88 research outputs found

    CUP: Comprehensive User-Space Protection for C/C++

    Full text link
    Memory corruption vulnerabilities in C/C++ applications enable attackers to execute code, change data, and leak information. Current memory sanitizers do no provide comprehensive coverage of a program's data. In particular, existing tools focus primarily on heap allocations with limited support for stack allocations and globals. Additionally, existing tools focus on the main executable with limited support for system libraries. Further, they suffer from both false positives and false negatives. We present Comprehensive User-Space Protection for C/C++, CUP, an LLVM sanitizer that provides complete spatial and probabilistic temporal memory safety for C/C++ program on 64-bit architectures (with a prototype implementation for x86_64). CUP uses a hybrid metadata scheme that supports all program data including globals, heap, or stack and maintains the ABI. Compared to existing approaches with the NIST Juliet test suite, CUP reduces false negatives by 10x (0.1%) compared to the state of the art LLVM sanitizers, and produces no false positives. CUP instruments all user-space code, including libc and other system libraries, removing them from the trusted code base

    Failure-Oblivious Computing and Boundless Memory Blocks

    Get PDF
    Memory errors are a common cause of incorrect software execution and security vulnerabilities. We have developed two new techniques that help software continue to execute successfully through memory errors: failure-oblivious computing and boundless memory blocks. The foundation of both techniques is a compiler that generates code that checks accesses via pointers to detect out of bounds accesses. Instead of terminating or throwing an exception, the generated code takes another action that keeps the program executing without memory corruption. Failure-oblivious code simply discards invalid writes and manufactures values to return for invalid reads, enabling the program to continue its normal execution path. Code that implements boundless memory blocks stores invalid writes away in a hash table to return as the values for corresponding out of bounds reads. he net effect is to (conceptually) give each allocated memory block unbounded size and to eliminate out of bounds accesses as a programming error. We have implemented both techniques and acquired several widely used open source servers (Apache, Sendmail, Pine, Mutt, and Midnight Commander).With standard compilers, all of these servers are vulnerable to buffer overflow attacks as documented at security tracking web sites. Both failure-oblivious computing and boundless memory blocks eliminate these security vulnerabilities (as well as other memory errors). Our results show that our compiler enables the servers to execute successfully through buffer overflow attacks to continue to correctly service user requests without security vulnerabilities.Singapore-MIT Alliance (SMA

    HardBound: Architectural Support for Spatial Safety of the C Programming Language

    Get PDF
    The C programming language is at least as well known for its absence of spatial memory safety guarantees (i.e., lack of bounds checking) as it is for its high performance. C\u27s unchecked pointer arithmetic and array indexing allow simple programming mistakes to lead to erroneous executions, silent data corruption, and security vulnerabilities. Many prior proposals have tackled enforcing spatial safety in C programs by checking pointer and array accesses. However, existing software-only proposals have significant drawbacks that may prevent wide adoption, including: unacceptably high runtime overheads, lack of completeness, incompatible pointer representations, or need for non-trivial changes to existing C source code and compiler infrastructure. Inspired by the promise of these software-only approaches, this paper proposes a hardware bounded pointer architectural primitive that supports cooperative hardware/software enforcement of spatial memory safety for C programs. This bounded pointer is a new hardware primitive datatype for pointers that leaves the standard C pointer representation intact, but augments it with bounds information maintained separately and invisibly by the hardware. The bounds are initialized by the software, and they are then propagated and enforced transparently by the hardware, which automatically checks a pointer\u27s bounds before it is dereferenced. One mode of use requires instrumenting only malloc, which enables enforcement of per-allocation spatial safety for heap-allocated objects for existing binaries. When combined with simple intra-procedural compiler instrumentation, hardware bounded pointers enable a low-overhead approach for enforcing complete spatial memory safety in unmodified C programs

    NPEFix: Automatic Runtime Repair of Null Pointer Exceptions in Java

    Full text link
    Null pointer exceptions, also known as null dereferences are the number one exceptions in the field. In this paper, we propose 9 alternative execution semantics when a null pointer exception is about to happen. We implement those alternative execution strategies using code transformation in a tool called NPEfix. We evaluate our prototype implementation on 11 field null dereference bugs and 519 seeded failures and show that NPEfix is able to repair at runtime 10/11 and 318/519 failures

    HardScope: Thwarting DOP with Hardware-assisted Run-time Scope Enforcement

    Full text link
    Widespread use of memory unsafe programming languages (e.g., C and C++) leaves many systems vulnerable to memory corruption attacks. A variety of defenses have been proposed to mitigate attacks that exploit memory errors to hijack the control flow of the code at run-time, e.g., (fine-grained) randomization or Control Flow Integrity. However, recent work on data-oriented programming (DOP) demonstrated highly expressive (Turing-complete) attacks, even in the presence of these state-of-the-art defenses. Although multiple real-world DOP attacks have been demonstrated, no efficient defenses are yet available. We propose run-time scope enforcement (RSE), a novel approach designed to efficiently mitigate all currently known DOP attacks by enforcing compile-time memory safety constraints (e.g., variable visibility rules) at run-time. We present HardScope, a proof-of-concept implementation of hardware-assisted RSE for the new RISC-V open instruction set architecture. We discuss our systematic empirical evaluation of HardScope which demonstrates that it can mitigate all currently known DOP attacks, and has a real-world performance overhead of 3.2% in embedded benchmarks

    Tag-Protector: An Effective and Dynamic Detection of Illegal Memory Accesses Through Compile-time Code Instrumentation

    Get PDF
    Programming languages permitting immediate memory accesses through pointers often result in applications having memory-related errors, which may lead to unpredictable failures and security vulnerabilities. A lightweight solution is presented in this paper to tackle such illegal memory accesses dynamically in C/C++ based applications. We propose a new and effective method of instrumenting an application’s source code at compile time in order to detect illegal spatial and temporal memory accesses. It is based on creating tags to be coupled with each memory allocation and then placing additional tag checking instructions for each access made to the memory. The proposed solution is evaluated by instrumenting applications from the BugBench benchmark suite and publicly available benchmark software, run-time intrusion prevention evaluator (RIPE), detecting all the bugs successfully. The performance and memory overheads are further analyzed by instrumenting and executing real-world applications from various renowned benchmark suites. In addition, the proposed solution is also tested to analyze the performance overhead for multithreaded applications in multicore environments. Overall our technique can detect a wide range of memory bugs and attacks with reduced performance overhead and higher detection rate as compared to the similar existing countermeasures when tested under the same experimental setup
    corecore