
0

Tag-Protector: An Effective and Dynamic Detection of Illegal Memory
Accesses Through Compile-time Code Instrumentation

Ahmed Saeed, Glasgow Caledonian University, Glasgow, UK

Ali Ahmadinia1, Department of Computer Science, California State University San Marcos, CA, USA

Mike Just, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

Abstract

Programming languages permitting immediate memory accesses through pointers often result in applications

having memory-related errors, which may lead to unpredictable failures and security vulnerabilities. A light-

weight solution is presented in this paper to tackle such illegal memory accesses dynamically in C/C++
based applications. We propose a new and effective method of instrumenting an application’s source code

at compile time in order to detect illegal spatial and temporal memory accesses. It is based on creating

tags, to be coupled with each memory allocation and then placing additional tag checking instructions for
each access made to the memory. The proposed solution is evaluated by instrumenting applications from

the BugBench benchmark suite and publicly available benchmark software, Runtime Intrusion Prevention

Evaluator (RIPE), detecting all the bugs successfully. The performance and memory overheads are further
analyzed by instrumenting and executing real world applications from various renowned benchmark suites.

In addition, the proposed solution is also tested to analyze the performance overhead for multi-threaded

applications in multi-core environments. Overall our technique can detect a wide range of memory bugs and
attacks with reduced performance overhead and higher detection rate as compared to the similar existing

countermeasures when tested under the same experimental set-up.

General Terms: Security, Reliability, Languages, Code instrumentation

Keywords: Dynamic memory accesses checking, compile-time code instrumentation, spatial and temporal

memory safety, buffer overflows, dangling pointer dereferences

1. INTRODUCTION

Illegal memory accesses (IMAs) such as out-of-bound buffer read/write operations and
dangling pointer dereferences are major concerns in applications written with programming
languages like C/C++. These languages provide a powerful set of low-level features to
software developers such as direct memory accesses and arithmetic operations on pointers.
Normally in such languages, the starting address is assigned to a pointer when a memory
area of required size is allocated, whereas an access is considered legal only when either its
actual pointer or a pointer derived from it is used between the allocation and deallocation
of a specific memory area. A pointer directing to a memory location that has already been
deallocated is called a dangling pointer. A spatial IMA, which is more commonly known
as buffer overflow or underflow, may occur when a pointer accesses memory outside the
range of its allocated memory object. A temporal IMA, also known as dangling pointer
dereference, occurs when a dangling pointer is used at the time of the access.

Typical programming errors, such as out-of-bound array indexing and dangling pointer
dereferences, are common and cause indeterministic behavior because these operations can
write to memory locations in ways not defined by the designer. For example, memory ac-
cesses can happen outside the intended range if the index calculation of an array is based on
an erroneous formula. It is a difficult and tedious job to detect and diagnose such behavior
using static analysis-based tools. Even when an application is tested intensively through
these tools, such bugs can still exist as it is practically impossible to create all of the input
combinations for an error to occur in the development or test phase. Furthermore, without
required protection, many security threats like viruses, Trojans and worms can modify appli-

1Corresponding author: Ali Ahmadinia (aahmadinia@csusm.edu)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287494739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0:2

cation data by gaining illegitimate access to secured blocks of the memory such as through
buffer overflow attacks [1]. Software-based attacks have become increasingly widespread
and buffer overflow is one of the major causes of such security outbreaks. According to a
report published by Sourcefire [2], buffer overflow based attacks are responsible for 14% of
all and 35% of critical vulnerabilities over the past 25 years. Stack smashing [3] is a classic
example of such an attack where an attacker can simply replace the return address of a
function on the stack through a buffer overflow. In the case of unprotected execution, on
function return, the control may be switched to the specific location where malicious code is
placed. Similarly, return-oriented programming (ROP) [4] is a relatively new way to accom-
plish security exploits, after gaining control of the execution flow through a buffer overflow.
ROP and Return-into-libc based attacks execute a group of instructions from the existing
code to create new functionality. Different solutions already exist to detect such attacks
that are either based on removing vulnerabilities statically through safe languages (e.g.,
[5], [6], [7], [8]) or inserting run-time checks for the detection of out-of-bounds memory ac-
cesses (e.g., [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]). Moreover, some of the existing
dynamic memory checkers do not cover all bugs while others provide complete protection
at the cost of notable performance overhead.

In this paper, a fast and effective memory protection technique is presented to detect
a wide range of IMA bugs and attacks dynamically such as out-of-bound (OOB) buffer
and dangling pointer based memory accesses, which can be sub-categorized as buffer over-
reads and over-writes, buffer under-reads and under-writes, OOB accesses through direct
indexing and dereferencing dangling pointers. Our tag-protection solution is built upon
the well-known Jones and Kelly approach [10] of tracking each memory object pointed to
by its referent pointer. Ruwase et al. carried forward this work and presented an enhanced
solution called CRED [11]. Their solution fails to detect overflows when buffers are allocated
inside struct type data variables and for many library functions such as snprintf() and
fscanf() under specific cases for memory objects allocated on stack/bss/data-segments.
On the other hand, our proposed solution is generalized and traverses through all the
memory allocations, linking the memory objects with tag marks and tracking the memory
accesses through these tag marks. The base and end addresses of each memory object are
calculated and stored in the corresponding tag marks. The address comparisons instructions
are inserted for each instruction that either read or write to that particular memory object.
Whenever a reserved memory area is accessed through an allocated pointer, our solution
verifies the access by comparing the address being accessed with the bound addresses that
are stored in the tag marks linked with that particular memory object. If any underflow
or overflow occurs, the address of the accessed memory block would either fall behind or
exceed the address values stored in the associated tag marks, then an IMA bug alert will
be generated. The access is considered legal only if the address is found within the bounds.
Furthermore, to detect dangling pointer dereferences our tag-protection solution creates a
dedicated tag address and initializes the corresponding tag mark with it when a memory
object is deallocated. On each memory access, to detect any dangling pointer dereference,
the tag marks are also compared with that dedicated tag address.

The proposed solution does not require modifications to the application’s source code
and it is based on the automatic code instrumentation at compile time by adding new
instructions without affecting the actual flow of data. We have placed the run-time checks
through compile-time code instrumentation. The LLVM v3.4 [19] compiler infrastructure
has been used for implementation purposes. Our proposed solution is different from existing
solutions [15; 20; 17; 16] in a way that it does not perform table-up searches to load
start and end addresses of a particular memory object. The proposed solution effectiveness
and performance overhead is measured on real-world applications from several benchmark
suites [21; 22; 23; 24] and test-bed codes [25]. Based on the experimental results, it is
shown that our approach has lower performance overhead when compared with the existing

0:3

solutions and hence it is a good choice for testing applications that are written in C/C++.
Our solution can detect various memory bugs and security attacks including out-of-bound
read and write accesses, stack-overflows, stack-underflows, heap-overflows, heap-underflows,
overflows and underflows in globally defined variables (data and bss segments), direct-
indexed overflows/underflows and dangling pointer dereferences.

The paper is organized as follows: The current work related to the existing memory bug
detectors is summarized in section 2. The general approach and implementation details
of the proposed tag-protection solution are described in section 3. Section 4 presents the
effectiveness, performance evaluation, and comparison with the similar existing solutions
while section 5 concludes this paper.

2. RELATED WORK

Different solutions have been proposed to detect memory errors in C/C++ based applica-
tions. Memory errors are typically grouped into spatial errors and temporal errors. Various
Hardware-based memory safety solutions [26],[27], [28] have been presented in the literature
with reduced performance overhead as compared to software-based solutions. Such solutions
are not generic and require either dedicated hardware modules or specific modifications in
the processor pipeline or cache architecture. Similarly, dynamic information flow tracking
(DIFT) based hardware-assisted solutions such as Secure Program Execution [29], Dynamic
Tainting [30] and libdft [31] are based on tagging data coming from untrusted sources and
then tracking their usage as the application executes. These techniques require modifica-
tions in application’s data, processor architecture, and memory layout. Therefore, they are
not feasible for such systems that use more common hardware design approaches.

As mentioned earlier, static analysis tools do not provide 100% guarantee, and hence, they
have been substituted with dynamic techniques. Many software-based dynamic memory bug
detection techniques have been proposed in the literature that vary in implementation level,
memory utilization, run-time overhead, types of bugs detected, the probability of detect-
ing bugs, supported architectures and many other features. Based on the implementation
level, these tools can be classified into two types. For instance, solutions such as Purify [32],
Valgrind [33], Dr. Memory [34], and Dynamic Tainting [30] operate at binary level while
other techniques like Backwards-Compatible Bounds Checking [10], Dynamic Buffer Over-
flow Detector [11], Backwards-compatible Array Bounds Checking [12], SAFECode [13],
BaggyBounds [16], SoftBound [15], PAriChecks [17], LBC [18] and AddressSanitizer [35]
require source code to insert run-time checks through compile-time instrumentation. Some
dynamic IMA bug detectors such as StackGuard [9], LibSafe [36], ProPolice [37] and Stack-
Shield [38] provide protection for stack memory only, while WIT [14] detects invalid writes
only. Other dynamic tools can detect a wide range of bugs successfully, but at the expense
of large performance overhead. In this section, we have discussed only those solutions that
are similar to our proposed solution.

Referent-object based approaches such as Backwards-Compatible Bounds Checking [10],
CRED [11], PAriCheck [17] and BaggyBound [16] work at source-code level by maintaining
a separate table, using different data structures, to record bounds of each memory allo-
cation. This table is then used to verify memory accesses by performing table lookups at
run-time. These techniques differ in the implementation and handling of record tables. Avi-
jit et al. extended the solution of LibSafe [36] by implementing LibsafePlus and TIED [39;
40]. Static allocations are handled by TIED whereas LibsafePlus deals with dynamic infor-
mation about the stack size and heap allocations. These details are then used at run-time to
detect any overflow. Furthermore, these solutions do not provide dangling pointer derefer-
ence detection capabilities and also require customized memory allocator libraries to achieve
reduced performance overhead. SAFECode [13] which is also an object-based approach, op-
erates at the source-code level. It instruments loads and stores to prevent illegal memory
accesses, uses points-to analysis and type-inference to find type-safe regions of the heap,

0:4

and partitions the heap into regions to eliminate load/store checks on type-safe heap re-
gions. They have also presented a solution [41] that provides protection against dangling
pointer dereferences. Similarly, PAriCheck [17] computes bounds and assigns label to each
fixed-size memory block and stores these labels in a separate table at run-time. On each
pointer arithmetic operation, the label is compared by values in the table. This solution has
reported an average overhead of 9.5% for SPEC CINT2000 benchmark suite but does not
detect dangling pointer dereferences and overflows in structures. There are also object-based
approaches that have been applied on the whole operating system [42].

On the other hand, the pointer-based approaches such as MSCC [43], CCured [6], Soft-
Bound [15], LBC [18] and others [44; 26; 45] associate base and size metadata with every
pointer and insert run-time checks manipulating metadata information during load/store
operations of pointer values. CCured [6] combines instrumentation with static analysis to
insert run-time checks and removes redundant checks at compile time. CCured fails to
work when un-instrumented pre-compiled libraries are in use. Unlike prior pointer-based
(also known as fat pointer) approaches that modify pointer representations and object lay-
outs [44; 46; 18], SoftBound records the bounds information in a disjoint metadata which is
accessed via explicit table lookups on loads and stores of pointer values only. Nagarakatte
et al. extend their SoftBound technique and presented another solution called CETS [20]
to detect temporal safety errors.

AddressSanitizer [35] verifies whether each allocated memory block is safe to access by
creating shadow memory around stack and global objects to detect overflows. The shadow
memory is checked on each load and store request. The only drawback is that it also re-
quires modified run-time library to create shadow memory around allocated heap regions.
The current implementation is based on the LLVM compiler infrastructure. AddressSani-
tizer might fail to detect dangling pointer dereferences when a large amount of memory is
allocated and deallocated (between the deallocation and its next use).

Among different techniques that operate at the binary level, Purify [32] is one of the
early solutions in this area. It enforces the insertion of extra checking instructions directly
into the application’s object code and verifies every memory read and write operation per-
formed by the application under execution. Valgrind [33] is an openly available instrumen-
tation framework for building dynamic analysis tools. The Valgrind’s MemCheck tool uses
shadow memory to keep track of which memory areas have been allocated and pinpoints
illegal accesses to uninitialized memory. Another approach presented by Doudalis et al. [30]
associates unique taint marks with each pointer and its allocated memory block. These
taint marks are then propagated and verified through taint checking instructions, when-
ever memory is accessed. This approach works at binary level but requires modification in
run-time libraries to generate taint marks properly. Such tools do not require source code
and recompilation but they increase the memory utilization and execution time overhead
largely as the tool is first loaded into the memory and main application runs on the top of
it.

Each of the above mentioned memory bug detection tools has its own strengths and
limitations. For example, tools that operate at binary level detect bugs effectively without
any source code requirement but at the cost of more execution time overhead. Moreover,
solutions such as [30; 32] are not open source and therefore not available for performance
comparison. As discussed earlier, the tools that operate at source-code level also require
either modified run-time memory allocators or a dedicated compiler driver as it is the case
in several existing solutions [30; 13; 35; 16; 17]. Other software based techniques such as
LBC [18] have presented much lower performance overhead but they require modifications
in the source code, thus presenting compatibility issues.

Unlike SoftBound, our tag-protection solution is a combination of object and pointer-
based approach. We create tag marks for each memory object and propagate these tag marks
to all the pointers that are associated with that memory object. Moreover, we do not perform

0:5

any table-lookup search at run-time which makes our solution more efficient. SoftBound
with the CETS [20] extension is capable of detecting both temporal and spatial safety
errors but with a much higher performance overhead. On the contrary, lower performance
and memory overheads have been reported by our solution when it is compared with the
openly available tools under the same experimental set-up. While our solution requires
source code for instrumentation, it does not need customized run-time libraries and static
analysis. Furthermore, our technique has presented higher detection rate by instrumenting
all buffer allocations including buffers allocated inside struct type data variables which are
left undetected by the existing solutions excluding SoftBound.

3. TAG-PROTECTION

The key concept behind our proposed tag-protection solution, detection of dangling pointer
dereferences, current limitations and how it is implemented at compile time have been
discussed in this section.

3.1. General Approach and Design

Tag-protection is a compile-time code instrumentation approach and it is based on storing
memory objects bounds information in separately allocated tag marks and then inserting
tag checking instructions to detect IMAs at run-time. For example, when a memory object
created and a certain memory area is reserved for it, our technique creates two tag marks
tag start and tag end. The base address and the end address of that memory object are
calculated and stored in the tag start mark and thetag end mark respectively. Finally, when
that memory object is accessed, the run-time check instructions compare the address being
accessed with the bounds stored in its associated tag marks. In the case of any spatial illegal
memory access, either buffer underflow or overflow, an alert signal will be generated before
terminating the program execution.

Our solution is compatible with C/C++ source code as it does not change the memory
layout and tag marks are generated and maintained separately. The source code of C/C++
based applications is converted into an intermediate representation form which is used to
detect each memory allocation, create tag marks and insert run-time checks. The typical
memory layout of a C/C++ program is shown in Fig. 1(a). For each memory object, whether
it is globally, statically or dynamically allocated, the tag marks are created and memory
object bounds are assigned to these tag marks as shown in Fig. 1(b). The record of tag
marks along with their associated memory objects is kept separately in a specialized record
table as depicted in Fig. 1(c). The tag marks are also created for sub-objects that are
defined inside a structure memory object. In that case, our solution stores the sub-object
information along with the main memory object in the third column of the record table. It
should be noted that the record table is used at the time of code instrumentation only to
place relevant check instructions and it is not part of the final executable file.

Unlike other compile-time code instrumentation solutions (such as SoftBound), which use
record tables for bounds lookup at runtime, our solution utilizes this record table at compile
time only and is deleted before generating final instrumented executable. The record table
is created at the time of instrumentation and stores the address bounds. Using this record
table, the tag checking instructions are inserted before each load or store instruction detected
for the corresponding memory object. This approach has resulted in lower execution time as
bound lookup step is performed at compile time and tags are accessed directly at run-time
. During tag address comparison, the given memory access will be considered legal only if
the address used to access the memory area is greater than the address stored in its tag end
mark and less than the address contained by its tag end mark. In the case of any spatial
IMA bug, the addresses stored in tag marks will be surpassed and tag check instructions
will raise bug alarm and abort the application.

0:6

Initialized data
(data segment)

uninitialized data
(bss segment)

Heap-dynamic
allocations

Stack- static
allocations

Program code
(text seg)

(a)

(b)

G
lo

b
al

 a
llo

ca
ti

o
n

s

Allocated memory object

Tag_startAllocation type

Tag_end element index, if struct

 end address

memory object

start address

tag_end marktag_start mark

(c)

Command-line
arguments

Fig. 1: (a) Typical memory layout of a C program. (b) Memory objects coupled with
tag start and tag end marks. (c) Record table layout used by tag-protection at the time of
code instrumentation.

In order to handle temporal IMA bugs, run-time checks are also inserted to detect dangling
pointer dereferences. This is achieved by detecting memory deallocation function calls and
assigning a dedicated tag address to the respective tag marks. The memory access will be
considered dangling pointer dereference if the tag mark address matches with that dedicated
tag address. The design of tag-protection solution is based on the following steps which are
also presented in Fig. 2.

3.1.1. Function Duplication Enabling Inter-procedural Tag propagation. When memory objects
are accessed by the pointers and these pointers are passed as function arguments then the
corresponding tag marks must also be propagated with them as well. One solution is to
allocate all the tag marks globally so that the tag marks can be accessed anywhere in the
program without modifying the function arguments. However during testing, this approach
failed when functions are called recursively and in multi-threaded applications where mul-
tiple threads call the same function with different arguments which in turn generate false

0:7

Stage-1
Function duplication

Stage-3
Tags Creation-local

allocations

Stage-4
Inter-procedural Tag

Propagation

Stage-5
Tag Checks Placement

Stage-2
Tags Creation-global

allocations

Fig. 2: Flow chart used to implement the tag-protection solution

IMA bug alarm. To handle this problem, the tag marks are created in the same memory
segment where corresponding memory object is being allocated. Moreover, the function du-
plication technique is used to create a copy of the function and additional arguments are
added to pass tag start and tag end marks for each pointer argument. In order to mark the
function being duplicated the actual function name is used along with a unique attribute
as presented in Algorithm 1. The details of each function being duplicated are saved in a
separate table that is used in later stages of tag-protection pass to replace function calls.

3.1.2. Tag Creation for Global Memory Objects. For globally defined memory objects that
are defined statically, such as buffers and structures, the memory is allocated directly at
program entry level in data and bss segments as shown in Fig. 1(a). In order to instrument
such global allocations the tag marks are created globally and a dedicated tag address is
also allocated to handle dangling pointers dereferences as illustrated in Algorithm 2.

3.1.3. Tag Creation for Local Memory Objects. For the local memory objects that are defined
at function level statically, the memory is reserved explicitly on stack and tag marks are
also allocated on the stack for such memory objects. Our tag-protection computes the
start and end address of such memory objects after which tag start and tag end marks are
initialized respectively with these addresses. For each memory object pointer that is used
to allocate memory dynamically, tag start and tag end mark pointers are also allocated

0:8

ALGORITHM 1: Stage-1:Function duplication with modified argument list to enable tag marks
for functions that take pointers as arguments

Input: Uninstrumented LLVM-IR code α generated through LLVM llvm-link command
Output: Instrumented LLVM-IR code β 1 generated through LLVM opt command using stage-1

of tag-protection pass
Create fun map table
for each function fun def declared in α do

if fun def has definition in place and arguments contain pointer memory objects then
Create a function clone fun def clone of fun def . Create two new pointer
arguments(tag start arg and tag end arg) for each pointer argument in fun call clone
argument list. Store function name of fun def clone and fun def in fun map table

end
end
Save modified LLVM-IR code as semi instrumented LLVM-IR code β 1

ALGORITHM 2: Stage-2:Tag creation for globally declared memory objects by tag-protection
pass

Input: Instrumented LLVM-IR codeβ 1 generated in stage-1 of tag-protection pass
Output: Instrumented LLVM-IR code β 2 generated through LLVM opt command using stage-2

of tag-protection pass
Create dedicated tag address globaltag; Create Tag map table.
for each global memory object global var in α do

if global var is not a pointer memory object then
if global var is an array memory object then

Find start and end address, create tag start and tag end mark pointers and assign
them start and end addresses.
Store memory object global var, its type and tag marks information in Tag map table

end
else

Create tag start and tag end mark pointers and initialize them with NULL value.
Store memory object global var,its type and tag information in Tag map table

end
if global var is a structure memory object struct then

for each variable struct var in struct do
if struct var is not a pointer memory object then

if struct var is an array memory object then
Find start and end address, create tag start and tag end mark pointers and
assign them start and end addresses.
Store memory object global var, its type, struct var index and tag marks
information in Tag map table

end
else

Create tag start and tag end mark pointers and initialize them with NULL value.
Store memory object global var, its type, struct var index and tag marks
information in Tag map table

end
end

end
end
Save modified LLVM-IR code saved as semi instrumented LLVM-IR code β 2

and initialized with NULL. For such dynamically created objects, the memory is reserved
on heap implicitly by calling special memory allocation functions (e.g, malloc, calloc,

0:9

realloc, xcalloc etc.) and starting address is returned to a pointer variable. Our proposed
solution intercept such function calls and the start address is assigned to its tag start mark
pointer. The end address of the allocated object is also determined by our pass and it
is assigned to its corresponding tag end mark pointer. To ensure that the tag marks are
written atomically, the tag update instructions are placed in the same basic block1 where
memory objects are actually allocated. In this way, all the tag marks will be thread-safe
for multi-threaded applications. The record of tag marks, along with their initialized values
and memory objects, is kept in a separate table. This step of tag creation is achieved by
implementing the steps as defined in Algorithm 3.

ALGORITHM 3: Stage-3:Tag creation for memory objects that are declared locally inside each
function
Input: Instrumented LLVM-IR code β 2 generated in stage-2 of tag-protection pass ; memory

map table Tag map table; Dedicated tag address globaltag ;
Output: Instrumented LLVM-IR code β 3 generated through LLVM opt command using stage-3

of tag-protection pass
for each function definition fun def in β 3 do

for each instruction fun inst in fun def do
if fun inst is a memory object allocation instruction and does not create pointer object
then

if fun inst creates an array memory object then
Find start and end address, create tag start and tag end mark pointers and assign
them start and end addresses.
Store memory object fun inst, its type and tag marks information in
Tag map table

end
end
if fun inst is memory allocation instruction and creates pointer object then

Create local tag start and tag endmark pointers and initialize them with NULL value.
Store memory object instruction fun inst,its type and tag information in
Tag map table

end
if fun inst is heap memory allocation function call instruction then

Find start and end address of heap allocation. Find respective memory object and
retrieve tag start and tag end marks from Tag map table.
Create new STORE instructions to assign start and end addresses to the tag marks.

end
if fun inst is heap memory deallocation function call instruction then

Retrieve corresponding tag marks from Tag map table and initialize it with globaltag
end
if fun inst is a STORE instruction and updates an allocated memory object pointer
address from source operand. then

Retrieve respective tag start and tag end marks from Tag map table for source
memory object .
Retrieve respective tag start and tag end marks from Tag map table for destination
memory object .
Create store instructions to copy address values from source to destination tag marks.

end
end

end
Save modified LLVM-IR code as an instrumented LLVM-IR code β 3

1In LLVM-IR code a basic block is simply a container of instructions that execute sequentially. Each basic
block can be referenced by instructions such as branches

0:10

3.1.4. Inter-procedural tag propagation. As discussed earlier, it is very critical to allocate tag
marks in the same memory segment(e.g., heap, stack, bss, data) where memory object
is being created. The memory objects can be accessed inside the body of another func-
tion through pointers that are passed as arguments at the function call. To handle inter-
procedural tag marks propagation, functions containing pointers as arguments are dupli-
cated as shown in Algorithm 4. In order to update function calls for these newly created
functions, the function call instructions are detected by our pass and replaced with new in-
structions so that tag marks can be propagated separately without changing the data-flow
of the application under instrumentation.

ALGORITHM 4: Stage-4:Inter-procedural tag propagation

Input: Instrumented LLVM-IR code β 3 generated in stage-3 of tag-protection pass ; memory
map table Tag map table and fun map table ;

Output: Instrumented LLVM-IR code β 4 generated through LLVM opt command using stage-4
of tag-protection pass

for each function definition fun def in β 3 do
for each instruction fun inst in fun def do

if fun inst is a function call instruction then
Get function name fun call name being called by fun inst instruction
if function called by fun inst is present in fun map table. then

Retrieve respective fun def clone from fun map table.
Create new function call instruction fun inst new pointing to fun def clone.
for each pointer function argument ptr arg in fun inst do

Retrieve respective tag start and tag end marks from Tag map table and add
them to fun inst new argument list.

end
Remove fun inst instruction and replace it with fun inst new.

end
end

end
end
Delete memory map table fun map table Save modified LLVM-IR code as an instrumented
LLVM-IR code β 4

3.1.5. Tag Checks Placements. In final step, the tag checks are created by following the
steps as shown in Algorithm 5. Memory read and write accesses are performed through
LOAD and STORE operations respectively at LLVM-IR level. Our tag-protection pass
detects such instructions and uses record table to locate the memory object pointer and
tag marks to be accessed. Tag check instructions, to compare the start and end address of
memory object with its associated tag marks, are then inserted before each load and store
instruction to detect spatial IMA bug. Memory accessed through LLVM intrinsic functions
(e.g., memset, memcpy) are also instrumented and accordingly by detecting memory objects
being accessed and interesting tag checking instructions accordingly. Furthermore, the tag
marks are also compared with the dedicated tag address to detect any dangling pointer
deference. In order to explain the threat model clearly, an example C code with possible
IMAs bugs is presented in Fig. 1. The code consists of a function which simply copies strings
into two local buffers and prints the results before exiting the function. Here at line 2, a
buffer2 of length MAX size is allocated on stack and at line 3, a heap memory of the same
size is allocated for buffer. The function calls on line 6 and 7 may initiate spatial IMA bugs
through heap and stack overflow if the length of input strings, passed to the main function
at run time, exceeds MAX size. The memcpy function at line 9 also causes dangling pointer
dereference error as the respective memory area is deallocated at line 8 and hence can no

0:11

ALGORITHM 5: Stage-5:Tag checks placement.

Input: Instrumented LLVM-IR code β 4 generated in stage-4 of tag-protection pass ; memory
map table Tag map table;Dedicated tag address globaltag

Output: Final Instrumented LLVM-IR code γ generated through LLVM opt command using
stage-5 of tag-protection pass

for each function definition fun def in β 3 do
for each instruction fun inst in fun def do

if fun inst is function call without definition and not a memory allocation or
deallocation call then

for each function argument fun arg in fun inst do
Create two memory objects before fun and after fun. Retrieve respective
tag start and tag end marks from Tag map table.
Read address location next to tagend address before fun inst instruction and
store the read value in before fun.
Read address location next to tagend address after fun inst instruction and store
the read value in after fun.
Place tag check instruction after function call fun inst comparing before fun
and after fun memory objects.

end
end
if fun inst is a STORE instruction and updates a memory object then

Retrieve respective tag start and tag end marks from Tag map table and get address
to be accessed address tobe accessed by the fun inst instruction.
Perform dangling pointer dereference check. compare tag end with the globaltag.
Perform address comparison checks: address tobe accessed with the tag start and
tag end.

end
if fun inst is a LOAD instruction and read from allocated memory object then

Retrieve respective tag start and tag end marks from Tag map table and get address
to be accessed by the fun inst instruction.
Perform dangling pointer dereference check. compare tag end with the globaltag.
Perform address comparison checks: address tobe accessed with the tag start and
tag end.

end
end

end
Delete memory map table Tag map table.
Save modified LLVM-IR code as a final instrumented LLVM-IR code γ

longer be used. It is not possible to detect these kinds of IMAs through static analysis as
the user inputs are not known at compile time. The details of instrumenting this example
code are presented in the following subsection.

3.2. Handling Pointer Operations:

If a pointer is derived from another pointer, the tag mark pointer associated with the actual
object pointer must also be propagated. Our proposed technique detects store instructions,
at LLVM-IR level, that are used to pass address values from one pointer object to another
pointer object. To illustrate this, consider the line 5 in Fig. 1, where pointer object ptr
passes its contained address value to another pointer object buffer. In that case, the extra
instructions are inserted by our pass to copy the tag mark pointer of ptr to the tag mark
pointer of buffer.

Our solution instruments main memory objects and the sub-memory objects that are
being allocated inside the structs type memory objects and it also instruments the sub-

0:12

Listing 1: An example C code with illegal memory accesses

1 :int funcall(int argc , char **argv){
2 : char *buffer ,*ptr ,buffer2[MAX_size];// stack alloc
3 : ptr=(char *) malloc(MAX_size);// heap alloc
4 : if(ptr==NULL) exit (1);
5 : buffer=ptr;
6 : strcpy(buffer ,argv [1]);/*possible heap overflow*/
7 : strcpy(buffer2 ,argv [2]);/*possible stack overflow*/
8 : free(buffer);
9 : memcpy(ptr ,buffer2 ,MAX_size) /*dangling pointer dereference*/
10: printf (" String one :%s\n,buffer ")/*dangling pointer deref*/
11: printf (" String two :%s\n,buffer2 ")
12: }

memory object that is being allocated inside another sub-memory object(such as linked
lists).

3.3. Detecting Dangling Pointer Dereferences

To handle dangling pointer dereferences, our solution detects calls to dedicated memory
deallocating functions such as free. The memory object to be deallocated is identified along
with its tag mark pointer. Extra instructions are then inserted to assign dedicated tag
address, globaltag, to the corresponding tag mark pointer of the memory object to be deal-
located as mentioned in Algorithm 3. The check instructions, being inserted for each LOAD
or STORE operation as mentioned in Algorithm 5, measure the address contained by the
tag mark pointer and perform address comparison. If the memory object pointer has not
been reallocated and it is used to access the deallocated memory, the tag mark pointer
still points to the dedicated tag address,globaltag. In that case, check instructions being
inserted by our tag-protection pass will generate the dangling pointer dereferences signal to
terminate the application.

For example, consider a call to memcpy function at line 9 in Listing 1 where pointer
object ptr is used. This memory object is deallocated at line 8 through pointer buffer. Our
tag-protection solution will initialize its tag mark pointer with the dedicated tag address,
globaltag. Check instructions inserted for the tag mark pointer of ptr before the function call
memcpy will raise dangling pointer dereference bug alarm and terminate the application
before this function call executes.

3.4. Implementation

The proposed tag-protection approach operates at the source-code level and it is loaded
as an instrumentation pass at compile time. The current implementation is based on the
LLVM v3.4 compiler infrastructure as shown in Fig. 3. The Clang compiler is used to compile
C/C++ source file and generate Intermediate Representation (LLVM-IR) code. The LLVM
Linker (llvm-link) is then used to link and generate a single LLVM-IR code file before run-
ning the tag-protection pass. In order to have minimum overhead, this pass is placed at the
end of optimization pipeline and instruments only those memory operations that sustains
other optimizations implemented by the LLVM Optimizer (opt). For instance, the memory
operations such as accesses to local stack variables and objects created through LLVM code
generator (e.g., debug information and metadata) will not be instrumented by our pass
as these will be optimized out by the LLVM during pre-processing at compile time. After
the LLVM-IR code has been instrumented by our tag-protection pass, it is passed again
through LLVM optimization pipeline in order to simplify the tag marks propagation and
checks. Furthermore, our tag-protection pass is independent of any specific Instruction Set

0:13

llvm-link

clang

Opt -O2

Tag-protection
pass

executable

clang

LLVM-IR
Code

Source Code

C/C++ file

clang
C/C++ file

clang
C/C++ file

Opt

(a)
Fig. 3: Tag-Protection implementation block diagram based on LLVM v3.4 compiler frame-
work

Architecture (ISA) as it is executed on LLVM’s target-independent intermediate represen-
tation form. In Appendix A different C codes, taken from actual applications, have been
instrumented and presented in LLVM-IR form.

3.5. Limitations

Our proposed solution works primarily as an Intrusion Detection System (IDS) and prevents
further damage by terminating the application’s execution. The alert signal is generated
followed by an exit call, whenever an overflow occurs either due to unintentional error or as
a result of deliberate attack. Moreover, the current implementation of tag-protection pass
requires C/C++ based applications source code and does not support instrumentation of
code generated at run-time by dynamically interpreted languages (such as Python, Ruby,
Perl, etc.). This means that the type of each memory object must be known at compile-time
in order to detect its start and end address.

Calls to pre-compiled library functions where source code is not available (e.g., memcpy,
strcpy, sscanf etc.) are also identified by our tag-protection pass. In such cases, it is
not possible to insert tag address check instructions. Alternatively, our tag-protection pass
inserts one tag value check instructions after such function calls by detecting memory objects
passed as function arguments and loading tag mark values as defined in Algorithm 5. Any
overflow that occurs as a result of the sequential write operation will overwrite the memory
pointed by the tag mark. Such overflows will be eventually detected, on function return,
by tag value check instructions placed after function call instruction. If the overflow attack
occurs at the same memory location with different values over a period of time (such as
brute-force or adaptive attacks), the tag mark can be overwritten with its initial value. In

0:14

such cases, our address checking mechanism can detect these kinds of attacks only if the
complete source code is provided.

Our tag-protection pass will not be able to detect any read overflow that occurs during
execution of the un-instrumented pre-compiled library functions. Furthermore, our solution
currently does not instrument functions variable argument functions, therefore any memory
safety violations occurring inside such functions will not be reported by our solution.

4. EVALUATION

To evaluate the effectiveness and overhead of our tag-protection pass, we have instrumented
applications from various benchmark suites with our tag-protection pass. All applications
are compiled and instrumented using Clang with -O2 optimization level. The instrumented
applications are executed in 64-bit mode on a DELL OPTIPLEX 780 machine with Intel
core i5-2400 CPUs and 4GB RAM running Ubuntu 12.04 with kernel 3.11.0.26.

Please note that, for any solution that performs compile-time transformations, the changes
made to the source code must not affect the actual flow of data and the generated binary
executable should produce the expected output. In our case, the tag marks and the check
instructions inserted by the tag-protector pass should not and will not generate any false
alarms. In addition, inserting and executing extra checks always result in performance and
memory overhead. In order to achieve an efficient solution, these overheads should be man-
ageable.

4.1. Effectiveness

To measure the effectiveness of our technique, we have created different test programs, ini-
tializing various IMA bugs caused by illegal array indexing and invalid pointer arithmetic
operations. These programs are instrumented with our tag-protection pass and all the bugs
detected successfully. To test our solution on real-world applications that have been reported
with buffer overflow vulnerabilities, C language based applications from BugBench bench-
mark suite [22] are compiled and instrumented with tag-protection pass. This benchmark
suite [22] has a set of applications that contain various known software defects including
buffer overflows, stack smashing, double frees, uninitialized reads, data races and atomic vi-
olations. We have selected only those applications that have buffer overflows as our solution
targets these kinds of memory vulnerabilities. These applications are then executed using
input sets, triggering each known IMA bug. Our proposed solution detected all the bugs
successfully as presented in table I. The second column of this table represents the total
lines of code compiled for each application and the third column provides the line number
of the bug location in the given file. Many open-source tools provide a wide range of test
programs. To further check the validity of our solution, it is also tested successfully on a set
of diverse test-bed programs that come along with SAFECode source files [25].

We have also assessed our tag-protection pass using publicly available Wilander and Niki-
forakis’ benchmark software, runtime intrusion prevention evaluator (RIPE) [47]. Various
buffer-overflow vulnerabilities depending on the technique used to overflow the buffer, the
kinds of attacks performed and the location of the buffer to be overwritten, have been cov-
ered by RIPE. For instance, RIPE covers four memory locations:Stack, Heap, BSS, and
Data segment to allocate a buffer to be overflowed and uses a return address, old base
pointer, function pointer, longjmp buffers and buffers inside the structs to as code target
pointers. Our solution provides 100% accuracy by successfully detecting all the overflows.
The execution of the attack code is prevented by terminating the program execution. This
software is currently supported for 32-bit architecture so we have made some modifica-
tions to enable its execution on 64-bit architecture We have tested our tag-protection pass
and other publicly available solutions on 64-bit Ubuntu 12.4 in order to measure detection
rates. The comprehensive comparison with the existing countermeasures that are available
openly, is presented in Table II. CRED and SAFECode failed to prevent direct stack/B-

0:15

Table I: Effectiveness of the proposed tag-protection solution on different applications from
BugBench benchmark suite

Application Lines of code (LoC) Bug location Bug type Detected

bc-1.06 14.4k storage.c:177 heap overflow yes
bc-1.06 14.4k util.c:577 heap overflow yes
bc-1.06 14.4k bc.c:1425 global overflow yes
gzip-1.2.4 8.1k gzip.c:457 global overflow yes
man-1.5h1 4.1k man.c:978 global overflow yes
ncompress 1.9k compress.c:896 stack overflow yes
polymorph-0.40 0.7k polymorph.c:120 global overflow yes
polymorph-0.40 0.7k polymorph.c:193 stack overflow yes
squid-2.3 93.5k ftp.c:1024 heap overflow yes

Table II: Comprehensive Comparison with existing publicly available countermeasures when
tested on Ubuntu 12.4 64-bit architecture

Technique used Buffer Overflow Location
Dangling Pointer
Detection

Detection rate
for RIPE [47]

Stack Heap
Data
segment

Bss
segment

Structs2

gcc compiled
no protection

× × × × × × 0%

Libsafe [36] X × × × × × 7%
StackShield [38] X × × × × × 36%
ProPolice [37] X × × × × × 40%
LibsafePlus+
TIED [39; 40]

X X × × × × 70%

CRED [11] X X X X × × 60%
SoftBound [20] X X X X X X 36.26%
SAFECode [13] X X X X X X 68.89%
AddressSanitizer [35] X X X X X X 85.5%
Proposed
Tag-Protector

X X X X X X 100%

SS/databased overflows toward function pointers, longjmp buffers, and static arrays defined
within structs2 for many library functions such as sprintf(), snprintf(), sscanf(),
and fscanf().

SoftBound has presented the detection rate of 36% only and on close examination of the
RIPE source code and SoftBound transformation pass, it is found that the SoftBound fails
to insert overflow checks for arrays that are being defined inside structs2 based memory
objects. Under specific circumstances, where direct out-of-bound access is made through
absolute indexing, our proposed tag-protection solution can detect such IMA bugs whereas
other existing tools like Valgrind and AddressSanitizer leave such bugs undetected.

4.2. Performance Overhead

The performance overhead is defined as the percentage increase in the execution time of
instrumented binaries as compared to the execution time of the binaries built using the
standard Clang compiler with -O2 optimization level. As our solution terminates the ap-
plication’s execution as soon as it detects any overflow or dangling pointer dereference, the

2Buffers allocated within a struct data type declaration e.g
typedef struct struct data{

char buffer1[256];
int buffer2[128];
}buffdata;

0:16

performance overhead can not be measured using applications from BugBench benchmark
suite [22] or RIPE [47]. To measure the actual performance overhead of our solution, we
have instrumented all the C/C++ based applications from SPEC CPU2006 benchmark
suite [23] comprising over 1.11M lines of code. The applications in this benchmark are real-
world applications and are assumed to be virtually bug-free due to their general usage and
no bugs have been reported so far in the community. All the applications instrumented by
tag-protection pass have been executed successfully without generating any IMA bug alert
which further proves the effectiveness of our solution.

The applications are also instrumented with similar openly available solutions (such as
AddressSanitizer and SAFECode) and executed on the same machine under similar experi-
mental set-up. Our tag-protection pass on average incurs 26.42% increase in execution time
which is still far lower than other solutions. Each application has been executed five times
to get the average execution time. The complete performance overhead results along with
the error bars, presenting standard deviation in the execution time, are shown in Fig. 4.

To compare the performance overhead of our solution with the SoftBound+CETS [20],
the latest available source code [48] is downloaded and installed as per instructions pro-
vided. Various benchmark applications from SPEC CPU2006 and SPEC CPU2000 are
instrumented and execution time overhead comparison is presented in Fig. 5. To have a
fair comparison, this figure only presents execution time overhead for those applications as
reported in the SoftBound+CETS [20] and as well as the percentage increase in the exe-
cution time of tag-protection enabled applications is shown in this figure. Our solution has
presented lower performance overhead except two applications (lbm, crafty) where the
difference in percentage increased is still less than 3%.

In order to compare execution time overhead with SAFECode, the latest available source
code [25] is downloaded and installed as per instructions. The whole-program analysis fea-
ture of SAFECode is also enabled through libLTO plug-in that performs these analyses
and transformations. Fig. 6 presents performance overhead comparison in terms of percent-
age increase in execution time when C/C++ based benchmark applications from SPEC
CPU2006 are executed after instrumenting with our proposed tag-protection pass, SAFE-
Code and AddressSanitizer respectively. The SAFECode failed to instrument two appli-
cations, 403.gcc and 473.omnetpp , which are not included in this figure. Furthermore,
two applications, 477.dealll and 483.xalancbmk , have generated false bug alarms when
executed after instrumenting with SAFECode. This is probably due to the fact that certain
optimizations such as type-safe load/store check elimination, static array bounds checking,
automatic pool allocation and fast pool run-time checks for loads and stores, and the use of
multiple splay trees, have not been enabled in the source code that is available online [25].

Intel Pointer Checker [45] tool has also been evaluated by installing the trail version as it is
not available publicly. Applications from SPEC CPU2006 benchmark suite are instrumented
using this tool by following the instructions carefully but it failed to instrument many
applications completely and has presented very large performance overhead.

To make a fair comparison with similar existing solutions which are not available publicly
such as PAriCheck [17], BaggyBound [16] and WIT [14], we have instrumented applications
from the Olden [21] and SPEC CINT2000 [49] benchmarks as the indicated solutions have
reported the performance overhead for these benchmark suites. Furthermore, our solution
has detected a heap overflow bug in application ”em3d” from Olden benchmark, when
executed with same input set as used by PAriCheck. The same bug is also detected by
AddressSanitizer and Valgrind’s MemCheck tool whereas PAriCheck and other solutions
have not reported this bug. Our solution has presented an average overhead of 26.64% for
SPEC CINT2000 and 19.98% for Olden applications when compiled and executed with
similar settings whereas the BaggyBound has reported 60% overhead for SPEC CINT2000
applications. Only PAriCheck [17] has reported lower execution time overhead than our
technique but their solution fails to detect dangling pointer dereferences and overflows in

0:17

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 In

cr
es

as
e

in
 e

xe
cu

ti
o

n
 t

im
e

Fig. 4: Performance overhead for SPEC CPU2006 Benchmark applications

27.6

13

82

8 11

30

11
22 27

3.2 5

40

125

80

5

175

65 70

180

160

190

280

0

50

100

150

200

250

300

gzip vpr crafty lbm hmmer bzip2 sjeng libquantum sphinx art mcf

Pe
rc

en
ta

ge
 In

cr
e

sa
se

 in
 e

xe
cu

ti
o

n
 t

im
e

Tag-Protection

Softbound-CETS-paper

Fig. 5: Performance overhead comparison with SoftBound-CETS for various applications
from SPEC CPU2006 and SPEC CPU2000 benchmark suite.

pointer buffers declared inside structure objects. WIT [14] has also reported lower execution
time but their solution has limited functionality as they provide protection against illegal
writes only.

4.3. Memory Overhead

To measure peak memory usage for the instrumented applications we have examined the
VmPeak field from /proc/(pid)/status file. From the table III, it is clear that our tag-
protection solution has presented minimal memory utilization overhead.

Under specific conditions, where memory usage is the main constraint, this overhead
can be further reduced by disabling tag error reporting and allocating tag marks for array
memory objects only. Table IV summarizes the increase in binary size when applications
from SPEC CPU2006 benchmark suite are instrumented with tag-protection pass and other
existing solutions under similar experiment setup as explained earlier. On average, the
binary size is increased by 5.09x. This increase is still lower than the existing solutions as
presented in this table.

4.4. Multi-threaded Applications

To evaluate our solution for multi-threaded applications in a multi-core environment, the
PARSEC v2.1 benchmark suite [24] is used. Through successful instrumentation and exe-
cution of benchmark applications, it is shown that the our proposed solution is thread-safe

0:18

5

30 31

5

15 15

27 29

18

78

11

31
22

83

8

39

10

27
18

26.42

355

211
149 143

106
76 77

150

61

182

116 103

26

164

29

NA

40

107

246 260.87

724

101

NA

22
17

1664

954

FP

350

5946

57

295 300

504

18

NA

883

59

FP

792.93

1

4

16

64

256

1024

4096

16384

Pe
rc

en
ta

ge
 In

cr
es

as
e

in
 e

xe
cu

ti
o

n
 t

im
e

 Tag-Protection

Address Sanitizer

SAFECode

Fig. 6: Performance overhead comparison for SPEC CPU2006 Benchmark applications with
existing solutions

Table III: Increase in memory utilization for instrumented SPEC CPU2006 Benchmark
applications

Application
Uninstrumented
(KB)

Instrumented
(KB)

Increase (KB)

400.perlbench 9752 14304 4552
401.bzip2 69536 70168 632
403.gcc 25272 43332 18060
429.mcf 390756 39040 84
433.milc 16344 17160 816
444.namd 59060 59444 384
445.gobmk 36176 40596 4420
447.dealII 31060 50260 19200
450.soplex 49516 51524 2008
453.povray 16488 26168 9680
456.hmmer 8176 10236 2060
458.sjeng 186212 187252 1040
462.libquantum 2984 8944 5960
464.h264ref 35672 39592 3920
470.lbm 426132 426824 692
471.omnetpp 20936 25412 4476
473.astar 21304 21568 264
482.sphinx3 40512 46440 5928
483.xalancbmk 26216 47164 20948

Total 1472104 1577228 105124

and it is suitable for multi-core systems. So far seven applications from this benchmark are
instrumented successfully with our prototype solution whereas other applications require
changes in the compiler drivers to integrate our tag-protection pass completely in order to
achieve complete instrumentation. These issues will be addressed in our future work. The
simulation results in terms of percentage increase in execution time are presented in Fig. 7.

In order to get performance comparison with the SAFECode and AddressSanitizer,
for the multi-threaded applications, the instrumented binaries are thus executed using
the same machine configuration as defined earlier. The performance comparison and
execution time overhead is presented in Fig. 8. From these results, it is clear that even
in the worst-case scenario, the tag-protection presents 25.4% performance overhead
for which is the least as compared to the existing solutions. As shown in this figure,

0:19

Table IV: Increase in binary size for instrumented SPEC CPU2006 Benchmark applications.

Application
Tag-
Protection

Address-
Sanitizer

SAFECode

400.perlbench 5.08x 10x 7.59x
401.bzip2 2.26x 19.35x 5.98x
403.gcc 6.2x 4.28x NA
429.mcf 2.05x 60.65x 20.82x
433.milc 2.76 11.96x 4.89x
444.namd 5.94x 9.12x 7.15x
445.gobmk 1.5x 3.01x 2.51x
447.dealII 6.36x 10.22x 14.74x
450.soplex 16.07x 12.6x 17.79x
453.povray 6.12x 5.17x 4.81x
456.hmmer 3.13x 8x 3.6x
458.sjeng 3.23x 11.63x 4.02x
462.libquantum 2.35x 25.93x 7.96x
464.h264ref 3.38x 6.25x 2.55x
470.lbm 12.7x 56.65x 14.39x
471.omnetpp 5.65x NA NA
473.astar 2.75x 26.4x 10.2x
482.sphinx3 3.12x 4.05x 9.52x
483.xalancbmk 6.02x 7.86x 14.39x

Average 5.09x 16.27x 8.99x

one application, dedup , has generated false bug alarm while when an application,
swaptions , failed to complete its execution in the correct manner as required when
compiled with SAFECode. One application, freqmine , fails to complete its execution
when instrumented with AddressSanitizer. On the other hand, our technique does not
result in any false alarms and all the benchmark applications generated outputs as expected.

Unlike AddressSanitizer, which uses compact shadow mapping and customized run-time
libraries, the tag-protection allocates 8-bit tag mark against each memory allocation which
relatively uses less memory. Contrary to SAFECode, our approach does not require static
analysis and customized compiler driver which increases the compilation time. The instru-
mentation done by SAFECode has resulted in slower execution time. This effect is visible
from our results where binaries instrumented through SAFECode bear huge performance
overhead. Furthermore, in our technique the tag checks are inserted only for those store
instructions that write to the allocated memory areas, skipping pointer copy instructions,
which result in less execution time overhead.

5. FUTURE WORK

The proposed solution has been designed for C/C++ based applications targeting embedded
systems as these languages provide a powerful set of features such as low memory footprint,
little run-time support, low-level direct memory accesses and arithmetic operations through
pointers. Real-time embedded systems having hard deadlines can not afford the luxury of
executing extra instructions along with the actual code. For such systems, the proposed
solution can be improved further by exploring the possibility of executing run-time checks,
being inserted by the tag-protection pass, through dedicated hardware module. This hard-
ware module can be designed to run in parallel within the main processing core. In this
way, the performance overhead will be reduced approximately to zero. For example, for
FPGA-based embedded systems, such hardware module can be implemented by designing
customized instruction-set architecture in order to differentiate between run-time checks
and application instructions.

0:20

0

5

10

15

20

25

30

35

blackscholes canneal dedup fluidanimate freqmine streamcluster swaptions average

Pe
rc

en
ta

ge
 In

cr
es

as
e

in
 e

xe
cu

ti
o

n
 t

im
e

(a)

Fig. 7: Performance overhead in terms of percentage increase in execution time for PARSEC
v2.1 Benchmark applications

3.4 3.4

25.4

11.8

19.6 18.2

6

13.6

115

38.2

61.6

NA

102.8

269

14.8

626

FP

183.8

696.4

173.2

NA
1

4

16

64

256

1024

blackscholes canneal dedup fluidanimate freqmine streamcluster swaptions

Pe
rc

en
ta

ge
 In

cr
es

as
e

in
 e

xe
cu

ti
o

n

ti
m

e

Tag-Protection

AddressSanitizer

SAFECode

Fig. 8: Performance overhead comparison for PARSEC v2.1 Benchmark applications with
existing solutions

The current implementation of the tag-protection pass requires single LLVM-IR code file,
as shown in Fig. 3. The LLVM linker (llvm-link) has failed to generate LLVM-IR code file for
remaining applications. In our future work, the TPP will be integrated completely within
the compiler framework in order to compile and generate instrumented executable files.

6. CONCLUSION

In this paper, a fast and effective tag-protection solution is presented to detect illegal mem-
ory accesses in the applications that are written in C/C++. It is implemented as an in-
strumentation pass using LLVM and operates at the source-code level. The effectiveness of
the proposed solution is tested using several benchmarks and test applications. Through
various experimental results, it is shown that our solution has less performance overhead
when compared with the publicly available tools. The applications instrumented with the
tag-protection pass incur only 26.42% and 12.48% performance overhead on average for the
SPEC CPU2006 and the multi-threaded PARSEC v2.1 benchmark suites, respectively. Fur-

0:21

thermore, through the execution of instrumented multi-threaded applications, it is shown
that our proposed solutions are thread-safe and the performance overhead is minimal when
these applications are executed with a higher number of threads in a multi-core system. This
demonstrates that our proposed technique is a scalable solution for multi-core environments
as well.

REFERENCES

[1] Eric Chien and Péter Ször. Blended attacks exploits, vulnerabilities and buffer-overflow techniques in
computer viruses. Virus, 1, 2002.

[2] Yves Younan. 25 Years of Vulnerabilities: 1988-2012, 2013.

[3] Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16, 1996.

[4] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM conference on Computer and communications security,
pages 552–561. ACM, 2007.

[5] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of c. In USENIX Annual Technical Conference, General Track, pages 275–
288, 2002.

[6] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. Ccured: type-
safe retrofitting of legacy software. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(3):477–526, 2005.

[7] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. Memory safety without runtime
checks or garbage collection. In Proceedings of the 2003 ACM SIGPLAN Conference on Language,
Compiler, and Tool for Embedded Systems, LCTES ’03, pages 69–80, New York, NY, USA, 2003.
ACM.

[8] David Larochelle and David Evans. Statically detecting likely buffer overflow vulnerabilities. In USENIX
Security Symposium, volume 32. Washington DC, 2001.

[9] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In Usenix Security, volume 98, pages 63–78, 1998.

[10] Richard WM Jones and Paul HJ Kelly. Backwards-compatible bounds checking for arrays and pointers
in c programs. In Proceedings of the 3rd International Workshop on Automatic Debugging, pages
13–26. Citeseer, 1997.

[11] Olatunji Ruwase and Monica S Lam. A practical dynamic buffer overflow detector. In In Proceedings of
the 11th Annual Network and Distributed System Security Symposium, 2004.

[12] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds checking for c with very low
overhead. In Proceedings of the 28th International Conference on Software Engineering, ICSE ’06,
pages 162–171, New York, NY, USA, 2006. ACM.

[13] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode: Enforcing alias analysis for weakly
typed languages. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’06, pages 144–157, New York, NY, USA, 2006. ACM.

[14] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro. Preventing memory
error exploits with wit. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages 263–
277. IEEE, 2008.

[15] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. Softbound: highly compat-
ible and complete spatial memory safety for c. In ACM Sigplan Notices, volume 44, pages 245–258.
ACM, 2009.

[16] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In USENIX Security Symposium,
pages 51–66, 2009.

[17] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R Sekar, Frank Piessens, and Wouter Joosen.
Paricheck: an efficient pointer arithmetic checker for c programs. In Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security, pages 145–156. ACM, 2010.

[18] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds checking. In Proceedings of the
Tenth International Symposium on Code Generation and Optimization, CGO ’12, pages 135–144,
New York, NY, USA, 2012. ACM.

0:22

[19] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis & trans-
formation. In Code Generation and Optimization, 2004. CGO 2004. International Symposium on,
pages 75–86. IEEE, 2004.

[20] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. Cets: Compiler enforced
temporal safety for c. In Proceedings of the 2010 International Symposium on Memory Management,
ISMM ’10, pages 31–40, New York, NY, USA, 2010. ACM.

[21] Martin Christopher Carlisle. Olden: parallelizing programs with dynamic data structures on distributed-
memory machines. PhD thesis, Princeton University, 1996.

[22] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. Bugbench: Benchmarks for
evaluating bug detection tools. In Workshop on the Evaluation of Software Defect Detection Tools,
pages 1–5, 2005.

[23] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer Architecture News,
34(4):1–17, 2006.

[24] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th international conference
on Parallel architectures and compilation techniques, pages 72–81. ACM, 2008.

[25] SAFECode. Download:SAFECode FOR LLVM 3.2, 2006.

[26] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hardbound: Architectural sup-
port for spatial safety of the c programming language. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Systems, ASP-
LOS XIII, pages 103–114, New York, NY, USA, 2008. ACM.

[27] David Chisnall, Colin Rothwell, Robert NM Watson, Jonathan Woodruff, Munraj Vadera, Simon W
Moore, Michael Roe, Brooks Davis, and Peter G Neumann. Beyond the pdp-11: Architectural sup-
port for a memory-safe c abstract machine. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, pages 117–130.
ACM, 2015.

[28] Intel’s MPX. Intel Memory Protection Extensions (Intel MPX) Enabling Guide.

[29] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure program execution via dynamic
information flow tracking. SIGARCH Comput. Archit. News, 32(5):85–96, October 2004.

[30] Ioannis Doudalis, James Clause, Guru Venkataramani, Milos Prvulovic, and Alessandro Orso. Effec-
tive and efficient memory protection using dynamic tainting. Computers, IEEE Transactions on,
61(1):87–100, 2012.

[31] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D. Keromytis. Libdft: Practical
dynamic data flow tracking for commodity systems. SIGPLAN Not., 47(7):121–132, March 2012.

[32] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors. In In Proc. of
the Winter 1992 USENIX Conference. Citeseer, 1991.

[33] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic binary instru-
mentation. In ACM Sigplan Notices, volume 42, pages 89–100. ACM, 2007.

[34] Derek Bruening and Qin Zhao. Practical memory checking with dr. memory. In Proceedings of the
9th Annual IEEE/ACM International Symposium on Code Generation and Optimization, pages
213–223. IEEE Computer Society, 2011.

[35] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. Addresssanitizer:
A fast address sanity checker. In USENIX ATC, volume 2012, 2012.

[36] Arash Baratloo, Navjot Singh, and Timothy Tsai. Libsafe: Protecting critical elements of stacks. White
Paper http://www. research. avayalabs. com/project/libsafe, 1999.

[37] Hiroaki Etoh and Kunikazu Yoda. Propolice: Improved stack-smashing attack detection. IPSJ SIGNotes
Computer Security (CSEC), 14:25, 2001.

[38] Vendicator. Stackshield, 2001.

[39] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tied, libsafeplus: Tools for runtime buffer overflow
protection. In USENIX Security Symposium, pages 45–56, 2004.

[40] Kumar Avijit and Prateek Gupta. Binary rewriting and call interception for efficient runtime protection
against buffer overflows. Software: Practice and Experience, 36(9):971–998, 2006.

[41] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer uses in production servers. In De-
pendable Systems and Networks, 2006. DSN 2006. International Conference on, pages 269–280,
June 2006.

[42] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Secure virtual architecture: A
safe execution environment for commodity operating systems. In Proceedings of Twenty-first ACM

0:23

SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 351–366, New York, NY,
USA, 2007. ACM.

[43] Wei Xu, Daniel C. DuVarney, and R. Sekar. An efficient and backwards-compatible transformation to
ensure memory safety of c programs. In Proceedings of the 12th ACM SIGSOFT Twelfth Interna-
tional Symposium on Foundations of Software Engineering, SIGSOFT ’04/FSE-12, pages 117–126,
New York, NY, USA, 2004. ACM.

[44] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all pointer and array
access errors. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation, PLDI ’94, pages 290–301, New York, NY, USA, 1994. ACM.

[45] PointerChecker. Pointer Checker:Easily Catch Out-of-Bounds Memory Accesses, 2012.

[46] Yutaka Oiwa. Implementation of the memory-safe full ansi-c compiler. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’09, pages
259–269, New York, NY, USA, 2009. ACM.

[47] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter Joosen. RIPE: Runtime
intrusion prevention evaluator. In In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC. ACM, 2011.

[48] SoftBound+CETS. SoftBound+CETS: sourcecode, 2014.

[49] SPEC. SPEC CPU2000: CINT200, 2000.

Appendix:

A. LLVM INTERMEDIATE REPRESENTATION (LLVM-IR) CODE

A simplified section of a C function extracted from one of the Bugbench [22] applications
is shown in Listing 2. Here, for some user inputs, the value of count exceeds the index
value resulting in heap overflow error. More details about this overflow bug are available
in [22]. The uninstrumented LLVM-IR code generated by Clang is shown in Listing 3.
After generating this LLVM-IR code, the un-instrumented code is processed through tag-
protection pass, based on Algorithms (1-5), to generate final instrumented LLVM-IR code
with necessary run-time checks as underlined in Listing 4. The tag address comparison
checks, inserted at lines 22 to 37, by the tag-protection pass will detect and report any
overflow dynamically.

The record table as shown in Fig. 1-c has been to create and store tag marks and generate
tag checking instructions. For instance, to place tag check instruction at lines 24 in Listing 4,
the instructions at line 5,6,11 and 14 will be stored in the first, second, fourth and fifth
columns of record table respectively. As the memory object is not of struct data type, the
third column of record table for this object will not be used. On reaching line 13 of un-
instrumented code as shown in Listing 3, the tag-protection pass will use the given entries
of the record table to create all the overflow check instructions (as presented by lines 38-49
of Listing 4). After processing the last line of the un-instrumented code, the tag-protection
pass will delete the record table and generate the final executable file.

Calls to pre-compiled library functions where source code is not available (e.g., memcpy,
strcpy, sscanf etc.) are also identified by our tag-protection pass. In such cases, it is
not possible to insert tag address checking instructions. Alternatively, our tag protection
pass inserts tag value check instructions after such function calls by detecting memory
objects passed as function arguments and loading their respective tag values. For example,
consider a very simple code, as shown in Listing 5, that copies user input to a global buffer.
The un-instrumented LLVM-IR code generated by Clang is shown in Listing 6 whereas
the transformed LLVM-IR version as instrumented by the tag-protection pass is shown in
Listing 7. Any overflow that occurs during the execution of these functions will overwrite the
tag mark which will be eventually detected on function return by tag value check instruction
placed at lines 28 to 42.

Listing 2: Heap overflow example from one of the Bugbench applications.

// buffer is declared as global array of pointers
1: buffer = malloc(MAX_size*sizeof(char *));
2: for(int index =0;index <count;index ++)
3: buffer[index]=NULL;//store instruction

Listing 3: LLVM-IR code (Un-instrumented) for C code presented in Listing 2

//Lines 1-3 represent LLV-IR code for line 1 of C code in Listing 2
1 : %call = call noalias i8* @malloc(i64 800) #2
2 : %0 = bitcast i8* %call to i8**
3 : store i8** %0, i8*** @buffer , align 8
4 : br label %for.cond

//Lines 5-8 represent LLV-IR code for line 2 of C code in Listing 2
5 : for.cond: ; preds = %for.inc , %entry
6 : %index .0 = phi i32 [0, %entry], [%inc , %for.inc]
7 : %cmp = icmp slt i32 %index.0, 101

App–2

8 : br i1 %cmp , label %for.body , label %for.end
//Lines 9-14 represent LLV-IR code for line 3 of C code in Listing 2

9 : for.body: ; preds = %for.cond
10: %idxprom = sext i32 %index.0 to i64
11: %1 = load i8*** @buffer , align 8
12: %arrayidx = getelementptr inbounds i8** %1, i64 %idxprom
13: store i8* null , i8** %arrayidx , align 8
14: br label %for.inc
15: for.inc:
; preds = %for.body
16: %inc = add nsw i32 %index.0, 1
17: br label %for.cond
18: for.end:
; preds = %for.cond

Listing 4: LLVM-IR code (Instrumented with tag-protection pass) for C code presented in
Listing 2

//Dedicated Tag address creation for dangling pointer checks
1 : %0 = tail call noalias i8* @malloc(i64 2)
2 : store volatile i8* %0, i8** @globaltag, align 8

3 : %1 = load volatile i8** @globaltag, align 8

4 : store volatile i8 107, i8* %1, align 1

5 : %call = tail call noalias i8* @malloc(i64 800) #1
6 : %2 = bitcast i8* %call to i8**
7 : store i8** %2, i8*** @buffer , align 8

//Tag marks creation
8 : %3 = ptrtoint i8* %call to i64

9 : %add3 = add i64 %3, 800
10: %t tag4 = inttoptr i64 %add3 to i8*

11: store volatile i8* %t tag4, i8** @buffer glb tag end, align 8

12: %sub5 = add i64 %3, -1
13: %t a6 = inttoptr i64 %sub5 to i8*

14: store volatile i8* %t a6, i8** @buffer glb tag start, align 8

15: br label %for.body
16: for.body: ; preds = %t_bf.exit.for.body_crit_edge , %entry
17: %load_tag_end = phi i8* [% load_tag_end.pr ,

%t_bf.exit.for.body_crit_edge],[%t_tag4 , %entry]
18: %load_tag_start = phi i8* [% load_tag_start.pre ,

%t_bf.exit.for.body_crit_edge],[%t_a6 , %entry]
19: %indvars.iv = phi i64

[% indvars.iv.next ,%t_bf.exit.for.body_crit_edge],[0,% entry]
20: %4 = load i8*** @buffer , align 8
21: %arrayidx = getelementptr inbounds i8** %4, i64 %indvars.iv

//Tag marks check instructions before STORE instruction
22: %5 = ptrtoint i8* %load tag start to i64

23: %6 = ptrtoint i8** %arrayidx to i64

24: %cmp null chk.i = icmp eq i8* %load tag end, null

25: br i1 %cmp null chk.i, label %tag check storeinst bf.exit,label %entry.i

26: entry.i: ; preds = %for.body

27: %7 = load i8** @globaltag, align 8

App–3

28: %cmp.i = icmp eq i8* %7, %load tag end

29: br i1 %cmp.i, label %abortBB funheap.i, label %if.else.i

30: if.else.i: ; preds = %entry.i

31: %8 = bitcast i8* %load tag end to i8**

32: %cmp2.i = icmp ult i8** %arrayidx, %8

33: br i1 %cmp2.i, label %if.else5.i, label %abortBB heap overwrite.i

34: if.else5.i: ; preds = %if.else.i

35: %9 = bitcast i8* %load tag start to i8**

36: %cmp6.i = icmp ule i8** %arrayidx, %9

37: br i1 %cmp6.i, label %abortBB heap underwrite.i,

label %tag check storeinst bf.exit

38: tag_check_storeinst_bf.exit:; preds = %if.else5.i, %for.body
39: store i8* null , i8** %arrayidx , align 8
40: %indvars.iv.next = add nuw nsw i64 %indvars.iv , 1
41: %10 = trunc i64 %indvars.iv.next to i32
42: %cmp = icmp slt i32 %10, 101
43: br i1 %cmp , label %t_bf.exit.for.body_crit_edge , label %for.end
44: t_bf.exit.for.body_crit_edge: ; preds = %tag_check_storeinst_bf.exit
45: %load_tag_start.pre = load i8** @buffer_glb_tag_start , align 8
46: %load_tag_end.pr = load i8** @buffer_glb_tag_end , align 8
47: br label %for.body
48: for.end: ; preds = %tag_check_storeinst_bf.exit
49: ret i32 0

Listing 5: A small section of C code using library function ”strcpy”

1: char *buffer;
2: buffer = (char *) malloc(MAX_size);
3: strcpy(buffer ,argv [1]);// strcpy function call

Listing 6: LLVM-IR code (Un-instrumented) for C code presented in Listing 5

//Lines 1-2 represent LLV-IR code for lines 1-2 of C code in Listing 5
1 : %call = call noalias i8* @malloc(i64 80) #2
2 : store i8* %call , i8** @buffer , align 8

//Lines 3-7 represent LLV-IR code for line 3 of C code in Listing 5
3 : %0 = load i8** @buffer , align 8
4 : %arrayidx = getelementptr inbounds i8** %argv , i64 1
5 : %1 = load i8** %arrayidx , align 8
6 : %call1 = call i8* @strcpy(i8* %0, i8* %1) #2
7 : ret i32 0

Listing 7: LLVM-IR code (Instrumented with tag-protection pass) for C code presented in
Listing 5.

//Dedicated Tag address creation for dangling pointer checks
1 : %0 = tail call noalias i8* @malloc(i64 2)
2 : store volatile i8* %0, i8** @globaltag, align 8

3 : %1 = load volatile i8** @globaltag, align 8

4 : store volatile i8 107, i8* %1, align 1

App–4

5 : %call = tail call noalias i8* @malloc(i64 80) #1
6 : %2 = bitcast i8* %call to i8**
7 : store i8** %2, i8*** @buffer , align 8

//Tag marks creation
8 : %3 = ptrtoint i8* %call to i64

9 : %add3 = add i64 %3, 80
10: %t tag4 = inttoptr i64 %add3 to i8*

11: store volatile i8* %t tag4, i8** @buffer glb tag end, align 8

12: %sub5 = add i64 %3, -1
13: %t a6 = inttoptr i64 %sub5 to i8*

14: store volatile i8* %t a6, i8** @buffer glb tag start, align 8

15: %3 = load i8** @buffer , align 8
16: %arrayidx = getelementptr inbounds i8** %argv , i64 1
17: %4 = load i8** %arrayidx , align 8

//Reading tag mark before "strcpy" function call
18: %fun load bf = load volatile i8** @buffer glb tag end, align 8

19: %cmpchek null= icmp eq i8* %fun load bf, null

20: br i1 %cmpchek null, label %5, label %if.bf funcall

21: ; <label >:5 ; preds = %if.notUAF , %entry
22: %call1 = tail call i8* @strcpy(i8* %3, i8* %4) #1

//Tag mark value check instructions after "strcpy" function call
23: %load tagchk en = load volatile i8* @tagchk en, align 1

24: %cmp = icmp eq i8 %load tagchk en, 1

25: br i1 %cmp , label %if.TagChkEn , label %6
26: ; <label >:6 ; preds = %if.TagChkEn , %5
27: ret i32 0
28: if.bf funcall: ; preds = %entry

29: %load glbtag = load volatile i8** @globaltag, align 8

30: %cmpcheck= icmp eq i8* %fun load bf, %load glbtag

31: br i1 %cmpcheck, label %abortBB funheap, label %if.notUAF

32: if.notUAF: ; preds = %if.bf funcall

33: store volatile i8 1, i8* @tagchk en, align 1

34: %load t = load volatile i8* %fun load bf, align 1

35: store volatile i8 %load t, i8* @tagval bfFuncall, align 1

36: br label %5
37: if.TagChkEn: ; preds = %5

38: store volatile i8 0, i8* @tagchk en, align 1

39: %load bf= load volatile i8* @tagval bfFuncall, align 1

40: %load af = load volatile i8* %fun load bf, align 1

41: %cmpcheck tagval = icmp eq i8 %load bf, %load af

42: br i1 %cmpcheck tagval, label %6, label %abortBB funheap

