882 research outputs found

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    D1.1 DEMAND ASSESSMENT FRAMEWORK

    Get PDF
    This report proposes the initial draft of the LeADS ADS Framework composed by three major elements; identification and definition of technologies in scope; skills included under those technologies, and definition of job roles, where other skills frameworks are considered for comparison and alignment. The report summarises the first workshop held by the project with external constituencies even though the feedback will be incorporated in the final version of the framework, where the layer of job roles will be completed, and the others revised according to additional input. This framework serves as reference for the next step in LeADS: the assessment of the demand and the supply

    Ensuring system integrity and security on limited environment systems

    Get PDF
    Cyber security threats have rapidly developed in recent years and should also be considered when building or implementing systems that traditionally have not been connected to networks. More and more these systems are getting networked and controlled remotely, which widens their attack surface and lays them open to cyber threats. This means the systems should be able to detect and block malware threats without letting the controls affect daily operations. File integrity monitoring and protection could be one way to protect systems from emerging threats. The use case for this study is a computer system, that controls medical device. This kind of system does not necessarily have an internet connection and is not connected to a LAN network by default. Ensuring integrity on the system is critical as if the system would be infected by a malware, it could affect to the test results. This thesis studies what are the feasible ways to ensure system integrity on limited environment systems. Firstly these methods and tools are listed through a literature review. All of the tools are studied how they protect the system integrity. The literature review aims to select methods for further testing through a deductive reasoning. After selecting methods for testing, their implementations are installed to the testing environment. The methods are first tested for performance and then their detection and blocking capability is tested against real life threats. Finally, this thesis proposes a method which could be implemented to the presented use case. The proposal at the end is based on the conducted tests

    Modernization of Manufacturing with Cybersecurity at the Forefront

    Full text link
    With the proliferation of Industrial Control Systems (ICSs), manufacturing processes have improved over the last 30 years, however, the organizational focus to securely exchange and process information to/from integrated systems has been consistently lacking. These environments continue to be susceptible to security vulnerabilities, despite history [15] showing that cybersecurity exposures in manufacturing have largely gone unaddressed and continue to rise [52]. This study evaluates cybersecurity challenges in the industry and proposes recommendations for practical and fiscally responsible defense-in-depth cybersecurity protections for manufacturing environments. The business operating model, how ICSs became pervasive, as well as the major components that enable the operational technology (OT) were evaluated. With an understanding of the traditional network architecture for the industry [37], the rapidly evolving challenges facing the industry were examined. These challenges are impactful to the traditional and slow to change manufacturing operating model that has not focused on the necessary cyber protections for their OT environments. In addition, the industry is now facing game-changing technological concepts such as advanced manufacturing and Industry 4.0 that bring new complex challenges and cyber threats, unfamiliar to most in the industry. This is all underpinned by an organizational divide where the personnel most knowledgeable with the modern technology and cyber risks, in the majority of cases, are not responsible for the OT architecture and security. These headwinds impact an industry which spends the least on IT and cyber security than any other industry, globally [22]. The cyber risks and challenges in the industry are diverse, spanning technological and organizational competencies, stemming from purpose built components which operate in an ecosystem where cybersecurity is an afterthought. As a means to close the gap, practical and reasonable recommendations to address these problems are discussed; some specific and unique to the manufacturing industry while others are fundamental applications discussed with a manufacturing industry lens, which are commonly ignored due to perceived complexity, cost or simply lack of awareness. Lastly, a number of these recommendations were selected for further evaluation and implementation; challenges, approach, benefits and outcomes are shared showing measureable improvements to the cybersecurity posture of the organization.Master of ScienceComputer and Information Science, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/147433/1/49698122_CIS699 - Mangano Thesis - Modernization of Manufacturing with Cybersecurity at the Forefront - Final 121018-v4.pdfDescription of 49698122_CIS699 - Mangano Thesis - Modernization of Manufacturing with Cybersecurity at the Forefront - Final 121018-v4.pdf : Thesi

    EVALUATING THE CYBER SECURITY IN THE INTERNET OF THINGS: SMART HOME VULNERABILITIES

    Get PDF
    The need for advanced cyber security measures and strategies is attributed to modern sophistication of cyber-attacks and intense media attention when attacks and breaches occur. In May 2014, a congressional report suggested that Americans used approximately 500 million Internet-capable devices at home, including, but not limited to Smartphones, tablets, and other Internet-connected devices, which run various unimpeded applications. Owing to this high level of connectivity, our home environment is not immune to the cyber-attack paradigm; rather, the home has evolved to become one of the most influenced markets where the Internet of Things has had extensive surfaces, vectors for attacks, and unanswered security concerns. Thus, the aim of the present research was to investigate behavioral heuristics of the Internet of Things by adopting an exploratory multiple case study approach. A controlled Internet of Things ecosystem was constructed consisting of real-life data observed during a typical life cycle of initial configuration and average use. The information obtained during the course of this study involved the systematic acquisition and analysis of Smart Home ecosystem link-layer protocol data units (PDUs). The methodology employed during this study involved a recursive multiple case study evaluation of the Smart Home ecosystem data-link layer PDUs and aligned the case studies to the existing Intrusion Kill Chain design model. The proposed solution emerging from the case studies builds the appropriate data collection template while concurrently developing a Security as a Service (SECaaS) capability to evaluate collected results

    Cybersecurity for Manufacturers: Securing the Digitized and Connected Factory

    Full text link
    As manufacturing becomes increasingly digitized and data-driven, manufacturers will find themselves at serious risk. Although there has yet to be a major successful cyberattack on a U.S. manufacturing operation, threats continue to rise. The complexities of multi-organizational dependencies and data-management in modern supply chains mean that vulnerabilities are multiplying. There is widespread agreement among manufacturers, government agencies, cybersecurity firms, and leading academic computer science departments that U.S. industrial firms are doing too little to address these looming challenges. Unfortunately, manufacturers in general do not see themselves to be at particular risk. This lack of recognition of the threat may represent the greatest risk of cybersecurity failure for manufacturers. Public and private stakeholders must act before a significant attack on U.S. manufacturers provides a wake-up call. Cybersecurity for the manufacturing supply chain is a particularly serious need. Manufacturing supply chains are connected, integrated, and interdependent; security of the entire supply chain depends on security at the local factory level. Increasing digitization in manufacturing— especially with the rise of Digital Manufacturing, Smart Manufacturing, the Smart Factory, and Industry 4.0, combined with broader market trends such as the Internet of Things (IoT)— exponentially increases connectedness. At the same time, the diversity of manufacturers—from large, sophisticated corporations to small job shops—creates weakest-link vulnerabilities that can be addressed most effectively by public-private partnerships. Experts consulted in the development of this report called for more holistic thinking in industrial cybersecurity: improvements to technologies, management practices, workforce training, and learning processes that span units and supply chains. Solving the emerging security challenges will require commitment to continuous improvement, as well as investments in research and development (R&D) and threat-awareness initiatives. This holistic thinking should be applied across interoperating units and supply chains.National Science Foundation, Grant No. 1552534https://deepblue.lib.umich.edu/bitstream/2027.42/145442/1/MForesight_CybersecurityReport_Web.pd
    • …
    corecore