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Purpose: In image guided radiation therapy, it is crucial to fast and accurately localize the prostate in
the daily treatment images. To this end, the authors propose an online update scheme for landmark-
guided prostate segmentation, which can fully exploit valuable patient-specific information contained
in the previous treatment images and can achieve improved performance in landmark detection and
prostate segmentation.
Methods: To localize the prostate in the daily treatment images, the authors first automatically
detect six anatomical landmarks on the prostate boundary by adopting a context-aware landmark
detection method. Specifically, in this method, a two-layer regression forest is trained as a detector
for each target landmark. Once all the newly detected landmarks from new treatment images are
reviewed or adjusted (if necessary) by clinicians, they are further included into the training pool as
new patient-specific information to update all the two-layer regression forests for the next treatment
day. As more and more treatment images of the current patient are acquired, the two-layer regression
forests can be continually updated by incorporating the patient-specific information into the training
procedure. After all target landmarks are detected, a multiatlas random sample consensus (multiatlas
RANSAC) method is used to segment the entire prostate by fusing multiple previously segmented
prostates of the current patient after they are aligned to the current treatment image. Subsequently,
the segmented prostate of the current treatment image is again reviewed (or even adjusted if needed)
by clinicians before including it as a new shape example into the prostate shape dataset for helping
localize the entire prostate in the next treatment image.
Results: The experimental results on 330 images of 24 patients show the effectiveness of the authors’
proposed online update scheme in improving the accuracies of both landmark detection and prostate
segmentation. Besides, compared to the other state-of-the-art prostate segmentation methods, the
authors’ method achieves the best performance.
Conclusions: By appropriate use of valuable patient-specific information contained in the previous
treatment images, the authors’ proposed online update scheme can obtain satisfactory results for
both landmark detection and prostate segmentation. C 2015 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4918755]
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1. INTRODUCTION

Prostate cancer is one of the most common cancers for Amer-
ican males.1 As a recently developed technology for prostate
cancer radiation treatment, image guided radiation therapy
(IGRT) provides an effective tool for cancer therapy, which
often consists of a planning stage and a treatment stage.2–4

In the planning stage, a planning CT scan is acquired from
the patient, in which the prostate is manually delineated by
a clinician for designing a patient-specific treatment plan.

In the treatment stage, at each treatment day right before
the radiation therapy, a treatment image will be obtained for
localizing the prostate. Then, the treatment plan designed for
the planning image can be transformed and adapted to the
treatment image. Since the radiation dose should be precisely
delivered to the current position of the tumor(s) and also
minimized to the neighboring healthy tissues, it is impor-
tant to accurately and quickly localize the prostate in the
daily treatment images when the patient is still lying on the
table.

2594 Med. Phys. 42 (5), May 2015 0094-2405/2015/42(5)/2594/13/$30.00 © 2015 Am. Assoc. Phys. Med. 2594

http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://dx.doi.org/10.1118/1.4918755
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4918755&domain=pdf&date_stamp=2015-04-24


2595 Dai, Gao, and Shen: Online updating of context-aware landmark detectors in daily treatment CT images 2595

However, as investigated in the previous works,5–7 there are
mainly three challenges making prostate localization in the
treatment CT images quite challenging: (1) low contrast of
treatment CT images; (2) dramatic appearance change of treat-
ment images across different treatment days; and (3) unpre-
dicted daily prostate motions.

To cope with the aforementioned challenges, numerous
works have been carried out. One of the most popular pros-
tate segmentation methods is the deformable model based
method.8–12 For example, Chen et al.9 constructed a deform-
able model embedded with anatomical constraints from bones
to jointly segment the prostate and rectum. Feng et al.10 com-
bined the gradient profile features and region-based features
to guide deformable segmentation. Nevertheless, high depen-
dence on good initialization of the deformable model, which is
difficult to achieve in the CT prostate image, makes deformable
models that have limited performance.

Another kind of method is the deformable registration
based method.13–21 For example, Liao and Shen14 proposed a
feature-guided deformable registration method using patient-
specific information. To eliminate bowel gas before registra-
tion, Foskey et al.13 presented a deflation method. Although
deformable registration based methods are more robust than
the deformable model based methods, it often takes more time
for nonrigid registration and prostate localization, which is
generally beyond the limit of computational time allowed in
the clinical practice.

Classification based methods are also widely used in pros-
tate segmentation.7,22–24 For instance, Gao et al.22 proposed a
method to train the sparse representation classifier and then
use multiatlas labeling to segment the prostate. In Li’s work,23

the auto-context model25 was employed to iteratively refine
the classification response map, and then the level-set method
was used to segment the prostate based on the final classi-
fication response map. Shi et al.24 proposed a spatially con-
strained transductive LASSO to produce a 3D prostate-
likelihood map for guiding the segmentation. In spite of high
accuracy in CT prostate segmentation, the classification based
methods require a sufficient number of manually segmented
patient-specific images (i.e., at least three images) for training.
Thus, these methods cannot be used to segment the initial treat-
ment images. Additionally, longer computational time is often
needed by these classification based methods because of the
complexity of the techniques used (e.g., sparse representation).

Recently, learning-based landmark detection methods have
been widely used for many medical image analysis tasks.6,26–38

For example, Criminisi et al.27 built landmark detectors upon
randomized decision forests for detection and localization of
anatomical structures in the CT volumes. Zhan et al.28 used a
set of extended Haar-wavelet features and also the Adaboost
learning method to train detectors for MR knee landmark
detection. In the Criminisi’s work,38 they learned a regression
model to detect anatomical structures in the CT images. Unlike
most of the previous prostate segmentation methods, which
need to manually annotate the entire prostate on all train-
ing images, the learning-based landmark detection methods
require only the manual annotations of several anatomical
landmarks. Obviously, this will significantly reduce the labors
required for manual annotations. Thus, it is appealing to apply
learning-based landmark detection methods for CT prostate
localization. However, (1) the anatomical structures across
different subjects, or across different treatment days of the
same subject, might be quite different, as can be observed
from Fig. 1; (2) image appearances of landmarks are often not
same because of low image contrast (see Fig. 1). These two
difficulties make automatic landmark detection for CT prostate
localization quite challenging.

To address these difficulties, Gao et al.39 recently devel-
oped a context-aware landmark detection method, by employ-
ing a two-layer regression forest to train a landmark detec-
tor for each target anatomical landmark in the CT prostate
image. By utilizing both the intralandmark and the interland-
mark distance-based context features, this two-layer regres-
sion model can be trained to have spatial consistency both (1)
within the displacement field of each target landmark and (2)
across displacement fields of all different target landmarks.
Note that, in this paper, each component of the displacement
field is a displacement vector, which denotes the 3D displace-
ment of each voxel in each image toward the corresponding
target landmark on the same image. Since other landmark
detection methods26–38 cannot simultaneously fulfill these two
types of spatial consistency for the estimated displacement
fields, which are important for accurate landmark detection,
their performance might be limited.

However, Gao’s method39 was specifically designed for
prostate localization in the planning images, instead of the
treatment images. For detecting landmarks in the treatment im-
ages, this method would neglect the abundant prostate appear-

F. 1. Different anatomical appearances across different treatment days of two patients. (a) and (b) are the same slices obtained from different treatment images
of patient A, and (c) and (d) are the same slices obtained from different treatment images of patient B. The red dots represent four selected anatomical landmarks,
which are the right lateral point (RT), left lateral point (LF), posterior point (PT), and anterior point (AT), respectively.
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F. 2. The corresponding slices from four different patients [(a)–(d)] show quite different prostate appearances and shapes. Here, red contours denote the
prostate shapes.

ance characteristics and shape information of each patient,
which are embedded in the previous treatment images of the
same patient. Besides, considering large differences of both
prostate appearances and shapes among different patients (see
Fig. 2), the performance of Gao’s method, which uses only the
planning images of different patients for training, could not be
effective for prostate localization in the treatment images.

On the other hand, Gao et al.6 also proposed a novel
method, namely, the incremental learning with selective mem-
ory (ILSM), which blended the appearance statistics from
both large population data and limited patient-specific data
for detecting seven prostate anatomical landmarks and also
localizing the prostate. Since ILSM fully exploits the appear-
ance information embedded in the previous treatment images,
it shows good performance in prostate localization of the
treatment images. However, since ILSM detects landmarks
independently without considering interlandmark spatial rela-
tionships during the landmark detection procedure, its accu-
racy could be further improved.

Motivated by the above-mentioned methods,6,39 we pro-
pose an online-updated landmark-guided prostate localization
method, by extending Gao’s context-aware landmark detection
method with an online update scheme. Specifically, it first uses
an online-updated context-aware landmark detection method
to train two-layer regression forests as detectors for auto-
matically detecting six anatomical landmarks on the prostate
boundary. Second, as soon as all six target landmarks are de-
tected, a multiatlas RANSAC method is presented to localize
the prostate by fusing multiple patient-specific prostate shapes
that have been aligned onto the new treatment image (of the
same patient).

With the help of the proposed online update scheme, the
two-layer regression forests can be continually updated by
incorporating the new appearance characteristics embedded
in the newly acquired treatment image during the therapy. In
this manner, the abundant patient-specific information (such
as appearance and anatomical features of the prostates) can be
better utilized to reduce the effect of large interpatient variation
in training the initial landmark detectors. As a result, the
online-updated two-layer regression forests can better adapt
to the current treatment image than the conventional context-
aware landmark detection method. In addition, the patient-
specific prostate shape information used in our multiatlas
RANSAC method can also be updated by the proposed online
update scheme. Since our multiatlas RANSAC method takes
advantage of the patient-specific prostate shape information
contained in both the planning and previous treatment images,
it can effectively lessen the performance degradation caused by
the daily shape variations in the treatment images of the same
patient and, thus, achieves more accurate results for prostate
localization.

Compared to the ILSM method, our method will detect all
the landmarks jointly by combining the context features for
each target landmark with the context features for all other
landmarks. That is, our proposed method can fully consider
both the intralandmark and the interlandmark spatial relation-
ships when detecting all the target landmarks. Thus, it can cap-
ture more intralandmark and interlandmark spatial relation-
ships than the ILSM method, hence producing more accurate
landmark detection than independent landmark detection.

The organization of this paper is as follows. Section 2 pres-
ents the proposed method based on the two-layer regression

F. 3. Six prostate anatomical landmarks used in our study. In this paper, we choose four extreme points in the middle slice of the prostate [i.e., the leftmost
(LF), the rightmost (RT), the most anterior (AT), and the most posterior points (PT)], one center point in the apex slice (AP) and one center point in the base
slice (BS) as six anatomical landmarks of the prostate.
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F. 4. The flowchart of the proposed method.

forest. The performance of our method is evaluated in Sec. 3.
Finally, Sec. 4 concludes the paper.

2. METHODS

To localize prostate in the daily treatment images, we
present an online-updated landmark-guided prostate locali-
zation method. First, the context-aware landmark detection
method39 is used to train two-layer regression forests to detect
six anatomical landmarks, which are displayed in Fig. 3. With
these newly detected landmarks, a new multiatlas RANSAC
method is developed to localize the entire prostate in the new
treatment image. Finally, the newly detected landmarks and
localized prostate shapes can be reviewed or even adjusted by
a clinician and then added as new patient-specific data to the
pool of the planning image and previous treatment images of
the same patient for updating both the two-layer regression
forests and prostate shape information. The updated two-layer
regression forests and prostate shape information can be used
for landmark detection and prostate localization in the next
treatment day. Figure 4 shows the entire procedure of our
method. In Subsection 2.A, our method will be detailed.

2.A. The context-aware landmark detection
Although the context-aware landmark detection method

also uses regression forests40 as landmark detectors, it trains
the two-layer regression forests, instead of only one-layer
regression forests, as the traditional landmark detection
methods,37,38 by using both image appearance features and
the two types of high-level distance-based context features
(i.e., intralandmark and interlandmark context features). In
this way, both the spatial consistency within the displacement
field of each target landmark and the spatial consistency across

the displacement fields of all different target landmarks can
be fulfilled. In the following paragraphs, we will elaborate
the context-aware landmark detection method,39 which is
composed of two main steps: (1) training of the context-aware
landmark detectors and (2) landmark detection.

2.A.1. The training of the context-aware landmark
detectors

In the context-aware landmark detection method, we train
a two-layer regression forest as the detector for each target
landmark. To do that, we first compute image appearance
features of each sample point by using patch-based Haar-like
features, which are defined as

H (PI)=
Z

h=1

ph


∥x−ah∥∞≤sh
PI(x), (1)

where PI is a local patch in the image I; Z is the number of
3D cubic functions used in the Haar-like feature; ph ∈ {−1,1},
ah ∈ R3, and sh are the polarity, position, and scale of the hth
3D cubic function, respectively. By randomly sampling the
number of 3D cubic functions and parameters (e.g., ph, ah,
and sh ) of each cubic function in Eq. (1), we can generate a
set of random patch-based Haar-like features to represent each
sample point. Random Haar-like features capture both average
intensity and intensity difference information within the patch.
It should be noted that only informative Haar-like features will
be finally selected during the regression forest training.

With the random patch-based Haar-like features and also
the displacements from each sample point to the target land-
marks, we can train the first-layer regression forest for each
target landmark to learn the nonlinear mapping from the local
appearance of an image voxel to its 3D displacement vector
toward the corresponding target landmark. After that, these
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F. 5. Examples of the first-layer and second-layer distance maps for the two different landmarks. (a) and (b) are the first-layer distance maps for landmarks
RT and LF, respectively; (c) and (d) are the second-layer distance maps for landmarks RT and LF, respectively.

trained first-layer regression forests are exerted on each train-
ing image to estimate a first-layer displacement field for every
target landmark. By taking L2 norm on each displacement
vector in the first-layer displacement fields, we can convert
the first-layer displacement fields into the first-layer distance
maps [Figs. 5(a) and 5(b)]. The L2 norm of the displacement
vector w= [w1, w2, w3] is denoted as


w2

1+w
2
2+w

2
3.

Given the first-layer distance maps of all the target
landmarks, the context features of the sample points can
be extracted from the first-layer distance map of each
target landmark (namely, intralandmark context features) by
computing the random patch-based Haar-like features as in
Eq. (1). Besides, the context features of the sample points are
also extracted from the first-layer distance maps of all other
landmarks (namely, interlandmark context features). After-
ward, using these two different kinds of context features, along
with the image appearance features, as new input features, we
train the second-layer regression forests accordingly. Then, we
can obtain the second-layer displacement field for each target
landmark in every training image by applying the respective
trained second-layer regression forest. Again, by taking L2
norm on each displacement vector in all the second-layer
displacement fields, we can obtain their respective second-
layer distance maps as displayed in Figs. 5(c) and 5(d). It
is clear that, in contrast to the initial distance maps (i.e., the
first two maps in Fig. 5), the qualities of second-layer distance
maps (i.e., the last two maps in Fig. 5) are obviously improved
by using our two-layer regression models.

2.A.2. Landmark detection

After finishing the training of the two-layer regression for-
ests, the target landmarks of a new treatment image can be
detected in a similar manner as in the training procedure.
Specifically, in the first step of landmark detection, the random
patch-based Haar-like features in Eq. (1) are computed as the
image appearance features for each voxel in the new treatment
image. Taking these image appearance features as the input, we
acquire the first-layer 3D displacement fields for all the target
landmarks by exerting the trained first-layer regression forests
on the new treatment image. Then, by computing the L2 norm,
the first-layer 3D displacement fields can be converted into the
first-layer distance maps of all different target landmarks, from
which intralandmark and interlandmark context features can
be extracted. Afterward, we combine the image appearance

features with these two types of context features as the input
features to the trained second-layer regression forests, which
will estimate the second-layer 3D displacement fields for all
the target landmarks in the new treatment image. Once the
second-layer displacement field for each target landmark is
obtained, a method called regression voting39 is adopted to
detect the location of the target landmark. Specifically, in
regression voting, each voxel y in the new treatment image can
cast one vote to the location y+dy, where dy is the estimated
displacement vector of voxel y toward the target landmark.
After computing the voting for every location in the new
treatment image, the target landmark can be detected as the
location which receives the most votes.

2.A.3. Multiresolution training and landmark detection

In order to save the computational time and also improve
the accuracy of landmark detection, the training process and
landmark detection described in Subsections 2.A.1 and 2.A.2
can be further implemented in a multiresolution way.

For the multiresolution landmark detection, the landmark
position detected in the coarser resolution can be used as a
good initialization for landmark detection in the next finer
resolution. Specifically, if the position of a target landmark has
been detected in the coarser resolution, the regression voting
in the next finer resolution will be performed only within a
local neighborhood centered at the position detected by the
coarser resolution. In this way, in the next finer resolution, we
only need to search for the candidate target landmark within
a small neighborhood, instead of the whole image. Thus, the
computational time of landmark detection can be reduced
greatly. Moreover, this also means that the voxels, which are
far away from the target landmark, will not participate in the
regression voting. Since those far-away voxels are often not
informative to detect the target landmark, excluding these far-
away voxels in the regression voting could also improve the
accuracy of landmark detection.

Under such a multiresolution detection scheme, one regres-
sion forest is trained for each resolution in the training stage.
Specifically, in the coarsest resolution, all training samples are
drawn from the entire image domain to ensure the robustness
of the initial landmark detection. In the finer resolution, the
training samples are only drawn near the previously estimated
location of target landmark, thus, gradually improving the
accuracy of landmark detection.
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The framework of this multiresolution landmark detection
is given below for one anatomical landmark.

Framework 1: The multiresolution landmark detection for
one landmark.

Input:

• The trained first-layer regression forest F1 and second-
layer regression forest F2 for the target landmark.

• The new treatmentimage.

Output: The detected target landmark L′.
For each image resolution, repeat the following steps:

(1) Down-sample the image Ĩ and calculate the image
appearance features by using random patch-based Haar-
like features in Eq. (1);

(2) Use the trained regression forests F1 and F2 to obtain
the second-layer 3D displacement field D2;

(3) Based on D2, perform regression voting to detect the
location of the target landmark L′:
a. For the coarsest resolution, every voxel in Ĩ will vote

as described in Subsection 2.A.2;
For other finer resolutions, only voxels in Ĩ, which
are within a local neighborhood centered at the posi-
tion detected in the previous coarser resolution, are
chosen to vote as described in Subsection 2.A.2;

b. The location of the target landmark L′ is detected as
the voxel which receives the most votes;

(4) If not reaching the finest resolution, go to Step (1) and
L′ will be used as the initialization for the next finer
image resolution. Otherwise, stop.

2.B. Online update scheme

To improve the specificity of the landmark detectors and
also the accuracy of prostate localization in the treatment
images, we develop an online update scheme to update the
two-layer regression forests by the previously acquired treat-
ment images of the same patient. Besides, we also propose
a multiatlas RANSAC method, which can online update the
prostate shape information of the same patient. By updating
both landmark detectors and prostate shape information, we
can achieve accurate prostate localization in the treatment
images.

2.B.1. Online-updated two-layer regression forest

Figure 4 shows the main procedure of training the two-
layer regression forests with the online update scheme. In
the beginning of radiation treatment, since only one planning
image of the current patient is available, we use the plann-
ing images of other patients, namely, population images, as
training data to train the two-layer regression forests, which
will be utilized to detect the target landmarks in the first-
day treatment image of the current patient. After finishing
the radiotherapy at each treatment day, a clinician can review
or even adjust those automatically detected landmarks. Then,
the reviewed or adjusted landmarks can be added into the

(patient-specific) training pool to retrain and update the two-
layer regression forests. When the radiotherapy starts in the
next treatment day, the newly updated two-layer regression
forests will be used for landmark detection in the new treat-
ment image. It is worthwhile to note that the above landmark
review/adjustment and also the updating/retraining of the two-
layer regression forests will be repeated in the subsequent
treatment days until the completion of radiotherapy for the
current patient.

As introduced above, our two-layer regression forests,
which will be used to detect landmarks, are actually trained
by both population training images and patient-specific train-
ing images. Specifically, for the treatment day M , we use
1 planning image and M − 2 previous treatment images as
patient-specific training images. As more subsequent treat-
ment images and their corresponding landmarks are obtained
and further added into the training pool during the treatment
course, the patient-specific appearance statistics can be up-
dated constantly and will take a larger and larger role in
training the two-layer regression forests. Thus, the online-
updated two-layer regression forests will more accurately
capture intrapatient variability and then better adapt to the
current patient. In this way, the performance of landmark
detection for each of the treatment images would be improved.

2.B.2. Multiatlas RANSAC

Based on the detected landmarks, one can use the RANSAC
algorithm41 to remove the wrongly detected landmarks and
then estimate the optimal rigid transformation to fit the prostate
shape (segmented in the planning image) onto the detected
landmarks in the new treatment image for prostate localization.
This is referred as the single-atlas RANSAC method.

To achieve the optimal rigid transformation, RANSAC has
to do the estimation iteratively. In each iteration, RANSAC
first chooses a random subset of the landmarks. Then, based
on the selected landmarks, we can get two landmark subsets,
namely, subsets Ω and Ψ, which contain the positions of
selected landmarks encoded in the shape atlas and detected
in the new treatment image, respectively. Afterward, a rigid
transformation T can be estimated that minimizes the sum
of distances between the transformed landmarks of subset Ω
by T and their corresponding landmarks of subset Ψ. For
other landmarks, which are not previously included in subsets
Ω and Ψ, their positions in the shape atlas will be trans-
formed by T to compare with the corresponding detected
positions in the new treatment image. If the distance is below
a certain threshold for one landmark, which means that this
unselected landmark agrees with the estimated transformation
T , it will be regarded as inlier and, thus, included into both
subset Ω and Ψ to re-estimate T . This procedure is iterated
until no further inlier is found. In different iterations, different
random landmark subsets will be initially selected. Thus, a
set of different estimated transformations T can be derived.
Finally, we pick the transformation T that obtains the small-
est sum of distances between the aligned inlier landmarks
of subset Ω and their corresponding detected landmarks of
subset Ψ.
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Although the single-atlas RANSAC method can localize
the prostate shape in the new treatment image, it merely uses
the prostate shape of the planning image and does not fully
utilize the patient-specific prostate shape information con-
tained in all the previous treatment images. Accordingly, its
accuracy of prostate localization could be affected by shape
variations between the planning day and the current treatment
day. Generally, the longer the interval between two random
days, the greater the prostate shape variations exist in the
images of these treatment days. Thus, we expect more serious
performance degradation if the current treatment day is far
away from the planning day.

To address the above issue, we propose a new multiatlas
RANSAC algorithm. Given the newly detected landmarks of
the current treatment image, our multiatlas RANSAC algo-
rithm first uses the RANSAC algorithm41 to get rid of the
wrongly detected landmarks. Since the landmarks and prostate
shapes of the planning and previous treatment images are
known, the RANSAC algorithm is utilized again to estimate
the optimal rigid transformations between the newly detected
landmarks of the current treatment image and the landmarks
in each of the planning and previous treatment images.

Based on the estimated rigid transformations, multiple
prostate shapes from the planning image and previous treat-
ment images of the current patient can be independently
aligned onto the space of the current treatment image. In this
paper, prostate shapes of the planning image and previous
treatment images are used as prostate shape atlases. Afterward,
majority voting is adopted to fuse the labels of aligned mul-
tiple patient-specific prostate shapes, which finally gives the
prostate shape in the new treatment image. By using multiple
patient-specific prostate shapes, the negative influence brought
by daily shape variations between treatment images can be
better reduced.

It is worth noting that the majority voting used in multiatlas
RANSAC is different from the regression voting used in land-
mark detection (Subsection 2.A.2). In multiatlas RANSAC,
multiple prostate shapes are aligned onto the current treatment
image. Then, each voxel of the current treatment image would
receive votes, indicating whether this voxel belongs to the
prostate or background. The label of this voxel is finally deter-
mined by the label with the maximum votes. For example, if
we have N previous prostate shapes, each voxel of the current
treatment image will receive N votes, belonging to the prostate
or background. Then, this voxel is labeled as prostate if it
receives more than N/2 votes from prostate. Otherwise, it is
labeled as background.

Again, the newly localized prostate shape will be reviewed
or even adjusted by a clinician. Then, we can update the
patient-specific prostate shape information by adding the re-
viewed or adjusted prostate shape of the new treatment im-
age into the training pool of the current patient. For the next
treatment day, the updated pool of the landmarks and prostate
shape atlases will be used for prostate localization in the new
treatment image. Since more and more prostate shapes of the
current patient are localized and collected during the serial
treatment days, the patient-specific prostate shape information
will be successively updated.

3. EXPERIMENTAL RESULTS

Our experimental data were acquired at the North Carolina
Cancer Hospital and consist of 330 images from 24 different
patients. All the images were scanned from a Siemens So-
matom CT scanner, and the treatment images were acquired in
every treatment day when patients received radiation therapy.
The typical dose was 2–3 cGy for the planning imaging and
less than 2 cGy for the treatment imaging. The field of view
(FOV) is 50 cm for the planning images and 40 cm for the
treatment images. The resolution and the image size of the
acquired images are 0.98×0.98×3 mm3 and 512×512×30
∼ 120, respectively. The prostates and their corresponding six
anatomical landmarks in all CT images have been manually
segmented and annotated by an expert, which serve as the
ground-truth.

The results presented in this paper were generated using
a system of Windows 7 with a 2.4 GHz Intel CPU and 8G
memory.

For prostate localization, the Dice ratio (Dice) and the
average surface distance (ASD) are adopted to evaluate the
performance of the proposed method. Dice ratio measures
the overlap ratio between the automatically segmented pros-
tate volume by the proposed method (Vc) and the manually
segmented prostate volume (Vg). Its definition is given as
2 × (Vc ∩ Vg)/(Vc + Vg). ASD measures the average surface
distance between Vc and Vg . By using surface U and surface
Q to represent the boundaries of Vc and Vg , respectively, ASD
is mathematically defined as

ASD(U,Q) = 1
2


1
|U |


tu∈U
mintq∈Q dist(tu,tq)

+
1
|Q|


tq∈Q
mintu∈U dist(tu,tq)


, (2)

where dist(tu,tq) denotes the distance between vertex tu from
surface U and vertex tq from surface Q and |U | is the number
of vertices in surface U.

All the following experiments use the same parameters. As
for random patch-based Haar-like features, Z is limited to {1,
2} and sh is limited to {3, 5}. The patch size is set to 30×30×30
voxels. We do not limit ah, which can have arbitrary values
as long as the 3D cubic function stays inside the local patch.
The parameters used in the multiatlas RANSAC method can
be referred to the Ref. 6.

In the training of the landmark detectors for a specific pa-
tient, we choose the first two treatment images of other patients
as the population training images. As described in Subsection
2.B.1, for the treatment day M , we use 1 planning image and
M − 2 previous treatment images as patient-specific training
images. After reviewing or even adjusting all automatically de-
tected landmarks of the Mth treatment image by the clinician,
both the Mth treatment image and its landmarks will be added
into the patient-specific training pool to update the landmark
detectors for the next treatment day M+1. This updating pro-
cess continues until the end of the radiation treatment course.
In many cases, after several days of updating, the landmark
detectors have already captured sufficient intrapatient appear-
ance variation. Further updating with more patient-specific
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training images may only have negligible improvement. In
such a case, we will choose to stop the online updating proce-
dure. In the following experiments, when we mention that the
training uses up to M patient-specific training images (i.e., 1
planning and M−1 treatment images), we mean that the online
updating process stops after treatment day M − 1. For the
later treatment days, we just use the previously trained land-
mark detectors for prostate localization. Note that the exper-
imental results reported below are computed on all treatment
images.

3.A. Two-layer regression forest vs online-updated
two-layer regression forest

In this subsection, we conduct the experiments to validate
whether incorporating the online update scheme into the two-
layer regression forest would lead to a performance improve-
ment in landmark detection of the treatment images. Since
there are two different layers of regression forests, we will
carry out two separate experiments to verify the contribution
of the online update scheme to each layer, respectively. In
the following experiments, we use up to six patient-specific
training images. We will show later that it is sufficient to
use up to six patient-specific training images to capture the
intrapatient appearance variations.

The first experiment aims to prove that the online update
scheme can increase the accuracy of landmark detection in
the treatment images for the first-layer regression forests. To
accomplish that, we train the first-layer regression forests with
or without the online update scheme, respectively, for each
patient. The mean distance errors of the detected landmarks,
obtained from the first-layer regression forests (denoted by the
blue bars) and the online-updated first-layer regression forests
(denoted by red bars) for all patients, are compared in Fig. 6. In
this paper, the mean distance error of a landmark denotes the
mean Euclidean distance between the detected landmarks and
their corresponding ground-truths for all treatment images of
all patients. From Fig. 6, we can see that the mean distance
errors of all six landmarks by the online-updated first-layer
regression forests are lower than those by the first-layer regres-

F. 6. Comparison between the first-layer regression forests and the online-
updated first-layer regression forests using mean distance errors (mm) of the
detected landmarks for all treatment images of 24 patients. Here, “conven-
tional” and “online” denote the conventional first-layer regression forests and
the online-updated first-layer regression forests, respectively. The error bars
show the standard deviations.

F. 7. Comparison of the second-layer regression forests without and with
the online update scheme using the mean distance errors (mm) of six
landmarks for all treatment images of 24 patients. Here, conventional and
online denote the conventional second-layer regression forests and the online-
updated second-layer regression forests, respectively. The error bars show the
standard deviations.

sion forests without the online update scheme. This indicates
the advantage of incorporating the online update scheme into
the first-layer regression forests for more accurate landmark
detection. A two sample t-test for all six landmarks is con-
ducted, which shows that the p-value is 8.32×10−14. This low
p-value implies the statistical difference between first-layer
regression forests and online-updated first-layer regression
forests.

The second experiment is designed to show that the online
update scheme also improves the accuracy of landmark detec-
tion for the second-layer regression forests. Figure 7 com-
pares the second-layer regression forests (denoted by the blue
bars) and the online-updated second-layer regression forests
(denoted by red bars) using the mean distance errors of the
detected landmarks for all patients. Figure 7 shows that, for
all six landmarks, the mean distance errors decline after using
the online update scheme. These results prove that landmark
detection by the second-layer regression forests can benefit
from our online update scheme. The p-value between detection
results of second-layer regression forests with and without
online update scheme is 8.17×10−20, indicating the statistical
significance.

Thus, from above two experiments, we can conclude that
combining the online update scheme with the two-layer regres-
sion forest can significantly improve the performance in land-
mark detection of serial treatment images.

F. 8. The mean distance errors of six detected landmarks for 24 patients,
by using up to M patient-specific training images. M = 0 indicates the results
obtained from the population-based landmark detectors.
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F. 9. The mean Dice curve of prostate localization for 24 patients, by
using up to M patient-specific training images. M = 0 indicates the results
obtained from the population-based landmark detectors. The error bars show
the standard deviations.

3.B. The effect of the number of patient-specific
training images

In this subsection, we investigate the performance of land-
mark detection and prostate localization with respect to the
number of patient-specific training images used, and also how
many patient-specific training images are sufficient for the
online update process.

Figure 8 shows the mean distance errors of six target land-
marks detected by our method with respect to different number
M of patient-specific training images (i.e., M varies from 0
to 14). From Fig. 8, it can be observed that, as expected, the
mean distance errors of all six landmarks keep decreasing as
M increases from 0 to 14. However, when M ≥ 6, the accuracy
of landmark detection becomes saturated.

Figure 9 provides the mean Dice values with different M .
Here, all the localization accuracies are obtained using up to
five previous prostate shape atlases in multiatlas RANSAC.
We can see that the mean Dice values ascend greatly with M
changing from 0 to 6 but are saturated after that.

Both Figs. 8 and 9 show that the accuracies of land-
mark detection and prostate localization are low when no
patient-specific images participate in the training process (M
= 0). This confirms that the population images, which already
exclude the images of the current patient under testing, cannot
well capture image appearances of the current patient when
used alone in training. However, as more and more treatment

images of the current patient contribute to the training (M
= 2–14), the results become better and better as shown in Figs.
8 and 9, indicating that the usage of more patient-specific
treatment images as training images can raise the accuracies
of both landmark detection and prostate localization.

Nevertheless, the improvement will be slight after using
more than six treatment images of the same patient as training
images. Further, adding more patient-specific images to the
training pool will not bring significant improvement in both
landmark detection and prostate localization. Thus, consid-
ering the trade-off between computational time and prostate
localization performance, it is sufficient to use the population
image and up to six patient-specific treatment images as train-
ing images.

3.C. Single-atlas RANSAC vs multiatlas RANSAC

We also compare the performances of the single-atlas
RANSAC and the multiatlas RANSAC in localizing the pros-
tates of 24 patients in Fig. 10. As suggested by the previ-
ous experiment, we use up to six patient-specific training
images, which are sufficient for capturing the intrapatient
appearance variations. In the multiatlas RANSAC, we use the
prostate shapes from both the planning image and the latest
five treatment images (before the current treatment image)
in alignment. If no more than five patient-specific prostate
shapes are available, all of the prostate shapes delineated in
the planning day and previous treatment days will be used.

As depicted in Fig. 10, the mean Dice values obtained by
the multiatlas RANSAC for all the patients are higher than
those obtained by the single-atlas RANSAC. The two sam-
ple t-test is conducted for comparing the difference between
single-atlas RANSAC and multiatlas RANSAC, which gives
p-value 1.76× 10−18 and shows the significant difference of
two methods. This validates that our multiatlas RANSAC
method is superior to the single-atlas RANSAC method in
prostate localization.

3.D. The effect of the number of prostate shapes used
in the multiatlas RANSAC

In this subsection, we investigate the performance of our
multiatlas RANSAC in prostate localization with respect to the
use of different number K of patient-specific prostate shapes
(i.e., using up to K prostate shapes of the planning image and

F. 10. Comparison between the single-atlas RANSAC and the multiatlas RANSAC on the mean Dice values of 24 patients. The error bars show the standard
deviations.
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F. 11. The curve of mean Dice values for all patients when using up to K

prostate shapes of the planning image and the latest treatment images for
the multiatlas RANSAC. K =∞ indicates that all previous prostate shapes
will be used in the multiatlas RANSAC. The error bars show the standard
deviations.

the latest treatment images). Figure 11 shows the respective
mean Dice values of all patients. Here, K =∞ indicates that
all previous patient-specific prostate shapes are used. For the
treatment day with less than K previous prostate shapes, all
previous shapes are used as shape atlases in the online multiat-
las RANSAC. Thus, the localized results when using up to K
prostate shapes are composed of both the results obtained after
the treatmentday K−1and the resultsof thefirst K−1 treatment
days, in which there are less than K previous prostate shapes.

It can be seen from Fig. 11 that the mean Dice value with
K = 5 is higher than others. That is, it is generally better to use
up to five prostate shapes of the planning image and the latest
treatment images for the multiatlas RANSAC. The reason
using more prostate shapes leads to slightly worse results,
which is possibly because of the daily shape variation between
the prostates in the previous treatment images and the current
treatment image. Generally, if a treatment day is far away
from the current treatment day, the prostate shape variation
between these two days could be large. Hence, compared to
the use of only the latest prostate shapes, employing all the
previous patient-specific prostate shapes (which could include
more prostate shapes with large variations from the current
treatment image) degrades the localization performance.

3.E. Comparison with other prostate segmentation
methods on the same dataset

To further evaluate our method in prostate localization,
we compare it with other state-of-the-art prostate localiza-

tion methods, such as Feng,10 Liao,7,14 Li,23 Shi,24 Gao,22 and
ILSM,6 by using the same dataset.

The comparison among different methods is listed in Ta-
ble I. Table I shows that our method is better, with higher mean
Dice and lower ASD measurements, than all other comparison
methods, except for Shi’s method. Although the mean Dice
value of Shi’s method is 1% higher than our method, it is worth
noting that Shi’s method is semiautomatic, which requires
clinicians to manually specify the beginning and end slices.
Besides, similar to most of the previous works (i.e., Liao,7,14

Li,23 and Gao22), Shi’s method requires manual segmentation
for at least three patient-specific images for initializing the
algorithms. This means that one cannot adopt Shi’s method to
segment the initial treatment images. In contrast, by utilizing
both the population training images and patient-specific train-
ing images, our method does not have such a limitation and,
thus, can be applied to segment the prostate in any treatment
day.

Notably, despite the fact that our method is directly related
to Li’s method,23 there are three major differences between Li’s
method and our method. (1) Li’s work learns an Adaboost clas-
sifier to voxel-wisely classify each voxel in a new treatment
CT for obtaining a prostate likelihood map and then uses level
set to segment the prostate from the likelihood map. In our
method, we first localize six landmarks around the prostate by
landmark detectors and then segment the prostate by aligning
the previously segmented prostates onto the new treatment CT
based on the automatically detected landmarks. (2) From Ta-
ble I, it can be easily seen that our method achieves much better
performance than Li’s work. (3) Li’s method cannot be used for
localizing the prostate in the beginning treatment days, since
it requires at least three manually segmented prostate shapes
from the current patient for learning the classifier.

Table I also shows that although the computational time
of our method is less than 1.5 min, it is still longer than that
of ILSM.6 However, in terms of segmentation accuracy, our
method is much better than ILSM.6

For the purpose of testing whether our method achieves
statistically significant improvement over the previous meth-
ods, we also list p-values in Table I. To compute the p-value
between our method and any other method, the segmentation
results of all subjects at all time points should be available.
However, we can only get the segmentation results from Gao22

and ILSM.6 Thus, only the p-values with respect to these two
methods (by comparison with our method) are reported in
Table I. For other methods, we just provide their standard

T I. Comparison between our method and other state-of-the-art prostate segmentation methods on the same dataset. Here, n/a means that the particular
value was not reported in publications. The numbers following “±” is the standard deviations of Dice values and ASD values.

Method
Feng

(Ref. 10)
Liao

(Ref. 14)
Liao

(Ref. 7)
Li

(Ref. 23)
Shi

(Ref. 24)
Gao

(Ref. 22)
ILSM
(Ref. 6) Ours

Automaticity Fully Fully Fully Fully Semi Semi Fully Fully
Mean Dice 0.89±0.05 0.90 ± n/a 0.91 ± n/a 0.91 ± n/a 0.94±0.05 0.91±0.06 0.88±0.06 0.93±0.06
Mean ASD (mm) 2.08±0.79 1.08 ± n/a 0.97 ± n/a 1.40 ± n/a n/a 1.24±1.00 1.89±0.98 0.97±0.85
Speed (s) 96 228 156 180 n/a 600 4 78
P-value n/a n/a n/a n/a n/a 4.51 ×10−4 1.45 ×10−14 n/a
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T II. Comparison between our method and some state-of-the-art prostate
segmentation methods using different datasets. Here, n/a means that the
particular value was not reported in publications.

Method
Davis

(Ref. 18)
Foskey

(Ref. 13)
Chen

(Ref. 9) Ours

Image no. 40 65 185 330
Automaticity Fully Fully Fully Fully
Mean Dice 0.82 0.84 n/a 0.93
Mean ASD (mm) n/a n/a 1.10 0.97
Speed (s) n/a 750 60 78

deviations of segmentation results (if available in their papers)
in Table I for reference. It can be concluded from Table I that
our method is statistically (p < 0.05) better than Gao22 and
ILSM,6 respectively.

3.F. Comparison with other prostate segmentation
methods on different datasets

In this subsection, we compare the performance of our
method with several other CT prostate segmentation methods
on different datasets. Because these CT prostate segmentation
methods are not using the same dataset as ours and also their
source codes are not publicly available, it is difficult for us to
directly compare our method with theirs. Consequently, Ta-
ble II just lists the measurements reported in their publications
for reference. One can observe from Table II that our method
achieves higher segmentation accuracy and is evaluated on a
larger dataset.

4. CONCLUSION AND DISCUSSION

In this paper, we propose an online-updated landmark-
guided method for localizing the prostate in the treatment
CT images. In our method, a two-layer regression forest is
trained to detect each of the target landmarks in the new
treatment image and further online-updated with the patient-
specific information collected from the planning image and
previous treatment images. After detecting all the target land-
marks of the new treatment image, a multiatlas RANSAC
method is adopted to localize the prostate by aligning the
latest patient-specific prostate shapes onto the space of the new
treatment image. By using the online update scheme in both
landmark detection and prostate localization, the abundant
patient-specific information can be continuously updated and
further utilized to enhance the accuracies of both landmark
detection and prostate localization. The experimental results
have validated the effectiveness of the proposed method in
landmark detection and prostate localization for the treatment
CT images, as well as its better performance in comparison
with the other state-of-the-art methods.

4.A. Qualitative comparison with other related works

The group led by Lei Dong applied an intensity-based
deformable registration algorithm21 to register the treatment
CT with the planning CT and subsequently transformed the

manual contouring result from the planning CT onto the treat-
ment CT. They evaluated their method on one prostate patient
with 24 repeat CT scans.42 The average DSC (volume overlap
index) and ASD (mean absolute surface-to-surface distance)
of their method are 0.83 and 1.3 mm, respectively. The typical
runtime for their method is 2 min/case. By comparison with
their method, our method achieves an average of DSC 0.93 and
ASD 0.97 mm for 24 patients with 330 images in total. Among
24 patients, the minimum DSC achieved by our method is
0.89, which is still better than their reported performance.
With regard to runtime, the computational time required by our
method (1 min 18 s) is shorter than their method.

In the work by Jan-Jakob Sonke’s group, they developed a
rigid intensity-based registration method to transform the con-
touring result from the planning CT to the treatment CT/cone-
beam CT (CBCT). For treatment CT,43 they achieved a 91%
successful rate in 45 s. The average volume overlap ratio for
those successful cases is 0.76±0.05. For treatment CBCT,12

they achieved a 65% successful rate with their regular regis-
tration method and a 83% successful rate when combined
with the fixed apex registration method. It is worth noting that
visual inspection was required in their algorithm to decide
whether the fixed apex registration method should be used.
The registration error obtained by their final method on those
successful cases (9 patients 71 cases) is 0.1± 1.0, 0.5± 2.0,
and −0.2 ± 1.7 mm along left–right, cranial–caudal, and
anterior–posterior directions, respectively. The runtime is 1
min 30 s if only regular registration is used (with three start
positions), and 2 min 30 s when fixed apex registration is
additionally used (with three start positions). In contrast,
our method is evaluated with a 100% successful rate in 24
patients of 330 cases. The average volume ratio is 0.91±0.06,
which is much higher than their method. The landmark-
guided registration error by our method is 0.03± 0.64, 0.13
± 1.94, −0.10 ± 1.81 mm along left–right, cranial–caudal,
and anterior–posterior directions, respectively, which is also
better.

The group of Steve Jiang recently implemented many pop-
ular deformable image registration methods, such as demon
algorithm and its variants,44–47 on the GPU to accelerate the
registration for image guided radiation therapy.48 By the accel-
eration of the GPU, registering images of size 256×256×100
only needs 7–11 s. They also successfully applied the demons
algorithm to register 4D CT images of different phases. Even
though they did not apply their method for prostate localiza-
tion, their method can certainly be borrowed to localize the
prostate, as the above two registration methods did. Actually,
similar works have been done by Foskey et al.,13 who also
applied an intensity-based deformable registration method to
localize the prostate in treatment CT. For the registration-based
methods, the main difficulty/challenge comes from the possible
dramatic change of bowel gas in the rectum, which will nega-
tively affect the registration algorithm.12,18,23,43 Therefore,
various strategies were developed in many works12,13,18,43 to
fill up the bowel gas before registration. However, when the
change of bowel gas becomes large between the planning CT
and the treatment CT, the registration algorithm would fail
in most cases.12,43 In our method, we localize the prostate
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by automatically detecting several key landmarks around the
prostate. Compared with registration methods, our method
does not need to globally match the intensity appearance, thus,
is free from the bowel gas problem. As shown in the above
two paragraphs, our method achieves more accurate results of
prostate localization than intensity-based registration methods.

4.B. Applicability to CBCT treatment images

Among various prostate segmentation methods, our method
belongs to the machine learning method. In our method, we did
not handcraft features that are specific to CT modality. Useful
features are automatically learned by the random forest from
the previously segmented treatment and planning CT images.
Random forest as a general machine learning method has
been applied to various image modalities. For example, Cheng
et al.26 used the random forest as a classification method for
CBCT dental landmark detection and achieved good results.
Criminisi et al.38 reported the application of the random forest
as a regression way for efficient CT anatomy detection. In
Maglietta’s work,49 the random forest is employed for auto-
matic hippocampal segmentation in MR images. Therefore, on
the basis of the data-driven nature of a random forest, we are
sure that our method can automatically identify useful features
for landmark detection in CBCT prostate images if enough
treatment CBCTs are provided. In the future, we will test our
algorithm on CBCT treatment images.

4.C. Limitations for clinical use

Although the performance of our method in prostate local-
ization is satisfactory, it still has some limitations for clinical
use. One limitation is the computational time of the current
method. Even though the computational time of our method
is comparable with most of the other prostate localization
algorithms, such as works from Dong,21 Sonke,12,43 Foskey,13

and Chen,26 there is still a room for further improvement.
To further reduce the computational time, we consider im-
plementing the random forest on the GPU,50 similar to Steve
Jiang’s work. It will significantly reduce the time. Besides,
now we detect each landmark sequentially in the same level.
Since the detections of different landmarks in the same level
are independent, given the displacement fields of the previous
iteration, this parallelism can be further exploited to reduce the
computational time. Another limitation is the requirement of
at least one patient-specific image for training. Since there are
no images available for the patient in the very beginning of
treatment, we have to use population images from other pa-
tients as the training data. As we discussed in Subsection 3.B,
population training images cannot well capture the appearance
of the current patient. Therefore, localizing the prostate in
the planning image without any patient-specific information
would be a challenging task, which will be our future research
direction.
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