9 research outputs found

    An objective reduction technique of proteomic mass spectra based on multi-scale fuzzy thresholding

    Get PDF
    A proteomic approach offers a powerful and complementary tool to genomics. It allows to index and characterize proteins, and, for example, to compare their levels of expression between healthy and pathological states. Proteomic analyses are mainly based on the separation of proteins by two-dimensional gel electrophoresis and their subsequent identification by comparing the data from Mass Spectrometry (SM) analyses to the theoretical ones contained in databases. In mass spectrometry, the detector noise, the electronic and chemical noise, sometimes the small amount of peptides that has to be treated and finally the spectrum reduction noise (due to bad filtering and/or thresholding), can induce Parasitic Mass Peaks (PMP) and/or hide some Useful Mass Peaks (UMP) of low intensities. The immediate consequence is that the presence of the PMP and the absence of the UMP will be detrimental to the protein identification quality. In this article, we propose an original algorithm eliminating the PMP, detecting and amplifying those which are useful. The preprocessing principle uses a multi-scale analysis technique coupled to a fuzzy thresholding (multi-scale fuzzy thresholding), a local amplification of the UMP, and finally an adaptive Base Line Correction. The associated frequencies with the PMP are distributed on all the spectrum pass bandwidth. This leads us to a dyadic tree structure subband decomposition. The algorithm principle consists of dividing the frequential pass bandwidth of each masses spectrum into two subbands, a Low and High Frequency (LF,HF) subband, then each subband is in turn divided into two subbands etc. The HF subbands are then thresholded according to the minimization criterion of the Shannon fuzzy entropy, and then amplified locally; the base line is calculated in an adaptive way and subtracted from reconstructed spectrum. To evaluate the quality of this algorithm, we present a comparison of the results obtained by our algorithm, and those obtained by the DataExplorer software. The latter is a reduction software provided within the MALDI-TOF spectrometer software package.La protĂ©omique offre une approche puissante et complĂ©mentaire Ă  la gĂ©nomique. Elle permet de rĂ©pertorier et caractĂ©riser les protĂ©ines, de comparer leur niveau d’expression entre un Ă©tat physiologique sain et malade par exemple. L’analyse protĂ©omique se fait essentiellement par l’utilisation de la technique d’électrophorĂšse bidimensionnelle couplĂ©e Ă  la technique d’analyse par SpectromĂ©trie de Masse (SM). La premiĂšre, aidĂ©e par l’imagerie protĂ©omique, conduit Ă  la localisation des protĂ©ines candidates Ă  une analyse par SM. La comparaison des spectres de masses obtenus Ă  des bases de donnĂ©es protĂ©iques, conduit Ă  l’identification des protĂ©ines d’intĂ©rĂȘt en terme de peptides. Le problĂšme qui se pose souvent est que les spectres sont bruitĂ©s et pauvres en masses. En effet, le bruit du dĂ©tecteur, le bruit Ă©lectronique et chimique, la prĂ©sence de peu de matĂ©riel protĂ©ique et enfin le bruit de la rĂ©duction des spectres (mauvais filtrage et/ou seuillage), tous ces bruits peuvent induire des Pics de Masses Parasites (PMP) et/ou supprimer des Pics de Masses Utiles (PMU) de faible intensitĂ©. La consĂ©quence immĂ©diate est que la prĂ©sence des PMP et l’absence des PMU seront utilisĂ©es au dĂ©pens de la qualitĂ© d’identification de la protĂ©ine. Dans cet article, nous proposons un algorithme original Ă©liminant les PMP, dĂ©tectant et amplifiant ceux utiles. Le principe du prĂ©-traitement utilise une Analyse MultirĂ©solution (AM) couplĂ©e Ă  un seuillage basĂ© sur la logique floue (seuillage flou multi-Ă©chelle), une amplification locale des PMU, et enfin une correction adaptative de la Ligne de Base (LB). Les frĂ©quences associĂ©es aux PMP sont rĂ©parties sur toute la bande passante du spectre, ce qui nous conduit Ă  une AM dite en arbre. Le principe consiste Ă  dĂ©couper la bande passante frĂ©quentielle de chaque spectre de masses en deux sous-bandes, une Basse FrĂ©quence (BF), l’autre Haute FrĂ©quence (HF), ensuite chaque sous-bande est Ă  son tour dĂ©coupĂ©e en deux sous-bandes etc. Les sous-bandes HF sont seuillĂ©es selon le critĂšre de minimisation de l’entropie floue de Shannon et amplifiĂ©es localement, la ligne de base est calculĂ©e automatiquement et soustraite du spectre reconstruit. Pour Ă©valuer la qualitĂ© de cet algorithme, nous prĂ©sentons une comparaison des rĂ©sultats obtenus par notre algorithme, et ceux fournis par le spectromĂštre MALDI-TOF (Matrix Assisted Laser Desorption/Ionisation-Time Of Flight), qui utilise le logiciel « DataExplorer » comme logiciel de rĂ©duction

    Implication de HMGB1 dans la différentiation des trophoblastes

    Full text link
    Le placenta est l'organe essentiel au succĂšs de la grossesse et la diffĂ©renciation des trophoblastes est fondamentale pour son bon fonctionnement. La prĂ©sence d’une inflammation non contrĂŽlĂ©e, habituellement induite par des mĂ©diateurs inflammatoires endogĂšnes, est associĂ©e Ă  plusieurs complications de la grossesse. High Mobility Group Box 1 (HMGB1), une protĂ©ine nuclĂ©aire qui peut avoir des actions inflammatoires lorsque secrĂ©tĂ©e dans le milieu extracellulaire, est un des mĂ©diateurs inflammatoires endogĂšnes augmentĂ©s lors des grossesses pathologiques. Cependant, la maniĂšre dont HMGB1 agit Ă  l’interface materno-foetale est encore inconnue. Ce travail de maĂźtrise a comme objectifs d’évaluer la concentration, la localisation subcellulaire et la sĂ©crĂ©tion de HMGB1 lors de la diffĂ©rentiation des trophoblastes et d’étudier sa distribution dans le placenta de grossesses compliquĂ©es par une prĂ©eclampsie (PE). Dans ces travaux, nous avons dĂ©montrĂ© une augmentation de la concentration nuclĂ©aire de HMGB1 lors de la diffĂ©renciation spontanĂ©e des trophoblastes. De plus, l’utilisation d’un inhibiteur d’histones dĂ©acĂ©tylases (c.-Ă -d. NaB) mĂšne Ă  une accumulation de HMGB1 dans le cytoplasme et favorise la diffĂ©renciation, tandis que l’utilisation d’un inhibiteur de l’export nuclĂ©aire (c.-Ă -d. leptomycine) mĂšne Ă  une diminution de la diffĂ©renciation. En ce qui concerne les grossesses compliquĂ©es par la PE, il y a une redistribution de HMGB1 avec une accumulation cytoplasmique. En conclusion, ces travaux dĂ©montrent l’association entre la modulation de HMGB1 et la diffĂ©rentiation des trophoblastes, bien que le lien causal reste Ă  dĂ©terminer.The placenta plays a crucial role during pregnancy and trophoblast differentiation is fundamental to its proper functioning. The absence of inflammation is also essential for the success of gestation, the presence of uncontrolled inflammation is associated with several pregnancy complications, such as preeclampsia (PE) and preterm delivery. High Mobility Group Box 1 (HMGB1), a nuclear protein that acts as a pro-inflammatory mediator when secreted into the extracellular media, is one of the endogenous inflammatory mediators increased during pathological pregnancies. However, the actions of HMGB1 at the materno-fetal interface are still unknown. The aim of this work was to evaluate the concentration, subcellular localization and secretion of HMGB1 during trophoblast differentiation and to evaluate the distribution of HMGB1 in the placenta from pregnancies complicated with PE. In my studies I have shown an increase of HMGB1’s nuclear concentration during the spontaneous differentiation of trophoblasts. Moreover, the use of a histone deacetylase inhibitor (i.e. NaB) leads to an accumulation of HMGB1 in the cytoplasm and promotes differentiation, while the use of a nuclear export inhibitor (i.e. leptomycin) leads to a decrease in differentiation. Concerning pregnancies complicated with PE, there is a redistribution of HMGB1 with cytoplasmic accumulation. In conclusion, this work demonstrates the association between the modulation of HMGB1 localisation with trophoblasts differentiation, although the causal link remains to be determined

    The regulation and induction of clathrin-mediated endocytosis through a protein aqueous-aqueous phase separation mechanism

    Full text link
    La morphologie des cellules et leurs interactions avec l’environnement dĂ©coulent de divers procĂ©dĂ©s mĂ©caniques qui contribuent Ă  la richesse et Ă  la diversitĂ© de la vie qui nous entoure. À titre d’exemple, les cellules mammifĂšres se conforment Ă  diffĂ©rentes gĂ©omĂ©tries en fonction de l’architecture de leur cytosquelette tandis que les bactĂ©ries et les levures adoptent une forme circulaire par turgescence. Je prĂ©sente, dans cette thĂšse, la dĂ©couverte d’un mĂ©canisme de morphogĂ©nĂšse supplĂ©mentaire, soit la dĂ©formation de surface cellulaire via l’assemblage de protĂ©ines par dĂ©mixtion de phases aqueuses non miscibles et l’adhĂ©sion entre les matĂ©riaux biologiques. J’expose de façon spĂ©cifique comment ce mĂ©canisme rĂ©gule le recrutement et le mouvement dynamique des protĂ©ines qui induisent l’invagination de la membrane plasmique lors de l’endocytose clathrine-dĂ©pendante (CME). Le phĂ©nomĂšne de dĂ©mixtion des protĂ©ines dans le cytoplasme est analogue Ă  la sĂ©paration de phase de l’huile en solution aqueuse. Il constitue un mĂ©canisme cellulaire important et conservĂ©, oĂč les protĂ©ines s’agglomĂšrent grĂące aux interactions intermolĂ©culaires qui supplantent la tendance du systĂšme Ă  former un mĂ©lange homogĂšne. Plusieurs exemples de compartiments cellulaires dĂ©pourvus de membrane se forment par dĂ©mixtion de phase, tels que le nuclĂ©ole et les granules de traitement de l’ARN [1-6]. Ces organes ou compartiments dĂ©nommĂ©s NMO, du terme anglais « non-membranous organelles », occupent des fonctions de stockage, de traitement et de modification chimique des molĂ©cules dans la cellule. J’explore ici les questions suivantes : est-ce que les NMO occupent d’autres fonctions Ă  caractĂšre morphologique ? Quels signaux cellulaires rĂ©gulent la dĂ©mixtion de phase des protĂ©ines dans la formation des NMO ? FondĂ©e sur la physique mĂ©canique du contact entre les matĂ©riaux, j’émets l’hypothĂšse que des compartiments cellulaires nanoscopiques, formĂ©s par dĂ©mixtion de phase, gĂ©nĂšrent des forces mĂ©caniques par adhĂ©sion interfaciale. Le travail mĂ©canique ainsi obtenu dĂ©forme le milieu cellulaire et les surfaces membranaires adjacents au NMO nouvellement crĂ©Ă©. Le but de mon doctorat est de comprendre comment les cellules orchestrent, dans le temps et l’espace, la formation des NMO associĂ©s au CME et comment ceux-ci gĂ©nĂšrent des forces mĂ©caniques. Mes travaux se concentrent sur les mĂ©canismes de dĂ©mixtion de phase et d’adhĂ©sion de contact dans le processus d’endocytose chez la levure Saccharomyces cerevisiae. Pour enquĂȘter sur le rĂŽle des modifications post-traductionnelles dans ces mĂ©canismes, nous avons premiĂšrement analysĂ© la cinĂ©tique de phosphorylation des protĂ©ines en conditions de stress. Mes rĂ©sultats dĂ©montrent que le recrutement et la fonction de certaines protĂ©ines impliquĂ©es dans le CME se rĂ©gulent via des mĂ©canismes de phosphorylation. Outre les processus de contrĂŽle post-traductionnel, nous avons Ă©lucidĂ© le rĂŽle des domaines de faible complexitĂ© dans l’assemblage de plusieurs protĂ©ines associĂ©es avec le CME. De concert avec les modifications de phosphorylation, des domaines d’interaction protĂ©ine-protĂ©ine de type PrD (du terme « prion-like domains ») modulent directement le recrutement des protĂ©ines au sein des NMO associĂ©s au CME. La nature intrinsĂšquement dĂ©sordonnĂ©e de ces PrD favorise un mĂ©canisme d’assemblage des protĂ©ines par dĂ©mixtion de phase tel que postulĂ©. Finalement, mes travaux confirment que la formation de ces NMO spĂ©cifiques gĂ©nĂšre des forces mĂ©caniques qui dĂ©forment la membrane plasmique et assurent le processus de CME. D’un point de vue fondamental, mes recherches permettent de mieux comprendre l’évolution d’une stratĂ©gie cellulaire pour assembler des compartiments cellulaires sans membrane et pour fixer les dimensions biologiques associĂ©es au CME. De maniĂšre plus appliquĂ©e, cette Ă©tude a le potentiel de gĂ©nĂ©rer des retombĂ©es importantes dans la comprĂ©hension et le traitement de maladies neurodĂ©gĂ©nĂ©ratives souvent associĂ©es Ă  une sĂ©paration de phase aberrante et Ă  la formation d’agrĂ©gats protĂ©iques liĂ©s Ă  la pathologie.Evolution has resulted in distinct mechanical processes that determine the shapes of living cells and their interactions with each other and with the environment. These molecular mechanisms have contributed to the wide variety of life we observe today. For example, mammalian cells rely on a complex cytoskeleton to adapt specific shapes whereas bacteria, yeast and plants use a combination of turgor pressure and cell walls to have their characteristic bloated form. In this dissertation, I describe my discovery of an unforeseen additional mechanism of morphogenesis: protein aqueous-aqueous phase separation and adhesive contact between biomaterials as a simple and efficient ways for cells to organize internal matter and accomplish work to shape internal structures and surfaces. I specifically describe how a fundamental process of phospholipid membrane and membrane-embedded protein recycling, clathrin-mediated endocytosis (CME), is driven by this mechanism. Analogous to water and oil emulsions, proteins, and biopolymers in general, can phase separate from single to a binary aqueous phase. For proteins that de-mix from the bulk environment, the intermolecular interactions (or cohesive energy) that favors protein condensation only needs to overcome the low mixing entropy of the system and represents a conserved and energy efficient cellular strategy [2, 3, 7, 8]. So far, various examples of phase separated cellular compartments, termed non-membranous organelles (NMOs), have been discovered. These include the nucleoli, germ line P granules and P bodies, to name a few [1-6]. NMOs are involved in many conserved biological processes and can function as storage, bioreactor or signaling bodies. Cells use phase separation as a scheme to organize internal matter, but do NMOs occupy other complex functions, such as morphogenesis? What specific signals trigger protein phase separation? Based on mechanical contact theory, I proposed that hundreds of nanometer- to micron-scale phase separated bodies can deform the cellular environment, both cytoplasm and membranes, through interfacial adhesion. I studied how mechanical contact between a phase-separated protein fluid droplet and CME nucleation sites on membranes drive endocytosis in the model organism budding yeast, Saccharomyces cerevisiae. Specifically, this dissertation describes first, my investigations of post-translational modifications (phosphorylation) of several CME-mediating proteins and the implications of these modifications in regulating CME. I then describe how my efforts to understand what was distinct about the proteins that are phosphorylated led me to propose their phase separation into droplets capable of driving invagination and vesicle formation from plasma membrane. I used fluorescence microscopy, mass spectrometry and micro rheology techniques to respectively determine the spatiotemporal dynamics, phosphorylation modifications and material properties of coalesced CME-mediating proteins. I further investigated how phase separation of these proteins might generate mechanical force. I demonstrate that changes in the phosphorylation of some endocytic proteins regulates their recruitment to CME nucleation sites. We achieved reliable predictions of functional phosphosites by combining information on the conservation of the post-translational modifications with analysis of the proportion of a protein that is dynamically phosphorylated with time. The same dynamically phosphorylated proteins were enriched for low amino acid compositional complexity “prion-like domains”, which we demonstrated were essential to these proteins undergoing aqueous-aqueous phase separation on CME nucleation sites. I then demonstrate how phase separated droplet can produce mechanical work to invaginate membranes and drive CME to completion. In summary, I have discovered a fundamental molecular mechanism by which phase separated biopolymers and membranes could apply work to shape each other. This mechanism determines the natural selection of spatial scale and material properties of CME. Finally, I discuss broader implications of this dissertation to mechanistic understandings of the origins of neurodegenerative diseases, which likely involve pathological forms of protein phase separation and/or aggregation

    Étude des propriĂ©tĂ©s gĂ©lifiantes et viscosifiantes de systĂšmes mixtes isolat de protĂ©ines de lactosĂ©rum-polysaccharides en conditions associatives

    Get PDF
    Les interactions entre protĂ©ines et polysaccharides dĂ©pendent des conditions environnementales et de leurs propriĂ©tĂ©s intrinsĂšques. La cosolubilitĂ©, la complexation et l’incompatibilitĂ© en sont le rĂ©sultat. La complexation et l’incompatibilitĂ© ont dĂ©montrĂ© une amĂ©lioration des propriĂ©tĂ©s fonctionnelles de systĂšmes mixtes comparativement aux biopolymĂšres pris individuellement. L’incompatibilitĂ© Ă©tant souvent la rĂšgle, cette recherche a pour but d’approfondir les connaissances sur les propriĂ©tĂ©s fonctionnelles des systĂšmes mixtes protĂ©ines-polysaccharides en conditions de compatibilitĂ© ou d’interactions associatives et de caractĂ©riser les nouvelles fonctionnalitĂ©s qui en dĂ©coulent. Un premier systĂšme isolat de protĂ©ines de lactosĂ©rum-xanthane a Ă©tĂ© Ă©tudiĂ© pour ses aptitudes Ă  la gĂ©lification en conditions de compatibilitĂ© induites suite Ă  une variation de pH et du ratio protĂ©ines-polysaccharides. Suivant l’application d’un traitement thermique, la solution est passĂ©e de compatible Ă  incompatible. Les gels dĂ©montraient une augmentation du module Ă©lastique (G’) due Ă  l’incompatibilitĂ© telle qu’observĂ©e par microscopie confocale Ă  balayage laser. L’ajout de NaCl a augmentĂ© cette incompatibilitĂ© et l’a rendue excessive au-delĂ  d’une concentration critique entraĂźnant une chute du G’. La compatibilitĂ© a ensuite Ă©tĂ© Ă©tudiĂ©e sur un systĂšme isolat de protĂ©ines de lactosĂ©rum-pectine. Suite Ă  une variation de pH, de la concentration en biopolymĂšres et du ratio protĂ©ines-polysaccharides, des conditions de compatibilitĂ© ont Ă©tĂ© confirmĂ©es par les mesures d’absorbance et du nombre de charges. Cette compatibilitĂ© a menĂ© Ă  une diminution de la viscositĂ© en solution diluĂ©e due Ă  la formation de complexes solubles alors qu’en solution concentrĂ©e, la complexation l’a plutĂŽt augmentĂ©e. Un systĂšme modĂšle de yogourt ferme a finalement Ă©tĂ© Ă©tudiĂ© suite Ă  l’incorporation de isolat de protĂ©ines de lactosĂ©rum et de pectine prĂ©alablement complexĂ©s et stabilisĂ©s. Les concentrations en protĂ©ines et en solides totaux ont Ă©tĂ© maintenues constantes. Les mĂ©langes laitiers ont Ă©tĂ© acidifiĂ©s au glucono-delta-lactone. Les rĂ©sultats dĂ©montrent que l’incorporation de complexes Ă  diffĂ©rentes concentrations entrave la formation d’un rĂ©seau protĂ©ique homogĂšne provoquant une diminution de la fermetĂ© du gel et une augmentation de la synĂ©rĂšse. Les observations microscopiques appuient ces rĂ©sultats. Les solutions mixtes permettent de dĂ©velopper de nouvelles propriĂ©tĂ©s fonctionnelles. Cependant, une meilleure connaissance de ces mĂ©langes est nĂ©cessaire pour en arriver Ă  des propriĂ©tĂ©s fonctionnelles variĂ©es et prĂ©cises dans les formulations alimentaires.Protein polysaccharide interactions depend on both environmental conditions and intrinsic properties. Results are co-solubility, complexation and incompatibility. Complexation and incompatibility have demonstrated improvement of functional properties of mixed systems compared to those of the individual components. Incompatibility being the rule, the aim of this study is to widen knowledge on functional properties of mixed protein-polysaccharide systems in presence of compatibility or associative interactions and to characterise the new emerging functional properties. A first mixed system of whey protein isolate-xanthan has been studied for its gelling abilities following pH and protein-polysaccharide ratio variations. Following application of a thermal treatment, the solution passed from compatible to incompatible. Gelation was demonstrated by an increase in elastic modulus (G’) due to incompatibility as observed by confocal laser scanning microscopy. Addition of NaCl increased this incompatibility and made it excessive at a certain critical concentration leading to loss in G’. Compatibility has then been studied on a whey protein isolate-pectin system. Varying pH, biopolymer total concentration and protein-polysaccharide ratio allowed soluble complex formation which was confirmed with the measurement of absorbance and the number of charge. This compatibility led to a decrease in viscosity in diluted solution due to soluble complex formation while in concentrated solution, complexation rather increased it. A model system of firm yogurt was finally studied following incorporation of whey protein isolate and pectin first complexed and stabilised. Protein and total solid concentrations were kept constant. Milky solutions were acidified with glucono-delta-lactone. Results demonstrate that incorporation of complexes at different concentrations hampers the formation of a homogenous protein network provoking a decrease in gel stiffness and an increase in syneresis. Microscopic observations supported these conclusions. Mixed solutions prepared by carefully condunting complex formation allow the design of new functional properties. However, a better knowledge of these mixes is necessary in order to achieve varied and precise functional properties in food formulation

    Compréhension du rÎle structural d'exopolysaccharides de bactéries lactiques dans des systÚmes laitiers fermentés enrichis en amidon modifié

    Get PDF
    Au Canada, l’utilisation d’amidon modifiĂ© dans le yogourt est usuel afin d’éviter des dĂ©fauts de qualitĂ© comme la synĂ©rĂšse. MalgrĂ© cet ajout, les dĂ©fauts demeurent. Les exopolysaccharides (EPS) produits naturellement par certaines bactĂ©ries lactiques suscitent un intĂ©rĂȘt technologique dus Ă  leur capacitĂ© de rĂ©tention d’eau et Ă  moduler la viscositĂ©. La structure des EPS et leurs interactions avec les protĂ©ines seraient responsables de ces effets plutĂŽt que de la concentration produite. Jusqu’à prĂ©sent, aucune Ă©tude n’a Ă©tĂ© rĂ©alisĂ©e sur l’utilisation conjointe d’amidon modifiĂ© et d’EPS dans les yogourts. Le but de ce travail Ă©tait d’étudier le rĂŽle structural des EPS produits in situ par certaines bactĂ©ries lactiques sur les propriĂ©tĂ©s rhĂ©ologiques/physiques (formation de gel, fermetĂ©, viscositĂ©, synĂ©rĂšse) et la microstructure de systĂšmes laitiers avec amidon modifiĂ©. Quatre ferments constituĂ©s chacun d’une souche de Streptococcus thermophilus et d’une souche de Lactobacillus delbrueckii ssp. bulgaricus, produisant des EPS aux caractĂ©ristiques structurales connues, ont Ă©tĂ© utilisĂ©s: HC15/210R (contrĂŽle), HC15/291 (EPS neutre, rigide, peu ramifiĂ©), HC15/702074 (EPS neutre, flexible, hautement ramifiĂ©), 2104/210R (EPS chargĂ©, rigide, linĂ©aire). Le pH final de 4.6 a Ă©tĂ© atteint pour tous les ferments aprĂšs 180-210 minutes Ă  42 C. Le processus de formation de gel n’a pas Ă©tĂ© influencĂ© par la prĂ©sence d’EPS. La comparaison de plusieurs EPS aux structures connues a permis d’établir que l’EPS chargĂ© du ferment 2104/210R amĂ©liorait la fermetĂ© en plus de contribuer Ă  la viscositĂ©. L’EPS neutre, rigide et peu ramifiĂ© du ferment HC15/291 amĂ©liorait significativement la viscositĂ© et la rĂ©tention du sĂ©rum comparativement Ă  l’EPS neutre, hautement ramifiĂ© et flexible du ferment HC15/702074. MalgrĂ© que le lissage ait diminuĂ© significativement les propriĂ©tĂ©s rhĂ©ologiques/physiques des systĂšmes laitiers, la fonctionnalitĂ© des EPS est maintenue. L’ajout d’amidon modifiĂ© a amĂ©liorĂ© les propriĂ©tĂ©s rhĂ©ologiques/physiques des systĂšmes laitiers brassĂ©s tandis que peu d’effets ont Ă©tĂ© observĂ©s pour les systĂšmes laitiers fermes. Finalement, ce travail a dĂ©montrĂ© qu’il est possible d’amĂ©liorer les propriĂ©tĂ©s rhĂ©ologiques/physiques de systĂšmes laitiers par l’utilisation conjointe d’EPS aux caractĂ©ristiques structurales spĂ©cifiques et d’amidon modifiĂ©.In Canada, modified starch addition in yoghurt is frequent in order to limit technological defects such as syneresis. Despite the addition of modified starch, technological defects still occur. Exopolysaccharides (EPS) produced naturally by some lactic acid bacteria can be used as stabilizers in yoghurt. Literature indicates that their properties to bind water and to modulate viscosity are not correlated to EPS concentration but to their structure and interactions with milk proteins. To our knowledge, this is the first work that has studied the effect of combined use of modified starch and EPS in yoghurt. The aim of this work was to study the structure-function relationship of EPS produced in situ by lactic acid bacteria on the rheological/physical properties (gel formation, viscosity, firmness, stiffness) and the microstructure of fermented dairy systems with modified starch. Four starters composed of one strain of Streptococcus thermophilus and one strain of Lactobacillus delbrueckii subsp. bulgaricus and producing EPS with known structure were studied: HC15/210R (control), HC15/291 (neutral, stiff, few branched EPS), HC15/702074 (neutral, flexible, highly branched EPS) and 2104/210R (anionic, stiff, linear, EPS). A final pH of 4.6 was obtained after a fermentation of 180-210 minutes Ă  42 C for all starters. The gel formation process was not influenced by the presence of EPS. The comparison of several EPS of known structure has shown that the anionic EPS from 2104/210R starter improved firmness and viscosity. Neutral, stiff and few branched EPS from HC15/291 starter contributed to viscosity and limited syneresis comparatively to the neutral, flexible and highly branched EPS from HC15/702074 starter. Although the smoothing process had a negative impact on the values of all rheological/physical properties of fermented dairy systems, the functionality of EPS remained. The addition of modified starch improved the rheological/physical properties of stirred fermented dairy systems but had no effect on set fermented dairy systems. To conclude, this work has shown that the rheological/physical properties of fermented dairy systems may be improved by the combination of modified starch and EPS with specific structural characteristics

    Caractérisation structurale et fonctionnelle d'AGP31, une glycoprotéine atypique de la paroi chez Arabidopsis thaliana

    Get PDF
    La paroi cellulaire vĂ©gĂ©tale est une structure dynamique constituĂ©e de rĂ©seaux de polysaccharides et de protĂ©ines dont l'organisation supramolĂ©culaire est complexe. AGP31, codĂ©e par At1g28290, a Ă©tĂ© identifiĂ©e comme une protĂ©ine multi-domaines abondante dans la paroi des cellules des hypocotyles Ă©tiolĂ©s d'Arabidopsis thaliana. Mon travail de thĂšse a consistĂ© Ă  Ă©lucider la structure et la fonction d'AGP31. La caractĂ©risation structurale du domaine riche en Pro d'AGP31 a Ă©tĂ© effectuĂ©e : des rĂ©sidus Hyp et des O-galactanes ont Ă©tĂ© localisĂ©s par spectromĂ©trie de masse. AGP31 a Ă©tĂ© trouvĂ©e sous plusieurs glycoformes diffĂ©rant par le type et la taille des O-glycanes et/ou la longueur de la chaĂźne polypeptidique. Des tests in vitro ont montrĂ© des interactions entre diffĂ©rents domaines d'AGP31 et des polysaccharides pariĂ©taux (HG mĂ©thylestĂ©rifiĂ©s, galactanes du RGI). Une remarquable affinitĂ© entre les O-galactanes d'AGP31 et la lectine PNA a Ă©tĂ© montrĂ©e, indiquant de possibles interactions avec des lectines pariĂ©tales. Le patron d'expression d'At1g28290 suggĂšre un rĂŽle de renforcement des parois lors de l'Ă©mergence de la radicule et de l'Ă©longation rapide des hypocotyles Ă©tiolĂ©s. Cependant, l'Ă©tude de plantes ARNi sous-expresseurs et sur-expresseurs d'Atg28290 n'a pas permis de trouver un phĂ©notype au cours du dĂ©veloppement, probablement du fait d'une redondance fonctionnelle avec des gĂšnes proches d'At1g28290. Ce travail constitue la premiĂšre caractĂ©risation structurale d'un domaine riche en Pro d'une protĂ©ine pariĂ©tale et permet de proposer qu'AGP31, via ses diffĂ©rents domaines, interagisse en rĂ©seau dans les parois avec elle-mĂȘme, des polysaccharides ou des lectines.Plant cell wall is a dynamic structure consisting of polysaccharide and protein networks with a complex supramolecular organization. AGP31, encoded by At1g28290, was identified as a abundant multi-domain protein in Arabidopsis thaliana etiolated hypocotyls cell walls. My thesis project consisted in elucidating the structure and the function of AGP31. Structural characterization of the Pro rich domain was performed: Hyp residues and O-galactans were located using mass spectrometry. AGP31 was found as several glycoforms differing by the type and the size of O-glycans as well as by the polypeptidic length. In vitro assays showed interactions between AGP31 domains and cell wall polysaccharides (methylesterified HG, galactans from RGI). A remarkable affinity between AGP31 O-galactans and the PNA lectin was shown, indicating possible interactions with cell wall lectins. The expression pattern of At1128290 suggests a role in cell wall strengthening during radicle emergence and fast elongation of etiolated hypocotyls. However, study of RNAi underexpressors and overexpressors of At1g28290 did not permit to find a phenotype during development, probably because of functional redundancy with At1g28290 homologues. This work constitutes the first structural characterization of a Pro rich domain of a cell wall protein and permits to propose that AGP31, via its different domains, could make scaffolds in the cell wall through interactions with itself, polysaccharides and/or lectins

    Recherche de la fonction de protéines riches en hydroxyproline dans les parois végétales

    Get PDF
    La paroi primaire vĂ©gĂ©tale est une enveloppe dynamique impliquĂ©e dans le dĂ©veloppement ainsi que la rĂ©ponse aux contraintes environnementales. Elle est composĂ©e de rĂ©seaux de polysaccharides et de protĂ©ines dans lesquels interviennent des protĂ©ines multi-domaines de type LRX et des protĂ©ines Ă  domaine PAC. Ce travail de thĂšse a consistĂ© Ă  rechercher la fonction de ces protĂ©ines dans les parois. Des analyses protĂ©omiques rĂ©alisĂ©es sur des extraits de protĂ©ines pariĂ©tales de racines de plantes sauvages ou mutantes lrx1 d'A. thaliana ont permis d'identifier 424/434 protĂ©ines pariĂ©tales de plantes sauvages/lrx1 respectivement et 25 protĂ©ines candidates pouvant jouer un rĂŽle dans la morphogenĂšse des poils absorbants. Par ailleurs, des protĂ©ines Ă  domaine PAC ont Ă©tĂ© identifiĂ©es dans toutes les plantes terrestres Ă©tudiĂ©es. L'apparition des protĂ©ines Ă  domaine PAC a pu ĂȘtre associĂ©e Ă  la terrestrialisation. Une analyse phylogĂ©nique a permis de grouper les domaines PAC en 10 clades, chacun comportant un domaine PAC d'Amborella trichopoda. Outre les 6 rĂ©sidus Cys caractĂ©risant le domaine PAC, des motifs conservĂ©s ont Ă©tĂ© repĂ©rĂ©s dans les clades, ouvrant la voie pour des Ă©tudes fonctionnelles. Des tests in vitro ont montrĂ© que les domaines PAC interagissent avec diffĂ©rents types de polysaccharides pariĂ©taux et permis de dĂ©finir trois types de spĂ©cificitĂ© vis-Ă -vis de polysaccharides tels que les ß(1,4) galactanes/RGI, les mannanes, les xyloglucanes et/ou la cellulose. Un nouveau modĂšle d'interactions supramolĂ©culaires dans les parois vĂ©gĂ©tales faisant intervenir des protĂ©ines Ă  domaine PAC et des polysaccharides pariĂ©taux a Ă©tĂ© proposĂ©The plant primary cell wall is a dynamic envelope involved in development and in response to environmental constraints. It is composed of networks of polysaccharides and proteins to which multi-domain proteins like LRX (Leucine-Rich repeat Extensin) and PAC (Proline-rich Arabinogalactan Protein Cys-containing) domain proteins contribute. This work aimed at finding partners of such proteins in cell walls using different experimental approaches. Proteomics analyses have been performed on proteins extracted from cell walls of roots of wild type or lrx1 plants. They have allowed the identification of 424/434 cell wall proteins of wild type/lrx1 roots respectively as well as of 25 candidate proteins which could play a role in root hair morphogenesis. Besides, PAC domain proteins have been identified in all the studied terrestrial plants using a bioinformatic approach. The appearance of PAC domain proteins could be associated to terrestrialisation. A phylogenic analysis has allowed to group PAC domains in 10 clades, each of them containing a PAC domain of Amborella trichopoda, an ancestor of angiosperms. In addition to the 6 Cys residues which define the PAC domain, conserved motifs have been identified in each clade. This finding opens the way to functional studies. In vitro tests have shown that the PAC domains could interact with different kinds of cell wall polysaccharides. Three types of specificity could be defined towards ß(1,4) galactans/RGI, mannans, xyloglucans and/or cellulose. A new model of molecular interactions in plant cell walls including PAC domain proteins and polysaccharides has been propose
    corecore