24 research outputs found

    Automatic Data Augmentation via Deep Reinforcement Learning for Effective Kidney Tumor Segmentation

    Full text link
    Conventional data augmentation realized by performing simple pre-processing operations (\eg, rotation, crop, \etc) has been validated for its advantage in enhancing the performance for medical image segmentation. However, the data generated by these conventional augmentation methods are random and sometimes harmful to the subsequent segmentation. In this paper, we developed a novel automatic learning-based data augmentation method for medical image segmentation which models the augmentation task as a trial-and-error procedure using deep reinforcement learning (DRL). In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss. Specifically, the best sequential combination of different basic operations is automatically learned by directly maximizing the performance improvement (\ie, Dice ratio) on the available validation set. We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.Comment: 5 pages, 3 figure

    Multiatlas-Based Segmentation Editing With Interaction-Guided Patch Selection and Label Fusion

    Get PDF
    We propose a novel multi-atlas based segmentation method to address the segmentation editing scenario, where an incomplete segmentation is given along with a set of existing reference label images (used as atlases). Unlike previous multi-atlas based methods, which depend solely on appearance features, we incorporate interaction-guided constraints to find appropriate atlas label patches in the reference label set and derive their weights for label fusion. Specifically, user interactions provided on the erroneous parts are first divided into multiple local combinations. For each combination, the atlas label patches well-matched with both interactions and the previous segmentation are identified. Then, the segmentation is updated through the voxel-wise label fusion of selected atlas label patches with their weights derived from the distances of each underlying voxel to the interactions. Since the atlas label patches well-matched with different local combinations are used in the fusion step, our method can consider various local shape variations during the segmentation update, even with only limited atlas label images and user interactions. Besides, since our method does not depend on either image appearance or sophisticated learning steps, it can be easily applied to general editing problems. To demonstrate the generality of our method, we apply it to editing segmentations of CT prostate, CT brainstem, and MR hippocampus, respectively. Experimental results show that our method outperforms existing editing methods in all three data sets

    Online updating of context-aware landmark detectors for prostate localization in daily treatment CT images: Online updating of context-aware landmark detectors in daily treatment CT images

    Get PDF
    In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in the daily treatment images. To this end, the authors propose an online update scheme for landmark-guided prostate segmentation, which can fully exploit valuable patient-specific information contained in the previous treatment images and can achieve improved performance in landmark detection and prostate segmentation

    Interactive prostate segmentation using atlas-guided semi-supervised learning and adaptive feature selection

    Get PDF
    Accurate prostate segmentation is necessary for maximizing the effectiveness of radiation therapy of prostate cancer. However, manual segmentation from 3D CT images is very time-consuming and often causes large intra- and interobserver variations across clinicians. Many segmentation methods have been proposed to automate this labor-intensive process, but tedious manual editing is still required due to the limited performance. In this paper, the authors propose a new interactive segmentation method that can (1) flexibly generate the editing result with a few scribbles or dots provided by a clinician, (2) fast deliver intermediate results to the clinician, and (3) sequentially correct the segmentations from any type of automatic or interactive segmentation methods
    corecore