target model to perform the inversion, with its perfor-
mance validated on Amazon Rekognition (MLaaS setting).
Yet another interesting example of GANs used for inversion
attacks, called generative model-inversion attack, was proposed
by [96]. It applies GANs to learn the distributional prior of
the data, which later guides the inversion process. Finally,
[97] explores the Deep Leakage from Gradient, an incredibly ef-
ficient inversion attack, accurate to the pixel-level for images
and token-level for natural language, proving gradients of
the model are unsafe to share publicly.

Reconstruction attacks in an online learning setting have
been studied in depth in [98]. In this case, the adversary
probes a model with a particular data point (MIA, Sec. 4.2)
or a particular set of data points (Group MIA) before and
after training the model with the additional data, in order
to assess how the model’s outcome changes as a result of
the online training. The attacks proposed in [98] follow a
general encoder-decoder structure. The encoder attempts to
learn the target model’s difference in prediction before and
after being updated with the additional data. The decoder
then generates information on the updated dataset.

Defences. Several defences have been proposed against
reconstruction attacks: [99] suggested the “noise interfer-
ence” technique, which can render an invertible model non-
invertible by adding noise. Another noise-based defence,
this time for the federated learning setting, has been recently
proposed by [100]. They use a simple additive noise method
and, interestingly, they find that pairing it with another
existing method NoPeekNN, [101], improves the defence.
For classifier target models, [102] suggests “purifying” the
confidence score vectors of the target model by reducing
their dispersion. This can help, since some of the MIAs
and some of the reconstruction attacks use the target model
confidence score vectors for guidance.

5 CURRENT METHODS OF DEFENCE

Defence methods aim to prevent privacy attacks launched
by adversaries from succeeding. There are a few stages
in model training and deployment where defences can be
implemented. They can largely be dichotomized as applying
some augmentations at the training data level versus train-
ing, tuning, and designing the models with inbuilt defence
mechanisms – at the model level.

At the data level, simply deleting the sensitive features
or entries is unwise for training data integrity and con-
sistency reasons, and can represent a privacy risk of its
own, as the pattern of “missingness” itself might allow
for the inference of some of the data properties. Hence
techniques such as data obfuscation and data sanitization
are often applied in order to mask, scramble, or overwrite
the sensitive information with a realistic fake rather than
using simple deletion.

5.1 At Data Level: Data Obfuscation
Data obfuscation perturbs the sensitive information in the
data through either scrambling or masking of some sort.

For instance, [103] introduces an obfuscation function
to pre-process data before submitting it for training to a
downstream model. This is achieved by adding noise to
the data or augmenting it with the new data samples. It
addresses the trade-off between user privacy and service
quality, which is dependent on the severity of the data
perturbation. They build adaptive mechanisms that antic-
ipate and protect against optimal inference algorithms by
designing a game between the designer of the obfuscation
mechanism and the potential inference attack. Meanwhile,
[104] is concerned with the difference between a trained
model’s predictions on training and test data and the infer-
ence risks this difference presents. They suggest mitigation
of those risks by narrowing the dynamic ranges of the
sensitive features in the training data, such that the training,
test, and synthetic data are forced to have similar predictions
by the same ML model.

5.2 At Data Level: Data Sanitization
Data Sanitization aims to disguise the sensitive information
within the data by overwriting it with realistic-looking syn-
thetic data, using techniques like flipping labels or adding
noise of certain specifications. Recent developments also in-
clude, for instance, [105] randomization algorithms satisfy-
ing the ε-differential data privacy criteria. Data sanitization
is often a natural precaution for adversarial attacks [106]
(adversarial attacks are a large class of training time attacks,
which are outside of the scope of this paper).
Limitations The aforementioned data modifications are
limited by the assumptions made about data complexity.
Applications Sanitization is widely applied to social net-
works’ privacy. For instance, [107] argues that nouns convey
most of the information in a sentence, hence sanitization can
be conducted by treating nouns in the sensitive sentences as
keywords that need overwriting with random entries. San-
itization is a potential defence against the inference attacks
on the social media networks, e.g., [108] utilizes a collective
manipulation sanitization techniques on the user profile and
friend connection data to prevent inference attacks from
successfully identifying social network users from the open-
source data using their friend connections.

Further sanitization implementations include the self-
destruct data-processing cycles proposed in [109]. These
overwrite data enough times, using threshold cryptography,
to render it non-recoverable and hence ensure user data self-
erase after a certain validity period.

5.3 At Data Level: Learning with Synthetic Data
Learning with synthetic data can be viewed as a natural
extension to both data obfuscation and sanitization, since
it involves perturbing/disguising the sensitive information.
High-fidelity synthetic data, generated with privacy guaran-
tees, could potentially solve a number of problems for train-
ing ML models across a wide variety of applications, from
healthcare to financial data analysis. It would not only allow
open access to realistic synthetic data for ML researchers,
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but could also facilitate the internal data transfers within
the organizations, in situations where clients/patients data
cannot be shared across the branches or divisions of a
company, or across different hospitals, etc.

Applications There is evidence suggesting some already
successful applications - generating high quality synthetic
patient data [54] for testing ML healthcare software, using a
combination of techniques including probabilistic graphical
modelling. Another potentially useful approach is data syn-
thesis via a differentially private autoencoder with empirical
assessment of both the utility and quality of the results [110].

There are several GAN-based models that are designed
to produce synthetic data with certain privacy guarantees.
For example, [111], meant for generation of time-series type
of data with DP guarantees, and [112] designed to preserve
privacy under MIAs at a small performance trade-off.

Limitations and Risks Although synthetic data might
seem appealing as a remedy for the sensitive data leakage
problem, it is not the case in reality, largely because a
good generative model captures the underlying training
data distribution, and might leak at the very least some
of the properties of the dataset into its generated data,
enabling property inference attacks. Moreover, [55] finds
that generative models tend to store richer information,
enabling attribute inference. Furthermore, they show that
generative models are vulnerable under membership in-
ference attacks (sometimes called “linkage attacks”), even
when trained under differential privacy guarantees, perhaps
because memorization issues in models like GANs and
VAEs cannot be fully eradicated.

Thus far synthetic data generation with privacy guaran-
tees remains elusive.

5.4 At Model Level: Machine Unlearning / Forgetting

The General Data Protection Regulation (GDPR), [15], en-
forced by the European Union in May 2018, is aimed at
protecting user privacy. Amongst other things, GDPR en-
sures the user’s right “for the explanation” about how their
data are being stored and used, as well as the right “to be
forgotten”, i.e. a user can request their data to be deleted
from a database. The natural next question: What if these data
also had to be “forgotten” by the AI models powering a service?

The obvious course of action would be to remove the
user data that needs to be forgotten from the training dataset
and retrain the model from scratch. However, often the
computational costs involved would make this an infeasible
solution, creating a demand for techniques to unlearn the
requested data and its traces from the trained models.

There are other use cases for the ability to unlearn certain
data, irrespective of the user’s privacy. For instance, in the
case of adversarial attacks (outside the scope of this survey,
but relevant to machine unlearning), if an adversary pol-
lutes the model (e.g., anomaly detector) with hand-crafted
faulty data, the model might have to “forget”/“unlearn”
such data in order to restore its security [113].

Machine Unlearning. This term was introduced by [113]
who proposed the need for a “forgetting system”, and
introduced one of the first unlearning algorithms based

on converting learning algorithms into summation form3 for
efficiently forgetting data traces. This method also works
against data pollution attacks. [114] is the first framework
for instantaneous data summarization with machine un-
learning using a resilient streaming algorithm, involving
submodular optimization; it comes with a constant factor
approximation guarantee to the optimum solution. [115]
provides formalization for machine unlearning in a variety
of instances, and proposes an efficient unlearning algorithm
for k-means clustering, with accompanying statistical analy-
sis of the results. [116] provides an unlearning algorithm for
linear regression methods, based on the projective residual
update and use of synthetic data points. [117] proposes
to limit the effect that a single training data sample can
have in the training process. They achieve this by training
multiple models on subsets of the training dataset, which
would imply storage and computational costs for retraining
multiple models. In a similar attempt to limit the effect
of a single data point at training time, [118] and [119]
suggest a Newton-based estimation of the effect of such a
training point on the model predictions. This estimate can
be immediately used for guiding the machine unlearning.

A comparatively computationally light method [120]
suggests forgetting logit-based classifiers through linear
transformation to the output logits. This method, however
would leave a data sample trace in the weights of a neural
network model. [121] focuses on data removal from the
differential privacy perspective, and provides an algorithm
for convex problems, based on a second order Newton
update, to be layered over a differentially private DNN.

An algorithm proposed by [122] conducts unlearning
for DNNs trained with SGD, and is based on shifting the
weight space of the model by adding noise to the weights.
Specifically, [122] focuses on selective forgetting by “scrub-
bing” the weights of the neural net, so that it need not be
trained from scratch, without requiring the access of data
to be forgotten. Further, [123] proposes weight scrubbing
based on the Neural Tangent Kernel at the level of the
model activations, which allows not only better handling
of the null-spaces in network weights (which is essential
for over-parameterised models like DNNs), but also for the
“one-shot” forgetting to work better than [122]. This work
also introduces a new set of bounds that quantifies the
average information per query an attacker can extract from
the model.
Verifying forgetting. There is a difference between delib-
erately unlearning the traces of information from an ML
system versus verifying it has indeed been forgotten (inten-
tionally or otherwise). There are additional considerations
also: 1) Forgetting can occasionally happen on its own (such
as “catastrophic forgetting” in reinforcement learning); 2) dif-
ferent data samples bear varying amounts of unique infor-
mation and contribute to the model final weights differently
[124]; 3) forgetting a specific data entry (a single person’s
entry) in the training set and consequently its trace in the

3. The summation form is a technique where model weights are not
trained on each data sample, instead they are trained on a small number
of sums of the data sample transforms. Aforementioned transforms are
achieved through pre-defined efficiently computable transformation
functions. When the data sample is erased, these sums get re-computed,
and the model is efficiently updated.
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system is non-trivial, because of the possible trace overlap.
In the case of trace overlap, the updates (the knowledge)
that the system extracted from the entry to-be-forgotten are
exactly the same as some knowledge obtained from a similar
record that is still a legitimate training data point, and hence
this knowledge should not be forgotten. In light of GDPR
[15], and the “right to be forgotten”, there is a lot of focus
on formalization and a good way of performing verification
of forgetting [125].

These intricacies have led to several directions of ver-
ifying forgetting. For instance, [126] develops a forgetting
verification technique based on backdoor attacks (data poi-
soning attacks), i.e. some fraction of users of MLaaS can
choose to insert backdoor triggers in a fraction of their data;
training MLaaS on such data will have a high backdoor
success rate. So after the user’s request to be forgotten they
could rely on a simple check of the backdoor success rate to
verify whether that has been done. [127] focuses primarily
on applying statistical methods, i.e. Kolmogorov-Smirnov
distance, to find a discrepancy in the output distributions
between a model that has supposedly “forgotten” certain
traces and a reference shadow model 4, trained on different
datasets to model forgetting with and without a trace overlap.

In case if the “core” dataset, that should not be forgotten,
is known, [128] offers an effective method of forgetting the
traces of the additional data, that involves replacing a stan-
dard deep network with a suitable linear approximation.

There are also plenty of context-specific applications,
including forgetting data for neural network predictors
[129] by applying carefully engineered oblivious protocols
for commonly used neural network operations on trained
networks. For network embeddings [130] investigates the
forgetting of a single node, by removing the representa-
tion vector from the network embedding, and finds that
often this is not sufficient since the information can be
still encoded in the embedding vectors of the remaining
nodes. And finally, for text generation models [131] suggests
at black-box model-auditing technique successful on well-
generalized models that are not overfitted to their training
data, and [132] proposes a model-auditing method based on
the model distillation and model comparison techniques.
Limitations and Risks. Despite the benevolent intentions of
machine unlearning, it should be applied with caution due
to the risks involved. For example, [133] focuses on analyz-
ing the risks of data leakage (through MIA) for black-box
classifiers, that has been through the machine unlearning
procedure. They find that in some cases the unlearnt model
can leak information about the forgotten data, even when
the original non-unlearnt model did not leak information.

5.5 At Model Level: Adversarial Defences
Adversarial Defences use an adversary as a penalty during
training of the target model Mθ . Although in theory most
privacy attacks can be used in some way during the training
of Mθ as potential adversaries to defend against, in practice
this setting has been mostly explored for MIAs.
Adversarial Defences for MIAs. There has been a lot of
research conducted on protecting against black-box MIAs

4. See Sec. 4.2 for explanation of the shadow model training.

with adversarial examples. For example, [76] anticipates a
MIA, and regularizes the target model during the train-
ing via min-max game-based adversarial regularization, so
that predictions of the target model on its training data
are indistinguishable from its predictions on other data
points from the same distribution. This technique not only
claims membership privacy, but also – good target model
generalization. Memguard, [134], has been the first defence
with formal utility-loss guarantees against black-box MIAs.
Instead of fiddling with target model regularization, like
[76] does, it proposed adding carefully designed noise to
the target model confidence score vectors, turning these
into adversarial examples, that a MIA classifier would be
vulnerable to. [134]
Limitations and Risks. Interestingly, some of the proposed
adversarial defence methods, such as projective gradient
descent (PGD) adversarial training [135], on the contrary
increase the model’s susceptibility to membership inference
attacks.

Theoretically, many of the privacy attacks could be used
as potential adversaries to improve against during training
ofMθ . Nonetheless, one has to be careful with this setting, as
it has been proven by [77] that using some state-of-the-art
attacks as penalties during defensive training can weaken
the defence against some or all of these and new attacks
compared to even completely undefended training.

5.6 At Model Level: Training with Differential Privacy
The idea behind differential privacy (DP) is to gather con-
fidential user data for analysis without compromising the
confidentiality of each individual user. It was formally de-
fined in 2006 by [136] – the algorithm K is considered to be
ε-private if for all datasets D1 and D2 differing in at most
one data entry and all events S

Pr[K(D1) ∈ S] ≤ exp(ε) + Pr[K(D2) ∈ S].

This can be interpreted as follows: a differentially private al-
gorithm’s functionality should remain unchanged whether
any single entry is or is not present in its training dataset.
In other words, unlike for some of the other defences, DP
provides a guarantee on the maximum privacy loss: the
maximum divergence between these two distributions (or
a maximum log odds ratio for any event S) is bounded by
the privacy parameter ε.5 This guarantee is also known as
“pure” differential privacy.
Concentrated DP and Rényi DP. There exist general-
izations and relaxations of DP methods, that tend to en-
joy higher accuracy than “pure” DP. For instance, (ε, δ)-
differential privacy, [137], guarantees that with probability
of at most (1 − δ) the privacy loss does not exceed ε.
Typically this helps with the trade-off between privacy and
accuracy of the model, and “pure” DP can be viewed as a
special case when δ = 0. However, in the case of multiple
queries, the bound grows, which is why [138] proposed
Concentrated Differential Privacy (CDP) relaxation, not only
improving on the accuracy but also offering tighter bounds
on the expected privacy loss for group privacy. The privacy
loss accounting, training efficiency and model quality can

5. ε is also sometimes called a “privacy budget”.
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be improved using two different data batching techniques
proposed by [139] as an extension to classic CDP. Further
quantitative results for CDP were provided in [140] by re-
defining the concept of DP in terms of the Réényi divergence
between the distributions obtained by running an algorithm
on neighboring input, and defining zero-Concentrated Differ-
ential Privacy (zCDP) with its corresponding lower bounds.
An alternative approach is to adopt Rényi Differential Pri-
vacy (RDP) proposed by [141], which claims more accurate
analysis of the privacy loss due to another relaxation –
CDP requires a linear bound on all positive moments of
a privacy loss variable, whereas [141] definition applies to
one moment at a time. Further, [142] proves a tight upper
bound on RDP for subsampling in DP, it also generalizes
the results of the moments accounting technique [143], to any
RDP algorithm. The moments accounting technique [143], is
a DP framework for deep learning, that improved training
computational efficiency by introducing algorithms for ef-
ficient gradient computation for individual training exam-
ples, sharding tasks into smaller batches to reduce memory
footprint, and applying differentially private principal pro-
jection at the input layer. Tool-wise, it builds its DP training
framework on top of Tensorflow [144].

Differential Privacy Surveys. In addition to some of the
aforementioned previous privacy reviews, [4, 5, 5], there
exist several surveys focusing specifically on DP, from early
works such as [145], to [146, 147]. In this and the following
subsections we refer the reader to these to create as complete
a picture of the field as possible.

Applications of DP with respect to different tasks. The
more traditional applications of DP, outlined in [136] are
the DP online learning, [148–150] and DP empirical risk
minimization, [151–157]. However, the range of learning
tasks that DP was applied to has widened and now includes
nearly anything from the federated ML setting [158] to
differentially private recurrent language models [159], and
even differentially private generative adversarial networks
[61, 63], specific DP-GAN applications for generating time-
series [62, 111], and tabular mixed feature datasets [160].

Evaluation and Utility-Privacy Trade-Off of DP methods.
The utility vs privacy trade-off has been one of the most
important topics in Differential Privacy, partly due to the
lack of formal utility-loss guarantees [134, 161].

Evaluation of privacy guarantees for DP is more es-
tablished compared to some of the other defence meth-
ods. However, despite the various DP methods, and the
provable upper bounds on the(ir) maximum privacy loss,
there remains relatively little understanding of the trade-
off between the size of the privacy budget ε and the utility
of the resulting model. It is typical in DP works to select
large values for ε to show reasonable utility scores [43, 162].
Practically, [43] finds that there is a huge gap between
the upper bounds on privacy loss that can be guaranteed,
and the effective privacy loss that can be measured using
current inference attacks. Moreover, there is no agreed upon
threshold for ε, at which privacy guarantees are rendered
meaningless. Their empirical assessment shows that for an
acceptable utility level the privacy guarantees are practically
meaningless, although the observed level for leakage under
the inference attacks is still low.

Advancing further on DP under inference attacks, [163]
offers more empirical assessment of data leakage under in-
ference attacks, considering single and joint decoding (MIA,
see Sec. 4.2 for single data instance at a time vs a subset of
data instances at a time), finding that the joint decoding is
more powerful, and offering a method to empirically decide
on the size of the privacy budget ε.

Some research has been conducted on eliminating the
privacy-utility trade-off and replacing it with privacy-
computational cost trade-off instead by [164]. They pro-
pose a stochastic gradient descent-based DP (Sec. 5.8) for
recurrent language models in a federated learning setting
(Sec. 5.8).

Risks. DP has been shown to be insecure under PIAs (see
Sec. 4.4), because of the different types of data leakage
considered by PIA and DP [51].

Moreover, (ε, δ)-differential privacy retains the possibil-
ity of failures, i.e. a DP algorithm can in theory reveal the
sensitive data it has been trained on. No mechanism has
been proposed for detection and reporting of this kind of
leakage, which is a serious issue [165].

For neural networks, two more recent approaches of
implementing DP are particularly relevant, and the next
two subsections are dedicated to these. Note that these
are merely sub-classes of DP methods, and share general
limitations and vulnerabilities of DP methods.

5.7 At Model Level: Private Aggregation of Teaching
Ensembles (PATE)

Private Aggregation of Teaching Ensembles (PATE), [158, 166,
167], and its modification PATE-G, [168], is a subset of
differential privacy techniques based on the teacher-student
approach, using ensemble methods ([169]) aggregation and
some of the GAN-based architecture for PATE-G, [18, 70].

At training time the ensemble of teacher networks is
trained on the disjoint subsets of the training dataset with
strong privacy guarantees, and then the student network
is used to aggregate the teacher network’s knowledge in
a noisy fashion, i.e. the student is black-box-querying the
teacher ensemble, receiving the noisy labels. PATE meth-
ods train the student only on the labelled training data,
whilst PATE-G also uses the unlabelled data (via GANs
or Virtual Adversarial training). At inference time, only
the student model is used. The teacher models are never
publicly shared, and the student model never comes in
contact with the training dataset, thus the noisy aggregation
of the teacher ensemble at the training time provides the
privacy guarantees [165].

The scalability of PATE methods has been practically
confirmed by [170] (on SVHN and the UCI Adult datasets).
They further proposed to use concentrated noise (swapping
Laplacian for Gaussian noise during aggregation) for further
improvement of the teacher ensemble results, as well as not
returning an answer to the student network at training time
in the absence of teacher ensemble consensus. They report
both high utility and privacy guarantees for ε < 1.

Applications Theoretically, PATE can be universally ap-
plied to a variety of models, so, although more classical
works are concerned with the classifiers, [171, 172] focus
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specifically on the data generation with DP guarantees. G-
PATE [171],6 trains a student-generator with an ensemble
of teacher discriminators. PATE-GAN [172] trains a student
classifier on synthetically generated data, using a noisy
aggregation of the teacher-discriminator labels.

5.8 At Model Level: the Gradient Descent Perturbations

Neural network training relies on gradient descent, and
adding noise is a popular technique both for better gen-
eralization [173, 174], and for ensuring differential privacy,
if the noise is appropriately calibrated [161]. Since weight
changes with respect to the training data occur through a
gradient update, both gradient clipping and adding noise to
gradient computations are valid techniques for ensuring DP,
explored by variety of methods [157, 175–177].

More recent advances of the noisy SGD include ex-
tension with the moments accounting technique [143], a
scalable and computationally efficient “bolt-on” output per-
turbation technique by [178], and DP-LSSGD [179], based on
Laplacian smoothing SGD, that stabilizes the training of DP
models, leading to better generalization and higher utility
of the resulting DP models. Finally, adaptive allocation of
the privacy budget at the iteration level [180], and [181] ap-
plying the control variates technique [182, 183] to stochastic
gradient descent update are both compatible with zCDP (see
Sec. 5.6 for more details on zCDP).

5.9 At Model Level: Federated / Collaborative Learning

Federated (or collaborative) Learning (FL) trains an ML
model on a central server, across multiple decentralized
databases, holding local data samples, without exchanging
them directly [184–186], thus, potentially mitigating risks of
the direct data leakage.

Surveys. There are a number of surveys covering FL in
general, [187–190]. We would like to refer the reader to
[191] which focuses mainly on privacy concerns for FL.
It shows some evidence that FL is not always able to
provide good privacy guarantees, as well as, outlines two
major challenges to the classic federated learning setting:
poisoning and inference attacks (see Sections 4.2 and 4.5).

FL vulnerability to privacy attacks. FL is sometimes of-
fered as a solution to the problem of balancing user data
privacy requirements (such as GDPR [15]) with the benefits
of learning from multiple data sources, [187]. However, FL
does not provide foolproof privacy guarantees. Successful
white-box MIAs have been performed by [44] against both
centralised and federated learning, even for cases with well-
generalised target models. These attacks leverage stochas-
tic gradient descent (SGD) vulnerabilities; specifically they
compute membership probability for each data point based
on the gradient vector of all parameters with respect to
this data point. Furthermore, [191] not only concludes that
classic FL frameworks are often vulnerable to inference and
poisoning attacks (Sections 4.2 and 4.5), it also expresses
concerns with the current methods of defences against these
attacks for FL.

6. G-PATE not to be confused with PATE-G acronym, G-PATE is
merely one of the PATE-G methods.

Malicious servers An alternative to a malicious user is
a malicious server provider aiming to steal client’s data.
Recently [192] proposed the first ever attack from the per-
spective of such a malicious server. It uses a GAN [18, 70]
multi-task discriminator, designed to recover the category
and the client identity of the input data. It is designed to
run “invisibly” on a server leaving the clients unaware.

Differential privacy for FL. Efforts have been made to se-
cure the classic FL framework relying on differential privacy
[158, 167, 193–196]. Some concerns remain on privacy-utility
trade-offs [164], and property inference attacks for groups of
records (rather than a single record) [50].

Other defences for FL. Another important point raised
in [191] is the lack of clarity on whether certain defences,
such as adversarial defences, could be applied for privacy
protection of FL systems. A more traditional alternative
defence is homomorphic encryption, used to mask the local
gradient updates, either individually, e.g. [197–199], or in
batches in order to reduce the computation costs [200].

Applications. Federated learning is widely applied in ap-
plications involving the use of sensitive data, e.g., recom-
mendation systems, mobile applications, transaction fraud
detection, and healthcare [187, 190, 199, 201]. Nevertheless,
according to [190], there are not many FL applications that
explicitly focus on privacy preservation. Still, there are some
examples of privacy-preserving recommendation systems
[202, 203], that rely primarily on data encryption (see the
next section) for their privacy guarantees.

5.10 At Model Level: Operating on Encrypted Data

Traditional encryption requires the sharing of the key
amongst the parties involved, which interferes with in-
dividual privacy. However, Homomorphic Encryption (HE)
techniques allow any third party to operate on the encrypted
data without decrypting it in advance, and, furthermore,
Fully Homomorphic Encryption(FHE), [204], allows for any
computable function to perform on the encrypted data [205].

Surveys. Homomorphic Encryption is a vast and well-
established field, hence, for the sake of brevity, we refer the
reader to the relevant surveys [205, 206].

Limitations. Operating on encrypted data could alleviate
privacy issues, but unfortunately its low efficiency often
makes FHE impractical in the real world [207]. However,
there are a number of advances, involving somewhat homo-
morphic encryption, aimed to improving efficiency – please
refer to [208] for a detailed overview.

5.11 At Model Level: Knowledge Distillation

Knowledge distillation has been actively used to compress
models and thus facilitate deployment on resource con-
strained devices, however can also be applied to preserve
privacy. E.g., Distillation for Membership Privacy (DMP)
uses distillation to train models with membership privacy
by leveraging various sources of noise in the model dis-
tillation process [209]. Distillation-based methods based on
the fast gradient sign method [210] and the Jacobian attack
[211] have been shown to train privacy preserving models
where large perturbations to the input are required to make
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a distilled model cause a wrong prediction. However, [212]
showed that distillation fails to mitigate attach variants
proposed in [213].

5.12 At Model Level: Other Privacy-preserving ML
Various other methodologies exist that work at model
level to protect against adversary attacks. PRADA [37] de-
fends against model extraction attacks by flagging multiple
queries made against a model when they deviate against
general inference behaviour. [214] designed a privacy pre-
serving framework to protect ML algorithms such as lin-
ear and logistic regression, as well as neural networks at
training time itself. [215] and [216] presented a privacy
preserving alternative to SGD when multiple data owners
wish to train a model combining their data without sharing
the data with each other, sharing weight parameters instead
of gradient updates. FPPDL [217] is a decentralized privacy
preserving framework based on Blockchain for decentral-
ization, and differential privacy (DPGAN) along with a
3 layer onion encryption to facilitate fairness. VIPS [218]
overcomes the high amount of additional noise needed to
make variational Bayes privacy preserving by combining
a moment accountant to get a tight bound on the privacy
cost of multiple VB iterations. [25] show how even well-
generalized models can leak data and that overfitting is
important, but not a necessary condition for information
leakage. Prediction purification was shown to protect mod-
els from inversion and membership inference attacks [219].
This is done using a purifier network, which is adversarial
in nature and maps the confidence scores of a classifier to a
reconstructed privacy-preserving representation.

6 METRICS

Assessment of the data leakage in trained machine learning
models remains an open area of research. Measuring leakage
is case-specific, as it depends on the data type and the type
of malevolent/involuntary leakage in question. Further, any
knowledge about the exact type and architecture of the
attack used by the adversary might be crucial for the ability
to protect against it.
Assessing involuntary leakage may be easy for some
components e.g. overfitting via generalization error. Others,
such as memorization and feature leakage, are harder to
troubleshoot. An exposure metric suggested by [16, 68] esti-
mates a model’s potential for memorizing rare and unique
sequences in text data (thus far, there are no extensions to
other data types). Additionally, an assessment proposed by
[69] focuses on estimating memorization in the lower layers
of convolutional neural networks.
Assessing data leakage via attacks can be occasionally be
straightforward, e.g., for MIAs the membership inference
easily translates into the re-identification score [82, 83].
Assessing data leakage for defence purposes Examples
of this include Kolmogorov-Smirnov distance used for ver-
ifying forgetting in [127], metrics proposed by [133] for
assessing machine unlearning leakage under MIAs, as well
as some work on estimating the Bayes risk of the system
via universally consistent nearest neighbor (ML) rules [72],
improving upon more naı̈ve min-entropy approaches.

Learning metrics as a fairness constraint Most literature in
fair ML deals with learning fair classifiers due to the promi-
nence of classification as a learning task. Most proposed
methods treat solving for fairness based on the definition
of fairness tailored to their specific objective. Of consider-
able importance are techniques such as those proposed by
[220] which not only satisfy fairness constraints, but also
tend to be stable towards adversarial attacks and variations
in datasets during testing. Regression-based fairness tech-
niques eliminate bias at training time by hand-crafting loss
functions that conform to group fairness, individual fairness
or hybrid fairness, although they have not received a lot of
attention in research [221].
Metrics in Differential Privacy In this setting, due to the
provable privacy upper bounds, empirical assessment of
both utility and quality guarantees is possible [43, 110].
The Rényi Divergence can be used as a metric to bound
any arbitrary privacy loss [43]. The resulting Rényi differ-
ential privacy works by creating a bound on each individ-
ual moment of the privacy loss, leading to other variants
of differential privacy, and to a more accurate numerical
analysis of the privacy loss. A synthetic data generating
deep learning model with privacy guarantees (DP-SYN) was
proposed in [110]. Evaluation of DP-SYN was done using
carefully crafted metrics based on ML (misclassification
rate), statistics (Total Variation Distance [222] between the
noisy and original marginals of the data distributions) and
agreement rate (the percentage of records to which two
classifiers assign the same prediction [223]).
Limitations. First of all, there are a number of at-
tacks/leakages that can be hard to trace. For instance, there
is currently no single reliable way to verify how much of
the training data is memorized by a GAN, or how much
a property inference attack could infer even from sanitized
data, since it would change, depending on the design of the
attack and the type of the data in question.

Secondly, there is no universal robust framework for de-
tecting and reporting model plainly revealing the sensitive
data (more likely for predictive or generative models), [165],
and although it does not necessarily seem like a big issue
at first glance, it does impede open access trained model
sharing in a commercial setting, as companies will require
guarantees on the privacy of their data.

7 APPLICATIONS

7.1 Data as a Service (DaaS) / Safe Havens
Data as a Service offers an appealing solution to limited
data availability in both data-driven research and data-
intensive commercial applications, given sufficient privacy
guarantees. However, current proposed implementations,
e.g. [224], provide no leakage assessment.

Significant efforts are afoot to create a national research
infrastructure across the United Kingdom7 to support data-
driven knowledge discovery, including data analysis, statis-
tics, and ML. Organizations such as Health Data Research
UK and Research Data Scotland are designing services to
facilitate identification of health research datasets, their de-
scription, permissions, and accessibility.

7. We are certain similar activities exist across the world.
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Federated access models are favoured by data holders,
with data scientists invited to access data within Trusted
Research Environments, of which Safe Havens in Scotland
are but one example. However, with the intellectual and
economic benefits of more access to data comes an esca-
lating risk of data leakage. The proliferation of data access
tools, environments, protocols, and transfers, coupled with
escalating volumes of data, is driving persistent privacy
concerns.

The current official protocols, in the UK, rely on statisti-
cal disclosure control, [19, 20], data pseudoanonymization,
[225], and true data anonymization, [226], since fewer legal
restrictions apply to anonymized data. However, from a le-
gal perspective, anonymized data lies in a gray area accord-
ing to [227]. In fact some regulations, such as Data Protection
Directive (1995) [228], Data Protection Act 1998 (DPA) [229],
and GDPR [15], for example, do not require strictly risk-
free data protection, however the risk of the re-identification
should be mitigated to the extent when it is remote. GDPR
regulations do not apply to truly anonymized data either
– Recital 26 defines the anonymous information, as “ in-
formation which does not relate to an identified or identifiable
natural person or to personal data rendered anonymous in such
a manner that the data subject is not or no longer identifiable”,
[230]. It does, however, apply to pseudoanonymized and
non-anonymized, both of which are often more useful for
practical purposes, and are preferable for both statistical
analysis and machine learning techniques in Data as a
Service (DaaS) setting, such as Safe Havens.

If Data as a Service (DaaS) using linked and unconsented
public data, meeting the requisite GDPR safeguards and
standards for privacy is to continue, techniques to mitigate
data linkage are imperative. Therefore custodians consid-
ering DaaS, especially with sensitive data categories, have
a difficult dual duty to both respect public privacy, and to
foster public benefit through research.

From an ML perspective, this results in a growing de-
mand for the implementation of reliable checks on models
exported from DaaS facilities. This requires furthering our
understanding and control over involuntary data leakage,
and progressively more reliable methods of defence from
malevolent attackers, such as MIAs and PIAs (Section 3, and
Subsections 4.2 and 4.4 respectively).

7.2 ML Models as a Service (MLaaS)

Machine Learning as a Service (MLaaS) represents an ex-
tended privacy risk, further to that posed by Data as a Ser-
vice. The development of ML models can risk perpetuating
bias, state intrusion, inequalities, and the potential erosion
of privacy.

Whilst the separation of source data from MLaaS could
ameliorate data leakage concerns, the outputs, decisions,
and unintended applications of MLaaS add complexity to
the tracing of potential leakage. Quarantining MLaaS to
Cloud deployments may insulate personal data from inter-
rogants; however, benign or deliberate data leakage remain
a potential threat.

Certain settings of MLaaS, including federated learning,
can be vulnerable to inference type attacks, e.g., MIAs
[41, 104], with defence mechanisms shown to mitigate those

risks explored for classification models [104, 139]. More-
over, [95] showed that Amazon Rekognition, a commercial
MLaaS API, can be vulnerable to model inversion attacks.

Research in MLaaS data safety remains important to
understand the risks posed by models as they are deployed,
trained, and evolve on exposure to new data. Presently a
number of providers such as Amazon ML [231], Google
Cloud [232], and IBM [233] are providing MLaaS for public
and commercial use.

Sections 3 and 4 of this survey cover the implications of
sharing ML models trained on sensitive data in open access,
whereas Section 5 touched upon current defence methods
and their shortcomings.

7.3 ML models in Mobile Applications
ML methods are commonly used to support mobile ap-
plications. Thus, privacy attacks, e.g., MIAs [17], attribute
inference attacks, and PIAs (see Sec. 4.2 and 4.4) are a
possibility. Sensitive information might involve anything
from the full user profile (under MIA) to the user’s location
[79, 80], or gender and sexual orientation [234].

Federated learning (see Sec. 5.9 for more details on risks
and defences) appeals in this context as means of privacy
protection. Although some research for protecting mobile
users specifically exist, e.g., [234] and [201], this field is still
somewhat in its adolescence.

8 CHALLENGES AND OPPORTUNITIES

Our findings thus far can be summarized as follows:
Attacks are not evenly explored across different data types
or tasks. For instance, MIAs (Sec. 4.2) are not well investi-
gated for tasks such as regression or segmentation, MEAs
(Sec. 4.3) have not been verified for generative models, and
PIAs have only been applied to classification tasks.

This points to the need to uniformly probe weaknesses
of leakage across several tasks and data types via advance-
ments in attacks.
Defences at the data level lie in between data being
potentially anonymized (or sanitised, obfuscated) to the
point where they are no longer useful, and data being
likely re-identifiable through inference attacks. Replacing
real personal data with synthetic data could be a promising
direction, albeit they remain vulnerable to property and
attribute inference attacks [55].

Data privacy can be largely contextual, i.e., in certain
situations a publicly accessible dataset can potentially en-
able recovering individuals’ identities, when combined with
other supposedly public datasets.
Defences via model have not been evenly explored across
different tasks, data, and attacks/leakage, and may often
work only for specific settings. For example, adversarial
defences are mostly explored for MIA-type attacks, DP-
based defences may not universally succeed against MIAs,
and the privacy guarantees of classic FL may not be as
strong as we desire.

Homomorphic Encryption remains a promising direc-
tion for privacy-preserving FL; however, its practical im-
plementation is not straightforward and requires compute
power in a homogenous setup across all parties involved.



16

We remain in need of computationally efficient defences,
which can offer a wide range of privacy guarantees.
Detection and Assessment of Leakage and Tools Fur-
thermore, uniform mechanisms for reporting data leakage
are lacking. For instance, in a DaaS scenario a malicious
user could potentially encode sensitive data within the NN
model weights – yet a check / mechanism to reliably detect
even such a simple form of leakage is lacking.

We find that established tools, and practical and univer-
sally applicable software packages developed from already
existing research are lacking. This results in an opportu-
nity to develop mechanisms for transparent reporting and
equally need to develop robust software tools that can
help bridge the gap between proof-of-concept and practical
utility.

9 CONCLUSION

While data leakage research is not new, the field is ever-
evolving due to the dynamic (and rapid) nature of machine
learning development. New privacy risks and attacks arise,
which are then met by new efforts to protect against them,
resulting in a constant adversarial game. This survey unifies
the currently available research and summarizes our under-
standing of inference-time information leakage in ML, both
involuntary and malevolent, as well as the means which are
currently available to measure and prevent such leakage. It
results in a rich comprehensive taxonomy of the broad field
of privacy in ML.

We find that, first of all, understanding of data leak-
age, its causes and implications, is unexplored and our
hope is that this survey will positively contribute towards
furthering our appreciation of leakage. Our survey reveals
opportunities to improve the means to measure, detect and
report sensitive data leakage. Secondly, the privacy attacks
exploration has been uneven in its coverage of ML tasks and
architectures, data types, and attack structures.

And finally, we find that most available defences are
case-specific, and scaling to larger datasets with guarantees
on performance remains a challenge. Overall these findings
indicate that leakage, privacy, and the necessary defenses
remains an area which is fertile for further research and
development.
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