
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

3-1-2008

HardBound: Architectural Support for Spatial
Safety of the C Programming Language
Joe Devietti
University of Pennsylvania

Colin Blundell
University of Pennsylvania

Milo Martin
University of Pennsylvania, milom@cis.upenn.edu

Stephan A. Zdancewic
University of Pennsylvania, stevez@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Joe Devietti, Colin Blundell, Milo M.K. Martin, and Steve Zdancewic. HardBound: Architectural Support for Spatial Safety of the C
Programming Language. In International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), March
2008.
doi>10.1145/1346281.1346295
© ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in International Conference on Architectural Support for Programming Languages and Operating Systems, {(2008)}
http://doi.acm.org/10.1145/1346281.1346295n" Email permissions@acm.org

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/587
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Joe Devietti, Colin Blundell, Milo Martin, and Stephan A. Zdancewic, "HardBound: Architectural Support for Spatial Safety of the C
Programming Language", . March 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76383126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/1346281.1346295
http://dx.doi.org/10.1145/1346281.1346295
http://repository.upenn.edu/cis_papers/587
mailto:libraryrepository@pobox.upenn.edu

HardBound: Architectural Support for Spatial Safety of the C
Programming Language

Abstract
The C programming language is at least as well known for its absence of spatial memory safety guarantees (i.e.,
lack of bounds checking) as it is for its high performance. C's unchecked pointer arithmetic and array indexing
allow simple programming mistakes to lead to erroneous executions, silent data corruption, and security
vulnerabilities. Many prior proposals have tackled enforcing spatial safety in C programs by checking pointer
and array accesses. However, existing software-only proposals have significant drawbacks that may prevent
wide adoption, including: unacceptably high runtime overheads, lack of completeness, incompatible pointer
representations, or need for non-trivial changes to existing C source code and compiler infrastructure.

Inspired by the promise of these software-only approaches, this paper proposes a hardware bounded pointer
architectural primitive that supports cooperative hardware/software enforcement of spatial memory safety for
C programs. This bounded pointer is a new hardware primitive datatype for pointers that leaves the standard
C pointer representation intact, but augments it with bounds information maintained separately and invisibly
by the hardware. The bounds are initialized by the software, and they are then propagated and enforced
transparently by the hardware, which automatically checks a pointer's bounds before it is dereferenced. One
mode of use requires instrumenting only malloc, which enables enforcement of per-allocation spatial safety
for heap-allocated objects for existing binaries. When combined with simple intra-procedural compiler
instrumentation, hardware bounded pointers enable a low-overhead approach for enforcing complete spatial
memory safety in unmodified C programs.

Disciplines
Computer Sciences

Comments
Joe Devietti, Colin Blundell, Milo M.K. Martin, and Steve Zdancewic. HardBound: Architectural Support
for Spatial Safety of the C Programming Language. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), March 2008.

doi>10.1145/1346281.1346295

© ACM, 2008. This is the author's version of the work. It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in International Conference on
Architectural Support for Programming Languages and Operating Systems, {(2008)} http://doi.acm.org/
10.1145/1346281.1346295n" Email permissions@acm.org

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/587

http://dx.doi.org/10.1145/1346281.1346295
http://dx.doi.org/10.1145/1346281.1346295
http://repository.upenn.edu/cis_papers/587?utm_source=repository.upenn.edu%2Fcis_papers%2F587&utm_medium=PDF&utm_campaign=PDFCoverPages

HardBound: Architectural Support for
Spatial Safety of the C Programming Language

Joe Devietti ∗

University of Washington
devietti@cs.washington.edu

Colin Blundell
University of Pennsylvania
blundell@cis.upenn.edu

Milo M. K. Martin
University of Pennsylvania
milom@cis.upenn.edu

Steve Zdancewic
University of Pennsylvania
stevez@cis.upenn.edu

Abstract
The C programming language is at least as well known for its ab-
sence of spatial memory safety guarantees (i.e., lack of bounds
checking) as it is for its high performance. C’s unchecked pointer
arithmetic and array indexing allow simple programming mistakes
to lead to erroneous executions, silent data corruption, and security
vulnerabilities. Many prior proposals have tackled enforcing spatial
safety in C programs by checking pointer and array accesses. How-
ever, existing software-only proposals have significant drawbacks
that may prevent wide adoption, including: unacceptably high run-
time overheads, lack of completeness, incompatible pointer repre-
sentations, or need for non-trivial changes to existing C source code
and compiler infrastructure.

Inspired by the promise of these software-only approaches, this
paper proposes a hardware bounded pointer architectural primitive
that supports cooperative hardware/software enforcement of spa-
tial memory safety for C programs. This bounded pointer is a new
hardware primitive datatype for pointers that leaves the standard
C pointer representation intact, but augments it with bounds infor-
mation maintained separately and invisibly by the hardware. The
bounds are initialized by the software, and they are then propa-
gated and enforced transparently by the hardware, which automati-
cally checks a pointer’s bounds before it is dereferenced. One mode
of use requires instrumenting only malloc, which enables en-
forcement of per-allocation spatial safety for heap-allocated objects
for existing binaries. When combined with simple intra-procedural
compiler instrumentation, hardware bounded pointers enable a low-
overhead approach for enforcing complete spatial memory safety in
unmodified C programs.

Categories and Subject Descriptors C.0 [Processor Architec-
tures]: Hardware/software interfaces; D.2.0 [Software Engi-
neering]: General—Protection mechanisms; D.3.4 [Processors]:
Memory management

General Terms Languages, Security, Performance

Keywords Spatial memory safety; C programming language

1. Introduction
The C programming language is the de facto standard for systems
programming, and software written in C (or its sibling C++) makes
up the majority of code running on most platforms. This success is
due in part to the low-level control over data representation, mem-
ory management, and performance that C gives programmers. De-

∗ This work done while Joe Devietti was at the University of Pennsylvania.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’08, March 1–5, 2008, Seattle, Washington, USA.
Copyright c© 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

Figure 1. Bounded pointers: (A) Using full base/bound metadata
and (B) Compressed (pointer equals base and the object is small).

spite this widespread use, there is a price to pay: C is the source
of a range of software vulnerabilities that permeate our comput-
ing infrastructure. The root of the problem is that the C language
is inherently unsafe. Its unchecked array operations lead to buffer
overflows; the conflation of pointers and arrays allows hazardous
pointer arithmetic and dereferencing; unsafe casts allow programs
to accidentally write to or read from arbitrary memory addresses.

There have been many proposals that ameliorate the problems
caused by C’s unchecked pointer and array accesses by partially or
fully detecting violations of spatial memory safety. A violation of
spatial memory safety occurs when a program uses a variable to
access memory that is outside the bounds of the object associated
with the variable. Spatial errors include accessing the nth element
of an m-element array when n > m, erroneously indexing off a non-
array pointer, or casting a pointer to a struct larger than the region
originally allocated and then accessing a field that is beyond the
bounds of the original allocation.

To help detect and diagnose spatial errors in C programs, many
software-only tools (e.g., [3, 19, 24, 42, 43, 44, 50]) and hardware-
supported techniques (e.g., [32, 47, 59, 65]) have been proposed.
Although these techniques are useful, many of them do not provide
complete spatial memory safety. Likewise, many special-purpose
techniques (in software and hardware) address restricted classes
of security exploits made possible by spatial memory safety viola-
tions. These approaches focus on protecting the return address [9,
34, 39], protecting data pointers [8] or code pointers [57], detecting
anomalous program flow [20], protecting heap metadata [29], or
preventing memory attacks by tracking untrusted inputs via taint-
ing [10, 46, 55, 58]. Although effective in many cases, these tar-
geted proposals mostly focus on specific attacks or symptoms and
not on the root cause of the problem.

Instead of relying on this patchwork of incomplete and indi-
rect solutions, other approaches have directly attacked the source
of the problem: C’s lack of spatial memory safety. Just as type-safe
languages like Java and C# eliminate all of the vulnerabilities men-

1

tioned above, an implementation of C that enforces spatial safety
will also avoid them. Several promising software-only approaches
for enforcing full or almost-full spatial safety for C have been pro-
posed (e.g., [2, 7, 14, 27, 28, 40, 45, 49, 61, 62]).

Unfortunately, these software-only proposals all suffer from one
or more deficiencies that may prevent wide adoption, such as: un-
acceptably high runtime overheads, incomplete detection of spa-
tial violations, incompatible pointer representations (by changing
memory layout), or requiring non-trivial changes to existing C
source code. Moreover, the software-only schemes with the low-
est performance overheads generally require sophisticated whole-
program compiler analyses (e.g., [14, 40]). Section 2 discusses
these software techniques in detail.

This paper describes HardBound, a new hardware design that
overcomes the deficiencies of these software-only approaches by
providing architectural support for a new primitive datatype—a
hardware bounded pointer—inspired by the pointers used in
Safe-C [2], CCured [40], and Cyclone [27]. These software-based
schemes replace some or all of the pointers in the program with
three-word “fat” pointers that encode the actual pointer, the base
address of the associated object, and its bound (as illustrated
in Figure 1(A)). Unlike the purely software approaches to im-
plementing fat pointers, our proposed HardBound support (1)
maintains memory layout compatibility by encoding the bounds
information in a disjoint shadow space, (2) implicitly checks
and propagates the bounds information as the bounded pointer is
dereferenced, incremented, and copied to and from memory, and
(3) reduces storage and runtime overheads by caching compressed
pointer encodings, thereby allowing many bounded pointers to be
efficiently represented using just a few additional bits of state (as
illustrated in Figure 1(B)).

Hardware bounded pointers are intended to facilitate software
enforcement of spatial memory safety—the software is responsible
for communicating valid bounds metadata to the hardware via calls
to a new setbound instruction. This design permits flexible use
of HardBound primitives, ranging from simple bounds protection
at the heap-allocated object granularity (which requires only minor
changes to malloc() and is binary-compatible with legacy code)
to CCured-style complete spatial safety.

To summarize, this paper makes the following contributions:
• We describe HardBound—a hardware bounded pointer

primitive—and accompanying compiler transformations that
together enforce complete spatial safety for C programs.
Section 3 describes the hardware bounded pointer model,
hardware bounds propagation, and their use for spatial safety.
The HardBound approach strives to minimize changes to the
compiler infrastructure, and it retains compatibility with legacy
C code with respect to memory layout.

• We propose an efficient implementation of hardware bounded
pointers (in Section 4) that opportunistically uses a compressed
metadata encoding. In the uncommon case, the full base and
bound metadata are stored in a reserved portion of virtual mem-
ory. In the common case of pointers to small objects and non-
pointer data, the hardware encodes the bounded pointer meta-
data using just a few bits. These bits are stored either in memory
or in unused bits of the pointer itself. In both cases, the hard-
ware performs the encoding and decoding, making the specific
encoding transparent to the software.

• We experimentally evaluate both the functional correctness and
performance of our approach (in Section 5). HardBound accu-
rately detects all spatial memory violations in an extensive suite
of spatial violation test cases [31]—with no false positives. Per-
formance measurements of a simulated x86 processor on a va-
riety of benchmarks indicate that the runtime overhead is just
5% to 9% on average depending on the pointer encoding.

Although spatial safety enforcement eliminates a large class
of bugs and security vulnerabilities, it does not eliminate all of
them. As discussed in Section 6.1, HardBound provides just enough
type safety to enforce full spatial safety, but it does not provide
full type safety. HardBound also does not address temporal mem-
ory safety errors (e.g., dangling pointers and uninitialized mem-
ory reads). Section 6.2 considers temporal-safety issues and sug-
gests how HardBound may be used in conjunction with existing
temporal-safety protection mechanisms.

Before describing our hardware bounded pointers, we first
overview the prior software-only approaches for detecting spatial
memory violations in C that motivated and inspired this work.

2. Background: Detecting Spatial Violations in C
Detecting spatial safety violations in C programs is not a new prob-
lem. Several techniques for detecting spatial memory violations
for C were proposed in the 1990s as debugging aids, and more
recent work has improved efficiency to the point where they are
arguably fast enough for everyday use. The next few subsections
describe and compare these approaches, focusing on their perfor-
mance, completeness, and compatibility attributes. Because our fo-
cus is on spatial violations, we defer discussion of the temporal
violation detection aspects of these approaches until Section 6.2.
Proposals that focus on information flow, taint analysis, or tamper-
resistant hardware are discussed later in Section 7.

2.1 Red-Zone Tripwire Approaches
One approach to detecting spatial violations is to track a few bits of
state for each byte in memory; the additional bits indicate whether
the location is currently valid [24, 43, 47, 59, 62]. As memory is
allocated, the bytes are marked as valid. Every load or store is
instrumented to check the validity of the location. By placing a
“red-zone” block of invalid memory between memory objects, con-
tiguous overflows—caused by walking past an array boundary with
small stride—will hit the red-zone tripwire, assuming the red-zone
size is larger than the stride. These techniques are not complete:
large overflows may jump over the tripwire and access data from
another object undetected, causing a spatial safety violation.

Purify [24] and Valgrind’s MemCheck [43] implement the trip-
wire approach using binary rewriting, but their large performance
overheads restrict them to use only during software development.
Yong et al. [62] use static analysis and check only memory writes to
reduce the runtime overhead of this approach to under 2x in many
cases. The overheads of this technique can be further reduced by
either using invalid ECC signatures to encode invalid memory lo-
cations [47] or adding hardware support for updating and checking
the valid/invalid blocks [59]. Although useful for finding spatial
violations (and many temporal errors, as discussed in Section 7), a
significant drawback of these schemes is that they cannot guarantee
the detection of all spatial violations.

2.2 Object Lookup Approaches
The second general approach is to track the size of each object
in a separate data structure and ensure that all pointer arithmetic
and pointer dereferences fall within the bounds of the original ob-
ject [28]. Because legal C programs are allowed to increment a
pointer past the end of an object, an error should be triggered
only when an out-of-bounds pointer is actually dereferenced. To
distinguish between an out-of-bounds pointer and a pointer to the
next object in memory, such a pointer is changed to point to a
special out-of-bounds object [49]. If later pointer arithmetic puts
the pointer back in bounds, the pointer must be correctly restored.
The object lookup table is typically implemented as a splay tree in
which objects are identified with their locations in memory, yield-
ing runtime overheads of 5x [28]. Optimizations can reduce over-

2

head by improving the implementation [14, 19, 49], checking only
strings [49], caching tree lookups [14, 19], or using static analysis
to elide tracking of non-array objects and to enable multiple splay
trees [14].

The most important advantage of this approach is that the layout
of objects in memory is unchanged, which provides fewer source
and binary compatibility issues than the fat pointer schemes de-
scribed below. Unfortunately, the object lookup approach can suffer
from high runtime overheads unless combined with sophisticated
whole program analysis [11, 14]. Another disadvantage is that this
approach cannot detect all spatial violations because the bounds of
arrays inside structs are not checked [14, 28]. For example:

1 struct {char str[5]; int x;} node;
2 char *ptr = node.str;
3 strcpy(ptr, "overflow"); // overwrite node.x

With the above code, pointers to node and node.str are in-
distinguishable (they are the same address). Because both point-
ers map to a single table entry, a pointer to node.str is given
bounds of the whole node object. Thus, when ptr is passed to
strcpy()—even if strcpy() has been instrumented—an over-
flow of node.str that does not overflow the entire structure will
not be detected. As node.x could have been a data or function
pointer, this undetected spatial memory violation could lead to a
serious memory corruption bug or security vulnerability.

2.3 Fat Pointer Approaches
The third general approach is to use a fat pointer representation that
replaces some or all pointers with multi-word pointer/base/bound
triples as shown in Figure 1(A). These three-word bounded point-
ers represent the actual pointer value together with the addresses of
the upper and lower bounds of the object. A bounded pointer can be
incremented (by changing just its value portion) and yet still be ver-
ified to be within the array (by checking the value against the two
bounds). If the pointer is incremented too far, any out-of-bounds ac-
cess will be detected when the pointer is dereferenced. This strategy
avoids the problems with object-indexed tables, because multiple
pointers to the same base address can be given different bounds.
Proposals such as SafeC [2], CCured [40], Cyclone [23, 26, 27],
and others [32, 42, 45, 61] use fat pointers to enforce spatial safety
by checking that every pointer dereference falls between its associ-
ated base and bound.

The primary advantage of fat pointers is that they can be used to
enforce complete spatial safety. However, propagating and check-
ing bounds for all pointers can result in 2x or more runtime over-
head [2]. Consequently, various techniques have been proposed to
safely eliminate the use of fat pointers. Cyclone, for example, is
a C-like language that explicitly distinguishes non-array pointers
from array pointers. Non-array pointer bounds are validated by
static typechecking, so only array pointers are required to be fat.
Compared with unsafe C programs, Cyclone’s dynamic checks in-
crease runtime by about 40% on a range of benchmarks [27]. Cy-
clone’s primary drawback is that it requires significant effort to port
C programs—Cyclone is a new language.

CCured [40] uses whole-program type inference to statically
optimize the use of different kinds of pointers, trading off between
the performance overheads and the degree of flexibility in their
use. SAFE pointers have almost no overhead, but cannot be used
for pointer arithmetic, array indexing, or type casts. SEQ pointers
are fat pointers that allow pointer arithmetic, array indexing, and
some casts. To support arbitrary casts, CCured uses WILD pointers,
which require expensive dynamic checks and additional metadata.
CCured’s type inference dramatically reduces run-time costs asso-
ciated with safety checks as compared to Safe-C, but the overheads
can still be significant: the CCured papers report execution time
overheads of 3%–87% on a range of benchmarks.

2.4 Analysis and Comparison
The object table and fat pointer schemes have complementary
strengths and weakness. Object table approaches are highly-
compatible as they avoid changing memory layout—so compatible
they have been successfully applied to the entire Linux ker-
nel [11]—but they do not enforce complete spatial safety. Fat
pointer approaches can enforce complete spatial safety, but the
memory layout and pointer representation changes cause source
code and library incompatibilities [7, 40, 61, 64]. Attempts have
been made to mitigate the compatibility issues of fat pointers by
splitting out the bounds and base metadata (e.g., [40, 61]), but
such techniques can result in shadow structures that mirror entire
existing data structures. Even with such splitting support, the
CCured developers marked some program statements as trusted
to avoid creating WILD pointers (and the significant performance
issues caused by them [40]). Deputy [7, 64], a follow-on project
to CCured, ensures spatial safety at runtime while avoiding fat
pointers. To accomplish this, it uses dependent type annotations
to associate pointers with bounds metadata already present in the
program. This approach mitigates the memory layout compatibility
issues at the cost of programmer-inserted annotations.

Another potential concern is that the most efficient implemen-
tations of both object table and fat pointer methods use whole-
program analysis. Although whole-program analysis is becoming
more widely used, it is currently not commonly used for C pro-
grams. Furthermore, precompiled libraries and dynamically loaded
code can significantly limit such analysis. The inference algorithms
used by these implementations also have the property that a small
change in one part of the program (e.g., use of pointer arithmetic
or type cast) can have a significant impact on the runtime of other
seemingly unrelated parts of the program. Such effects make it dif-
ficult for programmers to reason about performance. Finally, with
these innovations the runtime overheads are acceptable on average,
but some benchmarks still incur significant runtime overheads.

In summary, the fat pointer approach is appealing because it
can enforce complete spatial safety, but it suffers from compatibil-
ity issues as well as high runtime overheads in some cases. Recent
proposals have demonstrated that these performance overheads can
be lowered by adding bounds checking instructions [1, 5], but
the compatibility issues remain. In the next section, we describe
HardBound, our proposal that makes the fat pointer approach bi-
nary compatible as well as providing increased performance over
software-only schemes.

3. A Hardware/Software Approach
HardBound’s goal is to provide a hardware primitive that allows a
C compiler to enforce the complete spatial memory safety of the fat
pointer approach, retain the binary compatibility of the object-table
approach, and incur lower overheads than the fastest implementa-
tion of either. HardBound thus provides ISA support for first-class
bounded pointers that are intended to meet the following criteria:

• Completeness: It should be possible to use HardBound’s prim-
itives to enforce spatial safety guarantees as strong as CCured’s.

• Performance: The hardware should yield performance compa-
rable to or better than the best performing software-only ap-
proaches.

• Binary compatibility: The metadata needed for HardBound’s
bounded pointers should be transparent to the source program
so that legacy data layout, library interfaces, and legacy code
compatibility are preserved.

• Source compatibility: HardBound should be usable with min-
imal modifications to existing C source code.

3

• Minimal compiler support: Using HardBound should not re-
quire compilers that do whole-program analysis or require ex-
tensive modifications to the runtime system.

One important consideration is the division of labor between
the compiler and hardware. In HardBound’s design, the compiler
and/or runtime system is responsible for creating bounded point-
ers by (1) communicating initial base and bounds information to
the hardware and (2) occasionally tightening pointer bounds (e.g.,
when the program creates a pointer to a substructure). The hard-
ware is responsible for (1) dynamically checking that all memory
accesses are within the specified bounds and (2) propagating the
metadata as the pointer is manipulated in memory and registers
(e.g., when a pointer is copied or incremented).

In HardBound, as in software-only approaches, the compiler
guarantees memory safety—an incorrect compiler implementation
may produce unsafe binary code. However, by making fat pointers
cheap, HardBound reduces the need to do whole-program analysis,
simplifying the compiler. Section 3.2 describes how the HardBound
primitives can be used to enforce spatial safety, but we first give a
high-level description of HardBound’s bounded pointer datatype
(Section 3.1). The discussion of efficient implementations of Hard-
Bound is deferred to Section 4.

3.1 A Bounded Pointer Hardware Primitive
HardBound (conceptually) extends every register and word of
memory in the virtual address space with a “sidecar” shadow
base and bound. Instead of being single values, the archi-
tected state of registers and memory locations are now triples
{value; base; bound}. The base address is the first valid
address of the region; the bound is the first address after the end
of the region (see Figure 1). For non-pointer values, the base and
bound portion are set to zero and ignored. For pointer values, the
base and bound are used to perform an implicit bounds check
for every load or store operation. Storing the base and bound
information in sidecar shadow spaces has the advantage of not
changing the program’s view of the memory layout of datatypes,
and it simultaneously allows for an efficient compressed encoding
of the bounds information in the common case (see Section 4).

Setting and propagating bounds information in registers. The
hardware provides a setbound instruction that adds or modifies
the bounds information of a pointer.1 The setbound instruction
takes an input register that contains a memory address and an input
register (or immediate) with the size of the region to which the
pointer will be bounded. For example, lines 1 and 2 in Figure 2
create a bounded pointer to an array of size four that begins at
memory address 0x1000. Such code might be executed within a
malloc invocation that performs a four-byte allocation.

Whenever the processor performs a pointer dereference, the ef-
fective address of the pointer is checked to be between its associ-
ated base and bound. This check occurs implicitly as part of every
load or store operation to memory. If the bounds check passes, no
action is taken; if the check fails, the processor raises an exception.
The runtime system handles the exception by either terminating
the process or invoking some other language-specific exception.
Continuing the example in Figure 2, the load instruction on line
3 passes the bounds test associated with the bounded pointer in R2;
the load in line 4 fails.

Pointer arithmetic and other pointer manipulations are common
in C programs. To free the compiler from the burden of explicitly
maintaining and propagating bounds information (and eliminate the
associated run-time overhead), the hardware automatically propa-
gates the bounds information when a register containing a pointer

1 The hardware also provides readbound and readbase instructions to
allow the software to explicitly extract the pointer metadata.

// Reg ← {value; base; bound}
1 set R1 ← 0x1000 // R1 ← {0x1000; 0; 0}
2 setbound R2 ← R1,4 // R2 ← {0x1000; 0x1000; 0x1004}
3 load R3 ← Mem[R2+2] // read address 0x1002, check passes
4 load R3 ← Mem[R2+5] // read address 0x1005, check fails
5 add R4 ← R2 + 1 // R4 ← {0x1001; 0x1000; 0x1004}
6 load R5 ← Mem[R4+2] // read address 0x1003, check passes
7 load R5 ← Mem[R4+5] // read address 0x1006, check fails

Figure 2. Code demonstrating implicit bounds checks and bounds
propagation.

(A) add R1 ← R2 + imm (output: R1, inputs: R2, imm)
R1.value ← R2.value + imm // do the addition
R1.base ← R2.base // copy R2′s base
R1.bound ← R2.bound // copy R2′s bound

(B) add R1 ← R2 + R3 (output: R1, inputs: R2, R3)
R1.value ← R2.value + R3.value
R1.base ← if (R2.bound != 0) R2.base else R3.base
R1.bound ← if (R2.bound != 0) R2.bound else R3.bound

(C) load R1 ← Memory[R2] (output: R1, inputs: R2)
if (R2.base == 0 and R2.bound == 0) // nonpointer check

raise non-pointer exception
// do the bounds check
if (R2.value < R2.base or R2.value ≥ R2.bound)

raise bounds check exception
else

R1.value ← Mem[R2.value].value // load value
R1.base ← Mem[R2.value].base // load base
R1.bound ← Mem[R2.value].bound // load bound

endif

(D) store Memory[R2] ← R1 (inputs: R1, R2)
if (R2.base == 0 and R2.bound == 0) // nonpointer check

raise non-pointer exception
// do the bounds check
if (R2.value < R2.base or R2.value ≥ R2.bound)

raise bounds check exception
else

Mem[R2.value].value ← R1.value // store value
Mem[R2.value].base ← R1.base // store base
Mem[R2.value].bound ← R1.bound // store bound

endif

Figure 3. Bounds propagation through add instructions (A) and
(B) and bounds checking and propagation through a load (C) and
store (D) instructions.

is manipulated. For example, when an offset is added to a pointer,
the destination register inherits the same bounds information as the
original pointer. Line 5 of Figure 2 shows the result of increment-
ing the pointer in R2 and storing the result in R5—although the
value component is incremented, the base and bound components
are copied unchanged.

Whether the output of an instruction inherits bounds informa-
tion is determined by the specific operation and pointer/non-pointer
status of the input registers. For example, adding a pointer to an im-
mediate or another non-pointer register propagates the bounds from
the pointer register. As such, a word-sized register-register addition
instruction would be defined as in Figure 3 (A) and (B).

Any instruction that directly manipulates pointers propagates
the pointer information in this way. For example, subtracting a
value from a pointer also propagates the bounds, as do these other
instructions (in the x86 ISA): add, sub, lea, mov, and xchg. For
other operations that are not typically used to calculate pointers
(multiply, divide, shift, rotate, and logical operations), we opt not
to propagate bounds information, but there is a choice: these in-
structions could also safely propagate bounds.

4

Propagating bounds information to and from memory. Just pro-
viding an in-register representation for bounded pointers could re-
duce the runtime overhead of performing bounds checking, but it
does not address the memory layout issues with fat pointers or re-
duce the overhead of storing and loading pointer values. To address
these problems, the hardware also propagates bounds information
to and from memory.

Just as all HardBound registers conceptually have extra base
and bounds metadata, every value in memory also conceptually has
a base and bound word associated with it (Mem[addr].value,
Mem[addr].base, Mem[addr].bound). For example, the be-
havior of simple loads and stores is shown in Figure 3(C) and (D).
Memory operations with more sophisticated addressing modes
(register+immediate, register+register) are defined analogously.

A naive implementation of this conceptual model would triple
the memory footprint, cache accesses, cache miss rates, and TLB
miss rates. Section 4 describes our hardware encoding that more
efficiently encodes the common cases of (1) non-pointer data and
(2) a pointer in which the difference between base and bound is
small, dramatically reducing the overheads from this worst-case
scenario.

HardBound instructions are non-privileged. The proposed
hardware is used solely to improve the efficiency and compatibility
of fat pointers. Just as software-only fat pointers are manipulated
and checked by user-mode instructions, our proposed hardware
support also operates in user mode. The hardware does not provide
protection in the sense of virtual memory, unforgeable capabilities
[13, 37, 53] or fine-grained memory protection [60]. Although
these privileged protection schemes are valuable, such support is
not required to allow a compiler to generate a program binary that
prevents all spatial memory violations.

3.2 Compiler and Runtime Support
HardBound’s primitives are intended to provide spatial safety with
minimally invasive changes to the compiler and runtime and with-
out needing help from the programmer (in the form of source-code
modifications). This section describes a variety of techniques for
using hardware bounded pointers. Applying all of these techniques
(as our prototype compiler does) achieves spatial safety guarantees
as strong as those of CCured using only localized changes to the
compiler.

Protecting heap-allocated objects. Heap-allocated objects are
bounded by instrumenting malloc() and related runtime-library
functions to appropriately set the base and bounds on pointers they
return. For example, consider a program that malloc()s an array
of characters. Once allocated, any array-indexed dereferences from
that pointer are checked by the hardware. Likewise, any pointers
created by performing arithmetic on this pointer (e.g., repeatedly
incrementing this pointer while iterating down the array) will
also be checked when dereferenced. If this pointer is passed
as a parameter or written to memory, the bounds information
propagates without any further software intervention. Without
additional compiler changes, using just this library instrumentation
provides spatial safety of heap objects on a per-object granularity,
even for compiled legacy code.2

Protecting local and global variables. The compiler performs
a simple analysis to identify any pointers the program creates
to local (stack-allocated) or global data structures, including
stack-allocated arrays, global arrays, and any local or global
variable passed by reference or whose address is taken (e.g., i in

2 This malloc()-only HardBound mode checks memory accesses only
when bounds information is present; no checking is performed on the non-
heap references (i.e., those memory accesses without bounds information).

int i; int *j = &i;). Once identified, the compiler adds an
appropriate setbound instruction at the time the pointer is created
(e.g., int *j = setbound(&i, 4);). The sizes of all global
objects and all stack-allocated objects are statically known, so the
compiler already has the proper bounds information needed for the
setbound instruction.

Once set with the proper bounds, the pointer to a global or
stack-allocated object acts as a heap-allocated object from a bounds
checking point of view. Because setbound is just an instruction
that manipulates register values, it can be hoisted out of loops and
otherwise optimized by normal compiler transformations.

Protecting sub-objects. A second case handled by the compiler
is that of narrowing the bounds when creating a pointer to a sub-
object within a larger object. For example, C allows statically-sized
arrays to be embedded in a struct. If the program creates a pointer
to such an array, the compiler refines the bounds to include just the
extent of the array.3 For example:

1 struct {char str[5]; int x;} node;
2 char *ptr = node.str;
3 strcpy(ptr, "overflow"); // overwrites node.x

Without intervention, the function call in line 3 would overwrite
node.x. Although the size of the internal str array is known stat-
ically in the above code, the code for strcpy() has no way to
check the bounds without help. To prevent this violation of spatial
safety, the compiler rewrites line 2’s access to node.str to refer to
a pointer that has its bounds set appropriately using setbound:

2’ char *ptr = setbound(node.str, 5);

By setting the bounds on ptr, HardBound ensures that the spatial
violation will be detected within strcpy().

Programmer-specified sub-bounding. Extracting a single
element from an array in C is an ambiguous operation with respect
to bounds propagation. Given the statement int* p = &q[3],
without whole program analysis, the compiler cannot determine
whether to propagate the bounds of the entire array q or to shrink
the bounds to the sub-bounds of the single array element q[3].
Although it is always correct to maintain the bounds of the entire
array, sub-bounding—if in line with the program’s intent—both
offers finer-grained protection and can reduce HardBound’s over-
head. Our compiler acts conservatively by not shrinking bounds,
but such sub-bound operations were inserted in one benchmark to
reduce overhead (see Section 5.3).

Programmer-specified (un)checked pointers. Finally, it is pos-
sible that the programmer knows (or can compute) appropriate
bounds information that the compiler and runtime libraries do not
have available. Such is the case with custom memory allocators,
device drivers, and other low-level system code. Sophisticated pro-
grammers can write such code that is still safe by calling the
setbound instruction directly. For example, a custom memory al-
locator that hands out chunks of a large array would follow the strat-
egy of refining the bounds for the pointers to chunks it hands out.
It is possible to construct a completely unsafe pointer that passes
all bounds checks by setting base to zero and bound to MAXINT.
This ability plays the same escape-hatch role in HardBound as C#’s
unmanaged code or Java’s JNI. As with any unsafe code exten-
sions to a safe language, such pointers must be used carefully to
ensure safety, but making unsafe operations explicit makes it easier
to identify potential problems in the code.

3 To handle the somewhat common idiom of dynamic over-allocation of
structs with zero-sized arrays as the last element, if the static size of the
array is zero, the compiler generates a new pointer with base at the start of
the array and bound that extends to the size of the malloced region.

5

4. Hardware Implementation
Although the model of hardware-supported bounded pointers pre-
sented in the last section is conceptually simple, a straightforward
implementation would result in significant overheads. This sec-
tion describes (1) placing the metadata into the virtual memory
space, (2) adding a tag metadata space that identifies each word as
a pointer/non-pointer, and (3) a compressed encoding of bounded
pointers that dramatically reduces the overheads versus a naive im-
plementation.

4.1 Placing Metadata in Virtual Memory
The base and bound metadata for memory words are placed in the
virtual memory space, paralleling the normal data space, but offset
by a constant amount. To improve spatial locality (and reduce frag-
mentation) of the base/bound region, these values are interleaved,
allowing both the base and bound words to be read/written using
a single double-word load/store operation. The function for calcu-
lating the address of the base and bound from a regular address is:

base(addr) = SHADOW_SPACE_BASE + (addr * 2)
bound(addr) = SHADOW_SPACE_BASE + (addr * 2) + 1

These are normal virtual addresses, and accessing them follows
the usual address translation, page allocation, and page swapping
mechanisms in the operating system. SHADOW_SPACE_BASE is set
when the address space is created, and it is stored in a special-
purpose hardware register.

4.2 Encoding Pointer/Non-Pointer Efficiently
In a straightforward implementation, every load or store instruction
would implicitly access the base and bound (as well as the data).
Because the base and bounds shadow space is twice the size of
the space of values, this would dramatically increase the cache and
memory working set of the program. However, most of the values
in C programs are non-pointers (represented by base and bound set
to zero), and no base/bound accesses should be required for them.

To reduce the overhead of non-pointers, we introduce another
metadata space—the tag metadata space. It contains one bit per
word in memory to encode whether the word is a pointer or not.
Before reading the base/bound metadata, the processor first checks
the tag. If the word is not a pointer, the processor elides the access
to the base/bound region. Whenever the processor writes a non-
pointer word to memory, it clears the corresponding tag metadata
bit. Whenever it writes a pointer to memory, it sets the tag meta-
data bit (in addition to writing the base/bound metadata). The tag
metadata space uses only one bit per word, which adds only a few
percent to the memory footprint (1 bit per 32-bit word is 3%).

Because this tag metadata is needed by every memory opera-
tion, we add a tag metadata cache as shown in Figure 4. The pro-
cessor accesses this cache in parallel with the L1 cache. If the tag
metadata indicates the location is a pointer, the processor then ini-
tiates a cache access to obtain the base/bound metadata. The tag
cache is just a normal cache (same block size, dirty bits, coherence
permissions), except that it caches blocks of metadata bits only.
This cache is a peer with the primary data and instruction caches,
and—just as for them—a miss in it will query the second-level
cache before sending a request to memory (allowing caching of
metadata in the second-level cache). Just as the instruction and data
caches have dedicated address translation structures (i.e., TLBs),
the tag metadata cache also has its own TLB. As metadata tags are
much smaller than data, the tag cache can be much smaller than the
primary data cache—a 2KB tag cache holds the tag state of 64KB
of the program’s data (which is the size of a typical L1 data cache).
This tag metadata cache organization is similar to MemTracker’s
split cache configuration for tracking auxiliary state [59].

Figure 4. Placement of the tag metadata cache (shaded).

4.3 Compressing Bounded Pointers
Many pointers in C programs point to structs or small arrays.
CCured’s success in inferring SAFE pointers indicates that often the
value and base component of a pointer are identical. Furthermore,
most C structs are small so the difference between the pointer
base and bound is also small. These observations suggest a sim-
ple mechanism for compressing the metadata: use just a few bits
to encode the common case of pointers to small objects, but retain
the full base/bound encoding option as a backup. For example, if
a pointer’s value and base are the same and the object size is less
than 2n, the base/bound metadata can be encoded in just n addi-
tional bits. We explore both external compressed encodings (ad-
ditional bits in the tag space) and internal compressed encodings
(opportunistically stealing redundant bits from within the pointer
itself). By eliminating many accesses to the full base/bound meta-
data, these compressed encodings reduce cache accesses, cache ca-
pacity pressure, and physical pages allocated for metadata.

External compressed pointer encoding. By expanding the tag
metadata space from one bit to four bits per word, the hardware can
encode 24 tags to indicate whether a word is non-pointer data, one
of 14 compressed bound sizes, or whether it is a non-compressed
pointer. We found that most object sizes were multiples of four
bytes, so we use the 14 patterns to compress pointers to the begin-
ning of objects (i.e., base = ptr) whose size ranges from 4 to 56
bytes (i.e., bound = tag*4). The tag is set to “non-compressed”
if (1) the size is not a multiple of four bytes, (2) the object is larger
than 56 bytes, or (3) the pointer does not point to the beginning
of the object. Non-compressed pointers are handled as described
previously: the hardware accesses the full metadata.

Internal compressed pointer encoding. To avoid the runtime
overheads of a larger tag metadata space, bits within the pointer it-
self can be transparently hijacked to encode metadata information.
First, we steal one bit from the virtual address space to specify
whether a pointer is compressed or not. By selecting this bit to
correspond with the virtual memory region of the metadata shadow
space, the total virtual memory space available is not further
reduced. Note that this scheme still needs the 1-bit tag metadata
that determines whether a location is a pointer, otherwise an integer
that is cast to a pointer could masquerade as a bounded pointer,
weakening the type safety guarantees discussed in Section 6.1.

Internal pointer compression targets pointers whose upper n bits
are all ones or all zeros. For such pointers, it repurposes n− 1 of
these upper bits as metadata and the remaining bit is used to re-
construct the other n− 1 bits of the pointer value during decom-
pression. On 32-bit processors, using four internal bits would allow
compression similar to the 4-bit external encoding above. However,
it has the additional restriction that pointers to objects beyond the

6

highest or lowest 128MBs of the virtual memory space are not eli-
gible for compression. Pointers to objects in those regions still work
correctly; they are just non-compressible.

For a 64-bit virtual address space, even for n as large as 14,
only objects beyond the first petabyte (250) of the virtual address
would be ineligible for compression. These additional bits enable
the encoding of pointers to larger objects and more flexible pointer
encodings (e.g., allowing the base and pointer to be different).

4.4 Processor Core Operation
The processor core has four duties: (1) storing and propagating
the metadata information in registers, (2) performing the bounds
checks on memory operations, (3) loading and storing in-memory
metadata, and (4) decompressing and opportunistically compress-
ing pointers. A straightforward implementation for representing the
register metadata is to add a double-word base/bound shadow reg-
ister file (or use register sidecars [60]) and some datapath elements.
This circuity operates in parallel with the main core pipeline, and
its calculations are not on the critical path. A setbound instruc-
tion writes the base and bound into the shadow register file. Non-
memory instructions copy the base/bound metadata from the in-
put’s shadow register to the output’s shadow register. When deref-
erencing a pointer, the processor calculates the effective address
and compares it to the base and bound; this bounds checking is
done in parallel with the data cache lookup using a dedicated ALU.

The processor is also responsible for loading and storing pointer
metadata. It uses a dedicated cache to access the tag metadata in
parallel with the data cache for all memory operations. In contrast,
the base/bound metadata and program data share the primary data
cache. Base/bound metadata lookups—needed only when loading
a non-compressed pointer—are performed sequentially, sharing the
same cache port as the main pipeline. When writing a pointer to
memory, the processor first determines whether the pointer is com-
pressible. For all stores, the processor then writes the data cache
(with the actual data value of the store) and the tag metadata cache.
When storing an incompressible pointer, the processor performs an
additional data cache write to update the full base/bound metadata.

Manipulation of compressed pointers presents a design choice.
In our baseline implementation, the hardware expands compressed
pointers whenever they are loaded by writing the expanded base
and bound into the shadow registers. Alternatively, the proces-
sor can use the compressed pointer representation internally by
adding tag metadata sidecars to the primary registers. In the lat-
ter approach, the base/bound shadow register file is accessed only
when manipulating non-compressed pointers. When dereferencing
compressed pointers, a narrow adder checks that the address is in
bounds. Whenever a pointer’s value changes (e.g., due to a pointer
increment), if the resulting pointer is no longer compressible, the
hardware expands the pointer. Finally, for any instruction that uses
a pointer value (e.g., comparing the equality of two pointers), the
hardware uses the actual pointer values (not the compressed ones)
in the computation. By following these invariants, the compressed
encodings remain invisible to programs running on the processor.

4.5 Other Implementation Considerations
Forward compatibility. If setbound is given an instruction en-
coding that is currently a no-op instruction, newly annotated pro-
grams can be distributed widely (to both those users with the ad-
ditional hardware support and those without). Running a modified
binary on a current processor will execute just as a normal C pro-
gram. However, once the user upgrades to a new machine with the
appropriate hardware support, these same binaries will begin pro-
viding spatially protected execution.

OS support. The only operating system change required is saving
and restoring the additional architected state (base/bound shadow

registers and a few control registers) on context switches. Such a
change is required any time new architected registers are added,
for example, when Intel added registers for their MMX/SSE/SSE2
extensions. Because the base/bound metadata and tags are placed
in the virtual memory space, no special paging support is needed.

Atomic pointer operations. As with software-only fat pointer ap-
proaches, if operations on bounded pointers occur non-atomically,
interleaved execution and race conditions (either unintentional
races or intentional races used in lock-free concurrent data
structures) can cause memory safety violations [22]. To provide
thread-safe execution, HardBound performs the pointer access and
the metadata accesses as a single atomic operation. This operation
is essentially a bounded memory transaction [25, 33], and it can
be implemented using any of the proposed hardware transactional
memory techniques. Hardware support for bounded transactions
could be used to provide atomicity for software-based fat pointer
operations as well.

5. Experiments
We evaluate HardBound by (1) testing its ability to detect memory
safety violations and (2) assessing its runtime overheads. For these
tests, we use programs compiled with our prototype compiler that
inserts setbound instructions to enforce complete spatial safety.

5.1 Experimental Methods
We use the Simics full-system simulator [38] to simulate an in-
order 32-bit x86 processor. We simulate all user-mode code (in-
cluding DLLs) and kernel-mode instructions, but HardBound is
disabled while executing kernel code. We use PTLSim [63] to de-
code x86 instructions into micro-operations (µops). The simulated
processor executes at most one micro-operation per cycle. Any
load or store of an uncompressed bounded pointer creates an ad-
ditional micro-operation to access the bounds metadata. The simu-
lated memory hierarchy models a 32KB 4-way SA first-level cache
with a 12-cycle miss penalty, a 4MB 4-way SA L2 cache with 200-
cycle miss penalty, and 4-way SA 256-entry TLBs with 4KB pages
with a 12-cycle miss penalty. The tag metadata cache is 2KB 4-
way SA when HardBound uses a 1-bit encoding; it is 8KB 4-way
SA when using a 4-bit external compressed encoding. All caches
have 32-byte blocks.

The prototype compiler inserts setbound instructions using a
set of CIL source-to-source transformations [41]. The resulting C
code is then passed to GCC 4.2 with -O3 optimizations.

We compare against CCured as a representative of a highly-
optimized software-only scheme. CCured incurs runtime overheads
both for providing spatial safety (using fat pointers) and temporal
safety (using a conservative garbage collector and selective heapi-
fication of stack-allocated variables). As HardBound focuses only
on spatial safety, we reduce CCured’s overhead by disabling these
temporal safety features to provide a fair performance comparison.

We chose the Olden benchmarks [48] for our performance eval-
uation because they are pointer intensive and have been used to
evaluate important prior works (e.g., [2, 14, 40]), allowing com-
parisons. Furthermore, as C programs do require some changes to
work correctly and efficiently with CCured, we obtained modified
sources for the Olden benchmarks directly from the CCured group.

5.2 Functional Correctness Experiments
We verified the functional correctness of our scheme by testing it
against a suite of 291 spatial memory violations [31]. The suite
contains a wide range of spatial violation tests, including various
combinations of: reads and writes; upper and lower bounds; stack,
heap, and global data segments; and various addressing schemes
and aliasing situations. Each test case has two versions: one with

7

5%

10%

15%

20%

25%
ru

n
ti

m
e

o
v
er

h
ea

d
additional memory latency
stalling on pointer metadata
micro-ops for loading/storing bounds
setbound instructions

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

bh

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

bisort

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1
em3d

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

health

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

mst

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

perimeter

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

power

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

treeadd

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

tsp

Figure 5. Benchmark runtime results

the violation and one without, to allow testing for false positives.
We ran all but five of the test pairs—the omitted tests are incom-
patible with our simulation environment because they use pthreads,
fork, Unix shared memory segments, or timers.

Of the remaining 286 test pairs, HardBound detects all the vio-
lations and generates no false positives. We also successfully ran 77
additional programs as part of our own testing infrastructure. None
of these correctness results should be surprising—other fat pointer
schemes already provide complete spatial safety. However, these
results significantly increase our confidence that our performance
simulations capture pointer dereferences and propagation correctly.

5.3 Source Code Modifications
None of the simulated programs required any source code modifi-
cations (including the original Olden benchmarks and the CCured
versions) for correct operation. This finding is consistent with other
approaches that avoid changing memory layout (e.g., [14, 28]).

However, during the course of evaluating HardBound, we made
two performance-related changes. The first change addressed an
artificial limitation of our prototype compiler—it creates bounded
pointers even for constant-index array references to stack-allocated
arrays. To mitigate the impact of this limitation, we restructured the
code for bh by manually inlining two functions, avoiding redundant
calls to setbound in an inner loop.

Second, in three places mst uses a pointer into the middle of
an array as a pointer that references a particular array element ex-
clusively, instead of as a pointer to the entire array. Because our
compiler acts conservatively in this inherently ambiguous situation
(as discussed in Section 3.2), we inserted setbound instructions
to tighten bounds in these three cases. This better expresses the in-
tended constraints of the program and reduces overheads by avoid-
ing the propagation of difficult-to-compress pointers.

5.4 Runtime Overheads
We first report the runtime overheads of instrumented binaries rel-
ative to unmodified binaries, both compiled with GCC (we com-
pare against CCured in the next subsection). Figure 5 shows the
relative runtime of three different pointer encoding schemes. The
four segments in each bar represent the runtime contributions of:
(1) extra setbound instructions inserted by the compiler, (2) ex-
tra micro-operations inserted for writing/reading the metadata of
uncompressed pointers to/from the memory hierarchy, (3) cache
misses on metadata (both compressed and uncompressed), and (4)
additional cache misses caused by pollution from the metadata.

Pointer encoding impact. In Figure 5, the leftmost bar in each
group uses a 4-bit external compressed encoding that can compress
pointers to small objects (≤ 56 bytes, size divisible by 4) where
the pointer is equal to the base. For this, our simplest encoding, the
average slowdown is only 9%, though several benchmarks incur
significant runtime overheads (bh, em3d, health, mst).

The second bar in each group uses a 4-bit internal pointer
scheme capable of encoding the same set of small-object pointers.
The tag metadata shadow space is shrunk from 4-bits to 1-bit (and
the tag metadata cache is reduced accordingly from 8KB to 2KB).
The primary benefit of this encoding is that it reduces the size of
the tag metadata cache. As a secondary benefit, it lowers the av-
erage overhead to 7%, primarily because it reduces the amount of
pollution caused by tag metadata in the second-level cache.

The third bar in each group shows the runtime overhead of an
11-bit internal encoding in which both pointer equals base and
(base - bound) ≤ 4× 211 bytes, as discussed in Section 4. This
11-bit encoding would be suitable for a system with a 64-bit virtual
address space. By reducing the number of incompressible pointers,
this scheme trims the maximum runtime overhead to 15% and the
average to only 5%.

Bounded pointer µop impact. The performance impacts dis-
cussed above include the cost of storing and loading uncompressed
bounded pointers to and from memory (the dark bar second from
the bottom). As these accesses share the same cache ports, they
introduce runtime overheads. Fortunately, loading and storing of
uncompressed pointers is rare for all three encoding schemes,
limiting the µop overheads to typically only a few percent.

However, these results assume that a bounds check (for either a
compressed or an uncompressed pointer) is done in parallel with
the dereference and thus does not add additional cost. A more
modest implementation might perform bounds checking of uncom-
pressed pointers by using shared ALUs and register file ports. To
examine the performance impact of such a design choice, we ran a
simulation in which each bounds check of an uncompressed pointer
inserts an additional µop into the processor (results not shown). The
average overhead increased by approximately 3% for all three en-
codings, while the maximum was a 10% increase for tsp.

Memory usage overheads. To assess HardBound’s impact on
memory usage, we measured the number of additional distinct
pages touched, compared to the baseline C versions. Figure 6
presents these results, using 4KB pages and excluding the effects of
kernel code. Programs running under HardBound touch additional

8

5%

15%

25%

35%

45%

55%

65%
ex

tr
a

d
is

ti
n
ct

 u
se

r
p
ag

es

198% 189% 140% 132%

Base/bound metadata
Tag metadata

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

bh

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

bisort

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

em3d
ex

te
rn

-4
in

te
rn

-4
in

te
rn

-1
1

health

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

mst

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

perimeter

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

power

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

treeadd

ex
te

rn
-4

in
te

rn
-4

in
te

rn
-1

1

tsp

Figure 6. Benchmark memory overhead (normalized 4KB pages touched)

JK/RL/DA CCured HardBound
Simulator External Internal

Benchmark Published [14] Published [40] Pentium4 Core 2 Opteron Uops Runtime 4bit 4bit 11bit
bh 1.00 1.44 1.33 1.18 1.29 1.74 1.72 1.22 1.22 1.14

bisort 1.00 1.09 1.09 1.07 1.09 1.22 1.20 1.01 1.02 1.02
em3d 1.68 1.45 1.51 1.39 1.36 1.64 1.31 1.18 1.04 1.02
health 1.44 1.07 0.99 1.01 1.01 1.23 1.11 1.17 1.20 1.15

mst 1.26 1.87 1.12 1.05 1.09 1.39 1.06 1.16 1.07 1.05
perimeter 0.99 1.10 1.22 1.25 1.32 1.58 1.51 1.02 1.01 1.01

power 1.00 1.29 1.21 1.02 1.10 1.80 1.79 1.05 1.05 1.05
treeadd 0.98 1.15 1.19 1.18 1.03 1.16 1.09 1.03 1.03 1.03

tsp 1.03 1.06 0.96 1.00 1.00 1.09 1.07 1.02 1.01 1.01
Average 1.13 1.26 1.17 1.12 1.14 1.40 1.29 1.09 1.07 1.05

Figure 7. Runtime overhead comparison of JK/RL/DA, CCured, and HardBound. Runtime overheads of over 20% are in bold. Data for
columns two and three are from published papers. Data for columns four, five, and six were collected on a 3.2 GHz Pentium 4, a 2.66 GHz
Core 2 Duo, and a 1.8 GHz Opteron. Data for columns six and seven are simulation results for micro-ops and runtime overhead for CCured.

memory for two reasons: (1) tag metadata and (2) base/bound
metadata. Programs with a large number of incompressible
pointers (e.g. health and power when run with a 4-bit encoding)
touch a significant number of additional pages due to base/bound
lookups. On average, the 4-bit external encoding touches 55%
more pages than the baseline. As expected, the 4-bit internal
encoding reduces the overhead of accessing the tag metadata, but
does not affect the base/bound overhead as this scheme fails to
compress the same pointers the external scheme does. The 11-bit
internal encoding allows many more pointers to be compressed,
attacking the base/bound overhead and reducing the average
number of additional pages touched to just 10%.

5.5 Comparative Evaluation
Figure 7 compares the runtime performance overheads of two
state-of-the-art software-only approaches with HardBound. The
first two columns report the runtime overheads of JK/RL/DA [14]
and CCured [40] as reported in the respective publications. These
two proposals are representative of object-based (Section 2.2) and
fat-pointer (Section 2.3) software-only approaches. The overheads
for JK/RL/DA are normalized to a baseline that includes their
synergistic automatic pool allocation optimization. The published
runtime overheads for both JK/RL/DA and CCured are small on
average (13% and 26%), but some benchmarks have slowdowns
over 20% (marked in bold).

The CCured published data uses a different compiler version
and includes garbage collection and other overheads related to tem-

poral safety, so we also ran our own experiments with CCured
without these overheads, and using the same compiler infrastruc-
ture as in our other experiments. The third through fifth columns
report that the average overhead of CCured on three x86 machines
is around 15%. As before, in several cases the runtime overheads
of CCured on real machines exceeds 20% (marked in bold).

The sixth and seventh columns report results for these CCured
binaries under simulation. Comparing the µop count in the sixth
column to the previous columns indicates that CCured introduces
a large number of instructions in some cases, but the ILP of these
modern processors hides much, but not all, of the overhead. As
shown in column seven, our simulated in-order processor lacks ILP
to hide the cost of bounds checks, resulting in overheads higher
than on the actual hardware (but significantly smaller than the num-
ber of added micro-operations due to time in the memory system).

The three right-most columns show the relative runtimes for
HardBound with the three different pointer encoding schemes
(replicated from Figure 5). As reported above, the average
runtimes for these schemes are all less than 10%. Note that unlike
CCured and JK/RL/DA, for which some benchmarks have large
slowdowns, the largest runtime overhead for the 11-bit internal
encoding is only 15%.

6. Handling Casts and Temporal Safety
Beyond spatial memory safety, which is HardBound’s focus, two
other significant sources of errors in C programs are type safety
violations (via unsafe casts) and temporal memory safety violations

9

(due to dangling pointers, uninitialized reads, and misuse of free).
Although HardBound’s fat pointers are tailored to the problem of
spatial safety, they provide sufficient type safety to prevent spatial
violations while allowing legitimate programs to run; they have
some synergies with mechanisms for providing temporal safety too.

6.1 Type Safety and Casts
From HardBound’s point of view, C cast operations are no-ops.
Consequently, HardBound’s metadata propagation is unaffected
by casts (and union accesses), and, as a result, the types de-
clared in the C program are not taken literally. Because the hard-
ware’s treatment of metadata distinguishes between non-pointer
and pointer data dynamically, one can think of HardBound as pro-
viding (coarse-grained) runtime-type information. This means that
it is not possible to create a useful pointer in HardBound with-
out using the setbound instruction—casting an int constant to
an int* results in a non-pointer that will fail all bounds checks if
dereferenced, which is the desired behavior for preventing spatial
memory safety violations. HardBound distinguishes data pointers
from code pointers (by setting base and bound to MAXINT) to pre-
vent forging of arbitrary function pointers, even in the presence of
unsafe casts.

Casting a value from a pointer type to another type propa-
gates the bounds information without change. This implies that up-
casting (from a larger struct to a smaller, structurally compatible
one) is fine. Downcasts may result in bounds violation errors that
are caught only when the offending pointer is dereferenced, but if
the code is correct no errors should result. Similarly, it is possible
for correct code to upcast a pointer to a void*, and then downcast
it back to a non-void*.

For example, consider the following code fragment:

1 int x = 17;
2 char y = (char) x; // legal cast (just a mov)
3 char *z = (char *)&x; // compiler inserts bounds on z
4 int a = (int)z; // a inherits z′s bounds
5 (*(int *)a) = 42; // legal update (x is now 42)
6 int *w = (int *)0x1000;// no bounds info for w
7 *w = 42; // illegal write detected

The cast on line 2 could be considered unsafe, because it con-
verts an int to a char, but the hardware will permit this without
any problem. Taking the address of the variable x (line 3) causes
the compiler to add bounds information on the pointer value stored
in z. It is possible to cast such a pointer to an int and back again
and still write through the resulting pointer (lines 4 and 5). If the
program manufactures a pointer out of a constant, as in line 6, then
any read or write through that pointer will fail (line 7). If absolutely
necessary, a programmer can still create a pointer from an integer
by explicitly inserting a setbound instruction.

This default design requires no additional compiler support, and
it provides just enough dynamic type checking to guarantee spatial
memory safety. In essence, HardBound’s spatial and type guaran-
tees are the same as giving all pointers the semantics of CCured’s
WILD pointers (but without the runtime overhead of WILD pointers).
To provide stronger type safety, additional compiler and runtime
support could be used to create type information and dynamically
check potentially unsafe casts. CCured [40] uses run-time type in-
formation to handle casts; SAFECode [16] uses static analysis to
partition the heap based on type information.

6.2 Temporal Errors
C also suffers from temporal memory safety problems, most no-
tably uninitialized memory reads and dangling pointers. The ini-
tialization problem can be remedied by forcing malloc() to zero-
out memory before reallocation; similarly, the compiler can insert
initialization code for all local variables and arrays.

Handling dangling pointers is more difficult. The approach used
by CCured is to employ a conservative garbage collector [4]. Un-
der such a system, the free() operation does no work (avoiding
problems with double-frees), and no heap pointers can dangle,
because any object reachable by pointer traversal is ensured not
to be deallocated. To prevent dangling pointers to stack objects,
CCured selectively heapifies stack objects that escape the function.
Applying garbage collection in a HardBound system would have
the further advantage that HardBound’s metadata precisely distin-
guishes pointers from non-pointers, opening up the possibility for
non-conservative garbage collection of C.

Because garbage collection remains undesirable in many appli-
cation domains, it is worth considering alternative approaches for
temporal safety. Other proposals that address temporal errors, ei-
ther probabilistically [3, 44, 50] or exactly [2, 15, 17, 21, 23, 26,
28, 45], are compatible with our hardware.

Finally, Purify [24] and Valgrind’s MemCheck [43] keep track
of the allocated/unallocated status of each word in memory to catch
many (but not all) dangling pointer dereferences. Recent proposals
[47, 59, 65] have explored accelerating such tracking in hardware.
As HardBound already tracks a bit of metadata per word in memory
(pointer vs non-pointer), adding such additional tracking to Hard-
Bound would be a natural extension.

7. Additional Related Work
In addition to works described earlier, there have been many hard-
ware approaches proposed for handling security issues in C-based
programs.

Taint checking and intrusion detection. Some proposals seek to
detect malicious code when it is injected into the system, typically
by marking some untrusted data as “tainted” and propagating that
information through computations on the processor. Some projects
in this vein are Minos [10], LIFT [46], RIFLE [58], the work by
Suh et al. [55], and Raksha [12]. Other techniques seek to detect
anomalous behavior [20, 30, 66] or to combine tainting and bounds
checking [6]. In contrast to approaches that provide complete spa-
tial safety, the taint checking approach may permit a program to
overwrite buffers, so long as the data is not provided by some un-
trusted source. Thus, although information-flow tracking and in-
trusion detection can stop some forms of malicious code or data
injection, they do not prevent all bounds violations that can corrupt
data. These approaches do have a complementary advantage in that
they are capable of preventing SQL injection, format-string injec-
tion, and related attacks in which untrusted inputs cause security
violations without breaking memory safety.

Cryptographic and tamper resistant hardware. There has also
been much recent work on hardware support for cryptographically
sealed code [18], encrypted memory [36, 51, 54], secure proces-
sors [35, 52, 56], and tamper resistant hardware [36, 54]. Although
these efforts are largely orthogonal to the spatial safety support pro-
posed here, these techniques do provide tamper resistance and some
protection against code injection attacks—the attacker would have
to provide code appropriately signed or encrypted in order to inject
it into the instruction stream. These techniques are also not intended
to protect against all spatial safety errors. In fact, the spatial errors
we prevent could otherwise allow attackers to bypass the tamper
resistance by taking over the device’s software.

8. Conclusions
This paper introduces HardBound, a cooperative hardware/soft-
ware approach for enforcing spatial safety of C programs. Its goal
is to eliminate the spatial memory errors that are the source of
so many bugs and security vulnerabilities. HardBound provides

10

a hardware bounded pointer datatype and the processor automat-
ically checks and propagates bounds. HardBound’s key advantages
over software-only approaches are lower runtime overheads, bet-
ter source code and binary compatibility, and a simpler compiler
infrastructure, all of which are important for widespread adoption.

We implemented both a prototype compiler and hardware sim-
ulator and studied several metadata compression schemes. Func-
tionally, HardBound accurately detected and prevented all spatial
memory violations in hundreds of test cases with no false posi-
tives. Performance-wise, our experiments suggest that HardBound
has low overhead (less than 10% on average), which is lower than
prior software-only techniques.

Looking forward, HardBound can be viewed as complementary
to the optimization techniques developed to accelerate software-
only approaches. For example, CCured could use HardBound
pointers for representing SEQ and WILD pointers (but not SAFE
pointers), further reducing overheads versus either technique
alone. Similarly, if the compiler can statically prove that bounds
checking is not necessary, it can unbound the pointer to reduce
HardBound’s checking overheads. Finally, HardBound could be
employed to reduce the runtime costs of checking array bounds in
already-safe languages such as Java or C#.

Acknowledgments
The authors thank Vikram Adve, Emery Berger, Mike Hicks, E
Lewis, Andrew Myers, Santosh Nagarakatte, and Amir Roth for
comments on this work. We thank the CCured group for making
their software available, and Westley Weimer and Matt Harren in
particular for helping us with the CCured benchmarks. This work
is supported in part by donations from Intel Corporation and NSF
awards CCF-0541292, CNS-0524059, and CCF-0644197.

References
[1] D. Arora, A. Raghunathan, S. Ravi, and N. K. Jha. Architectural

Support for Safe Software Execution on Embedded Processors. In
Proceedings of the International Conference on Hardware Software
Co-design and System Synthesis, Oct. 2006.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection
of All Pointer and Array Access Errors. In Proceedings of the
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, June 1994.

[3] E. D. Berger and B. G. Zorn. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In Proceedings of the SIGPLAN 2006
Conference on Programming Language Design and Implementation,
June 2006.

[4] H.-J. Boehm and M. Weiser. Garbage Collection in an Uncooperative
Environment. Software — Practice & Experience, 18(9):807–820,
Sept. 1988.

[5] W. Chuang, S. Narayanasamy, and B. Calder. Accelerating Meta Data
Checks for Software Correctness and Security. Journal of Instruction-
Level Parallelism, 9, June 2007.

[6] W. Chuang, S. Narayanasamy, and B. Calder. Bounds Checking with
Taint-Based Analysis. In Proceedings of the International Confer-
ence on High Performance Embedded Architectures & Compilers
(HiPEAC), Jan. 2007.

[7] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula.
Dependent Types for Low-Level Programming. In Proceedings of
the 16th European Symposium on Programming, Apr. 2007.

[8] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard: Protect-
ing Pointers From Buffer Overflow Vulnerabilities. In Proceedings of
the 12th USENIX Security Conference, 2003.

[9] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-Overflow Attacks. In Proceedings of the 7th
USENIX Security Conference, Jan. 1998.

[10] J. R. Crandall and F. T. Chong. Minos: Control Data Attack Prevention
Orthogonal to Memory Model. In Proceedings of the 37th Annual
IEEE/ACM International Symposium on Microarchitecture, Dec.
2004.

[11] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure Virtual Ar-
chitecture: A Safe Execution Environment for Commodity Operating
Systems. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles, Oct. 2007.

[12] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flexible Infor-
mation Flow Architecture for Software Security. In Proceedings of
the 34th Annual International Symposium on Computer Architecture,
June 2007.

[13] J. B. Dennis and E. C. V. Horn. Programming Semantics for Multipro-
grammed Computations. Communications of the ACM, 9(3):143–155,
1966.

[14] D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds
Checking for C with Very Low Overhead. In Proceeding of the 28th
International Conference on Software Engineering, May 2006.

[15] D. Dhurjati and V. Adve. Efficiently Detecting All Dangling Pointer
Uses in Production Servers. In Proceedings of the International
Conference on Dependable Systems and Networks, June 2006.

[16] D. Dhurjati, S. Kowshik, and V. Adve. SAFECode: Enforcing
Alias Analysis for Weakly Typed Languages. In Proceedings of
the SIGPLAN 2006 Conference on Programming Language Design
and Implementation, June 2006.

[17] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory Safety
Without Runtime Checks or Garbage Collection. In Proceedings of
the 2003 ACM SIGPLAN Conference on Language, Compiler, and
Tool for Embedded Systems (LCTES), 2003.

[18] M. Drinic and D. Kirovski. A Hardware-Software Platform for
Intrusion Prevention. In Proceedings of the 37th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2004.

[19] F. C. Eigler. Mudflap: Pointer Use Checking for C/C++. In GCC
Developer’s Summit, 2003.

[20] A. M. Fiskiran and R. B. Lee. Runtime Execution Monitoring (REM)
to Detect and Prevent Malicious Code Execution. In Proceedings of
the International Conference on Computer Design, Oct. 2004.

[21] D. Gay, R. Ennals, and E. Brewer. Safe Manual Memory Management.
In Proceedings of the 2007 International Symposium on Memory
Management, Oct. 2007.

[22] D. Grossman. Type-Safe Multithreading in Cyclone. In Proceedings
of the SIGPLAN Workshop on Types in Languages Design and
Implementation, Jan. 2003.

[23] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-Based Memory Management in Cyclone. In Proceedings of
the SIGPLAN 2002 Conference on Programming Language Design
and Implementation, June 2002.

[24] R. Hastings and B. Joyce. Purify: Fast Detection of Memory Leaks
and Access Errors. In Proceedings of the Winter Usenix Conference,
1992.

[25] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, May
1993.

[26] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience With
Safe Manual Memory Management in Cyclone. In Proceedings of the
2004 International Symposium on Memory Management, Oct. 2004.

[27] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A Safe Dialect of C. In Proceedings of the 2002 USENIX
Annual Technical Conference, June 2002.

[28] R. W. M. Jones and P. H. J. Kelly. Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs. In Third Interna-
tional Workshop on Automated Debugging, Nov. 1997.

[29] M. Kharbutli, X. Jiang, Y. Solihin, G. Venkataramani, and
M. Prvulovic. Comprehensively and Efficiently Protecting the Heap.
In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, Oct.
2006.

11

[30] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution via
Program Shepherding. In Proceedings of the 11th USENIX Security
Symposium, Aug. 2002.

[31] K. Kratkiewicz and R. Lippmann. Using a Diagnostic Corpus of C
Programs to Evaluate Buffer Overflow Detection by Static Analysis
Tools. In Workshop on the Evaluation of Software Defect Detection
Tools, 2005.

[32] L. Lam and T. Chiueh. Checking Array Bound Violation Using Seg-
mentation Hardware. In Proceedings of the International Conference
on Dependable Systems and Networks, June 2005.

[33] J. R. Larus and R. Rajwar. Transactional Memory. Morgan and
Claypool, 2007.

[34] R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi. Enlisting Hardware
Architecture to Thwart Malicious Code Injection. In Proceedings of
the International Conference on Security in Pervasive Computing,
Mar. 2003.

[35] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
Architecture for Protecting Critical Secrets in Microprocessors. In
Proceedings of the 32nd Annual International Symposium on Com-
puter Architecture, June 2005.

[36] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz. Architectural Support for Copy and Tamper Resis-
tant Software. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating
Systems, Nov. 2000.

[37] T. A. Linden. Operating System Structures to Support Security and
Reliable Software. ACM Computing Surveys, 8(4):409–445, 1976.

[38] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[39] J. P. McGregor, D. K. Karig, Z. Shi, and R. B. Lee. A Processor
Architecture Defense against Buffer Overflow Attacks. In Proceedings
of the IEEE International Conference on Information Technology:
Research and Education, Aug. 2003.

[40] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
CCured: Type-Safe Retrofitting of Legacy Software. ACM Transac-
tions on Programming Languages and Systems, 27(3), May 2005.

[41] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Inter-
mediate Language and Tools for Analysis and Transformation of C
Programs. In 11th International Conference on Compiler Construc-
tion, 2002.

[42] N. Nethercote and J. Fitzhardinge. Bounds-Checking Entire Programs
Without Recompiling. In Proceedings of the Second Workshop on
Semantics, Program Analysis, and Computing Environments for
Memory Management, 2004.

[43] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In Proceedings of the
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, June 2007.

[44] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Automatically
Correcting Memory Errors with High Probability. In Proceedings of
the SIGPLAN 2007 Conference on Programming Language Design
and Implementation, June 2007.

[45] H. Patil and C. N. Fischer. Efficient Run-time Monitoring Using
Shadow Processing. In Second International Workshop on Automated
Debugging, May 1997.

[46] F. Qin, Z. Li, Y. Zhou, C. Wang, H. Kim, and Y. Wu. LIFT: A
Low-Overhead Practical Information Flow Tracking System for
Detecting General Security Attacks. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture,
Dec. 2006.

[47] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for
Detecting Memory Leaks and Memory Corruption During Production
Runs. In Proceedings of the 11th Symposium on High-Performance
Computer Architecture, Feb. 2005.

[48] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting
Dynamic Data Structures on Distributed-Memory Machines. ACM
Transactions on Programming Languages and Systems, 17(2):233–
263, 1995.

[49] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow
Detector. In Proceedings of the Network and Distributed System
Security (NDSS) Symposium, Feb 2004.

[50] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. HeapMon:
A Helper-Thread Approach to Programmable, Automatic, and Low-
Overhead Memory Bug Detection. IBM Journal of Research and
Development, 50(2/3):261–275, 2006.

[51] W. Shi, J. Fryman, G. Gu, H.-H. Lee, Y. Zhang, and J. Yang. In-
foShield: A Security Architecture for Protecting Information Usage in
Memory. In Proceedings of the 12th Symposium on High-Performance
Computer Architecture, Feb. 2006.

[52] W. Shi and H.-H. S. Lee. Authentication Control Point and its
Implications for Secure Processor Design. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture,
Dec. 2006.

[53] F. G. Soltis. Inside the AS/400. Duke Press, 2nd edition, 1997.

[54] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas.
AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Pro-
cessing. In Proceedings of the 17th International Conference on
Supercomputing, June 2003.

[55] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program
Execution via Dynamic Information Flow Tracking. In Proceedings of
the 31st Annual International Symposium on Computer Architecture,
June 2004.

[56] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas. Design and
Implementation of the AEGIS Single-Chip Secure Processor Using
Physical Random Functions. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture, June 2005.

[57] N. Tuck, B. Calder, and G. Varghese. Hardware and Binary Modifi-
cation Support for Code Pointer Protection From Buffer Overflow. In
Proceedings of the 37th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec. 2004.

[58] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A.
Blome, G. A. Reis, M. Vachharajani, and D. I. August. RIFLE:
An Architectural Framework for User-Centric Information-Flow
Security. In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, Dec. 2004.

[59] G. Venkataramani, B. Roemer, M. Prvulovic, and Y. Solihin. Mem-
Tracker: Efficient and Programmable Support for Memory Access
Monitoring and Debugging. In Proceedings of the 13th Symposium
on High-Performance Computer Architecture, Feb. 2007.

[60] E. Witchel, J. Cates, and K. Asanovic. Mondrian Memory Protection.
In Proc. of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, Oct. 2002.

[61] W. Xu, D. C. DuVarney, and R. Sekar. An Efficient and Backwards-
Compatible Transformation to Ensure Memory Safety of C Programs.
In Proceedings of the 12th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), 2004.

[62] S. H. Yong and S. Horwitz. Protecting C Programs From Attacks
via Invalid Pointer Dereferences. In Proceedings of the 11th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2003.

[63] M. T. Yourst. PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator. In Proceedings of the 2007 IEEE
International Symposium on Performance Analysis of Systems and
Software, Apr 2007.

[64] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer. SafeDrive: Safe and Recoverable Exten-
sions Using Language-Based Techniques. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementa-
tion, Nov. 2006.

[65] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient
Architectural Support for Software Debugging. In Proceedings of the
31st Annual International Symposium on Computer Architecture, June
2004.

[66] X. Zhuang, T. Zhang, and S. Pande. Using Branch Correlation to
Identify Infeasible Paths for Anomaly Detection. In Proceedings of
the 39th Annual IEEE/ACM International Symposium on Microarchi-
tecture, Dec. 2006.

12

	University of Pennsylvania
	ScholarlyCommons
	3-1-2008

	HardBound: Architectural Support for Spatial Safety of the C Programming Language
	Joe Devietti
	Colin Blundell
	Milo Martin
	Stephan A. Zdancewic
	Recommended Citation

	HardBound: Architectural Support for Spatial Safety of the C Programming Language
	Abstract
	Disciplines
	Comments

	tmp.1342633400.pdf.2WOSz

