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Abstract

We propose a novel multi-atlas based segmentation method to address the segmentation editing 

scenario, where an incomplete segmentation is given along with a set of existing reference label 

images (used as atlases). Unlike previous multi-atlas based methods, which depend solely on 

appearance features, we incorporate interaction-guided constraints to find appropriate atlas label 

patches in the reference label set and derive their weights for label fusion. Specifically, user 

interactions provided on the erroneous parts are first divided into multiple local combinations. For 

each combination, the atlas label patches well-matched with both interactions and the previous 

segmentation are identified. Then, the segmentation is updated through the voxel-wise label fusion 

of selected atlas label patches with their weights derived from the distances of each underlying 

voxel to the interactions. Since the atlas label patches well-matched with different local 

combinations are used in the fusion step, our method can consider various local shape variations 

during the segmentation update, even with only limited atlas label images and user interactions. 

Besides, since our method does not depend on either image appearance or sophisticated learning 

steps, it can be easily applied to general editing problems. To demonstrate the generality of our 

method, we apply it to editing segmentations of CT prostate, CT brainstem, and MR hippocampus, 

respectively. Experimental results show that our method outperforms existing editing methods in 

all three data sets.
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I. Introduction

Medical image segmentation is important for many applications, such as image-guided 

surgery [3], shape analysis [5], disease progression monitoring, and longitudinal studies [6]. 

With the advances in automatic segmentation tools, now people can more effectively 

conduct segmentations by first applying these tools, and then manually correcting errors in 

some parts of the segmentation. The use of automatic tools greatly reduces the burden of 

slice-by-slice manual segmentation. However, due to various challenges such as unclear 

target organ boundaries, large appearance variations and shape changes, the current 

automatic methods often fail to produce reliable segmentation, thereby requiring additional 

labor-intensive and time-consuming manual editing. If the segmentation errors can be 

corrected with only a few user interactions (e.g., dots as shown in Fig. 1), the total time to 

obtain satisfactory segmentation could be significantly reduced.

Many interactive segmentation methods have been developed for the segmentation editing 

problem, such as live-wire [7], graph cut [6, 8], and random walk [9]. In these methods, the 

segmentation is often iteratively updated using accumulated user interactions. Specifically, 

when additional user interactions are inserted into the erroneous regions, a statistical model 

is updated by intensities or gradients from new annotated voxels, and then used to update the 

labels of un-annotated voxels. These methods can improve the segmentation efficiency by 

using user guidance and simple appearance models, without relying on any expensive 

learning procedures. However, it is difficult to directly apply these methods to the editing 

problem, when allowing only a few dots or scribbles as user interactions. Fig. 1(b) gives an 

example of the editing result using the graph cut [8] with a small amount of interactions on 

ambiguous parts. In order for these methods to obtain reliable results, a substantial amount 

of annotations is required.

To address this limitation, we propose a new editing method using high-level information 

from training data. Specifically, we borrow the idea from multi-atlas based segmentation 

methods, which often require two steps: (1) searching appropriate atlas labels and (2) label 

fusion of the selected atlas labels based on their respective voting weights. So far, most 

multi-atlas based methods have used image appearance features to achieve these two steps, 

with the assumption that similar images or patches have similar labels. For example, 

Heckemann et al. [10] and Aljabar et al. [11] aligned training images to the target image and 

then used the weighted voting of labels of aligned training images to determine the 

segmentation. Coupe et al. [12] and Rousseau et al. [13] found similar training image 

patches after the alignment, and then used the non-local weighted voting of the labels of 

training atlas patches to determine the segmentation. The performance of these patch-based 

methods can be further improved with some advanced voting weights derived by sparse 

representation [14, 15] or joint fusion methods [16, 17]. However, it is often easy to find 

patches with similar appearances, but distinct label patterns, especially for medical images 

that often include weak boundaries and also the regions with large inter-subject appearance 

variations. Unlike previous methods depending solely on image appearance, we use the 

constraints from user interactions to guide both the atlas patch selection and label fusion 

steps. Specifically, for step (1), we divide user interactions into multiple local interaction 

combinations, and then locally search the label patches corresponding with each 
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combination. Specially, we introduce a novel label-based similarity to find the atlas label 

patches that are well-matched with both the interactions and the previous segmentation. For 

step (2), we introduce a novel distance-based weight map to voxel-wisely fuse the selected 

label patches to obtain the final segmentation. The advantages of our proposed method, 

compared to the previous related works, are presented in the following subsections.

A. Related works

Recently, interactive segmentation methods were improved in several ways as briefly 

introduced below.

• Several methods [18–20] have been proposed to effectively use the prior 

knowledge from user interactions. Specially, Rother et al. [18] proposed grab cut 
by requiring only a rough bounding box around the target object for interactive 

segmentation. In this method, a Gaussian mixture model is estimated to 

summarize the intensity distribution within the bounding box by using the 

Expectation-Maximization algorithm. Lempitsky et al. [21] further enforced the 

topological prior of the bounding box into the energy minimization framework. 

Bai et al. [19] and Criminisi et al. [20] both used geodesic distance from user 

interactions to encode spatial gradients.

• On the other hand, several methods [22–25] consider using more advanced image 

features and also modeling the relationship between annotated regions and other 

regions. For example, Kim et al. [22] and Jung et al. [23] divided an image into a 

set of small regions, and then learned their relationship with a multi-layer graph 

and a kernel matrix, respectively. Finally, segmentation is conducted by using 

both the region likelihood and learned inter-region relationship. Gao et al. [25] 

learned local statistics near user interactions, and then used them to guide active 

contour evolution within a variational framework.

• Active learning based methods [26–28] have also been proposed for efficiently 

receiving user interactions. Wang et al. [26] and Top et al. [27] measured the 

uncertainty of either a local region and a 2D plane, and then automatically 

provided the most ambiguous parts to users. Similarly, Sourati et al. [28] located 

the ambiguous parts by measuring the uncertainty of pairwise queries.

These methods can generate better segmentations with less user interactions than the early 

interactive methods [4–7]. However, a number of user interactions are still required since it 

is difficult to construct a distinct appearance model by using a few dots or scribbles in 

ambiguous regions. To address this problem, several methods have been proposed to 

incorporate high-level information from training data. For example, Barnes et al. [29, 30] 

used the label information of similar image patches from a training set for image completion 

and reshuffling. The patches were found by random patch selection and propagation 

methods. Beyond the use of label information, Schwarz et al. [31] further trained the active 

shape model (ASM) and then incorporated it to assist segmentation editing. Specifically, 

when any incorrect landmark point is edited by users, the adjacent landmark points are 

modified accordingly, with the global shape constraint of ASM. However, manual editing of 

3D landmarks is inconvenient, and also the ASM with limited training data often fails to 
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capture local shape variations. Recently, Park et al.[1] proposed an editing method based on 

a structured patch model that utilizes localized classifiers and also the spatial relationship 

between neighboring patches. In their method, training patches are transferred to appropriate 

places in the target image by considering the similarity of labels, interactions and the inter-

patch spatial relationship. Then, the classifiers trained on the transferred patches are used to 

guide segmentation. We proposed a semi-supervised learning based method [32] to learn 

discriminative appearance patterns. Specifically, we first found a small set of atlas label 

patches that are well-matched with interactions, and then estimated confidence regions in the 

testing image through majority voting. Finally, a semi-supervised learning algorithm was 

used to train a classifier by using positive and negative training samples extracted from the 

confidence regions. The learned classifier is used to label the rest non-confidence regions for 

updating segmentation. All these previous methods effectively exploit useful image features 

by using label information. However, since they consider all interactions together for finding 

the atlas label patches, the number of well-matched atlas label patches is often limited. Thus, 

it causes the unreliability of either the trained local classifiers or the identified confidence 

region. Moreover, since editing needs to be sequentially conducted region-by-region, users 

cannot insert their interactions freely into erroneous regions in the entire image.

B. Contributions

In this paper, we propose a novel editing method, focusing on a reliable estimation of label 

information without using complex classifiers or training models. There are three main 

contributions. First, we introduce a new label fusion strategy based on user-guided patch 

selection and weighted voting for segmentation editing. Since the user-guided constraints are 

more intuitive and much clearer than simple image appearance information, the atlas label 

patches and their respective voting weights can be more accurately estimated. Second, our 

method could consider various local shape variations, even with limited atlas label images, 

by separately finding atlas label patches for different interaction combinations. Compared to 

our previous method [22] considering all interactions together, the atlas label patches 

selected by separate interaction subsets can constrain the abrupt shape changes and also 

generate more reliable editing results, as illustrated in Figs. 1(c) and 1(d), respectively. 

Finally, since our proposed method does not need any training image information and 

expensive learning procedures, it can be easily applied to the editing scenario, when given an 

incomplete segmentation along with a set of reference label images. We will validate these 

key contributions on three challenging data sets in our experiments.

II. Multi-atlas based editing

Our proposed editing procedure begins with an initial segmentation obtained by any existing 

method, a set of existing atlas label images, and user interactions on erroneous parts. To 

receive the user interactions on erroneous parts, we provide an interface, where user can 

choose both an appropriate 2D view (among coronal, axial, and sagittal views) and a brush 

size for interaction. Intuitively, we assume that the foreground (FG) / background (BG) dots 

or short scribbles are inserted into the erroneous regions near the true object boundary. 

Specifically, the editing procedure consists of four steps, as described below.
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1. All atlas label images are registered to the previous segmentation Lt−1 for 

guiding the segmentation update, where t represents the editing round and L0 is 

the initial segmentation. To enrich the reference label set, we respectively 

transform each atlas label image to Lt−1 with rigid and affine registrations, and 

then use the aligned label images as reference atlas label images. In the 

registration, we extracted the 3D surfaces of both the Lt−1 and binary atlas label 

images, and then aligned the surface points using the iterative closest point 

method [2].

2. Local interaction combinations (i.e.,  for FG combination /  for BG 

combination) are extracted from the FG and BG user interactions, respectively, 

where k is the index of combination. For each combination, a region of interest 

(ROI) is set as a bounding volume to include the respective interactions with a 

small margin. Examples of the combinations and their ROIs are shown in the top 

row of Fig. 2.

3. For each combination, the appropriate label patches, which are well-matched 

with both the interactions and previous segmentation in the ROI, are searched 

from reference label images. The selected patches are averaged to build a local 

likelihood map (i.e., ). Examples of local likelihood maps are 

shown in the middle row of Fig. 2.

4. A global likelihood map Pt in the entire image is determined by the label fusion 

of the previous segmentation and the local likelihood maps with their respective 

distance-based weight maps (i.e.,  for Lt−1 / ). Noting that 

the local likelihood maps become much more accurate near the interactions, 

while the previous segmentation is more reliable at a distant voxel v from the 

interactions, the weight of v is determined by the respective distances to the 

interactions. The weight maps are shown in the bottom row of Fig. 2. Finally, the 

segmentation is determined by thresholding the likelihood map Pt.

The above four steps are repeated with the inclusion of additional user interactions, if 

provided, until the updated segmentation is satisfactory. Note that, when repeating each 

editing procedure, all accumulated user interactions are considered to find the atlas label 

patches and derive their respective weight maps. The overall editing procedure is described 

in Fig. 3. The details of steps 2), 3), and 4) are presented in the following subsections.

A. Extraction of local interaction combinations

In our method, the segmentation is edited using reference atlas label images that are well-

matched with user interactions. If there are many atlas label images well-matched with all 

provided user interactions, the segmentation can be edited easily by following the user 

guidance. However, unfortunately, in most situations, there are few globally well-matched 

atlas label images. Therefore, we separately find the atlas label patches that are well-

matched with various local interaction combinations, and then aggregate them to estimate 

the voxel likelihood. Based on the spatial proximity of separate interactions, we extract three 

types of local combinations for FG and BG interactions, respectively, as follows: 1) 
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individual interaction such as a dot or scribble, 2) pairwise interaction which includes two 

individual interactions within a certain distance, and 3) union interaction which includes all 

neighboring interactions within a certain distance. The interaction combinations are 

extracted not only from the current interactions, but also from the relevant previous 

interactions. Specifically, if the previous interactions are located within a certain distance of 

the current interactions, the combinations between current and previous interactions would 

be extracted. On the other hand, previous interactions, which are distant from all the current 

interactions, will not be used in the current editing, since the accurate parts of the updated 

segmentation do not need to be changed. The distance for defining the pairwise and union 

interactions was determined with respect to applications by considering the object size. For 

each kth combination, we set the ROI (  for FG or  for BG) as a bounding volume, which 

covers the interaction combination with a small margin to include possible local variations in 

the ROI. Since the ROI is set from the annotated voxel positions with a certain margin, its 

size depends on the interaction combination.

B. Selection of reference label patches with respect to user interactions

For each interaction combination, we find reference label patches that are well-matched with 

interactions and the previous segmentation Lt−1 in the ROI. Here, the patch size is the same 

as the ROI size. Since the label images are aligned to Lt−1 without utilizing user interactions 

in the initial registration step, the registration might be inaccurate, especially for initial 

segmentation with large errors. To address this issue, we borrowed the idea from non-local 

patch-based methods [12]. Specifically, we used a novel label-based similarity S defined in 

Eq. 2 to identify the best well-matched label patch in a local neighborhood of each aligned 

atlas label image. In our previous work [32], the label-based similarity S is defined as:

(1)

where δ is the Kronecker delta, v is a voxel under consideration, M is an aligned atlas label 

image with values 1 and −1 denoting FG and BG voxels, respectively, Ut is the user 

interaction map at tth iteration with values 1, −1 and 0 denoting FG, BG and unannotated 

voxels, respectively, Lt−1 is the previous segmentation at t - 1 iteration with the similar label 

definitions as M , and φt denotes the ROI including all interactions. In Eq. (1), the first term 

represents the similarity between an atlas label image and all user interactions, while the 

second term represents the similarity between an atlas label image and the previous 

segmentation. γU is a parameter used to control the weight between these two terms. Eq. (1) 

assumes that a good atlas label patch should be strongly matched with all annotated voxels 

primarily in a ROI and also matched with the previous segmentation on unannotated voxels. 

To emphasize the importance of a small amount of annotated voxels, γU was set as a small 

value (i.e., smaller than 1). However, since all interactions are considered as strong 

constraints jointly in Eq. (1), the number of well-matched atlas label patches is often limited. 

Thus, various shape changes cannot be well captured.
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To consider local shape variability with a limited number of label images, we separately find 

similar atlas label patches for each interaction combination, instead of all interactions 

together. For each interaction combination, we find the atlas label patches 1) tightly matched 

with interactions in this combination, 2) moderately matched with other interactions, and 3) 

weakly matched with the previous segmentation. Based on this motivation, we modify our 

label-based similarity Sk for the kth interaction combination  for FG combination 

or  for BG combination) as follows:

(2)

where  denote the user interactions in kth combination and the other user 

interactions at tth iteration, respectively. The first, second, and third terms in Eq. (2) 

represent the similarity of an aligned atlas label image M 1) with the user interactions in the 

kth combination, 2) with the other user interactions, and 3) with the previous segmentation, 

respectively. γo and γU denote parameters for balancing these three terms. In our 

experiment, γo is set as 0.05 to distinguish the strong and moderate constraints for different 

user interactions. γU is set as 0.005 to represent the weak constraint from the previous 

segmentation. The more consistent the aligned atlas label image is with  and Lt−1 in 

the ROI , the higher is the similarity obtained in Eq. (2).

For each reference atlas image, the best matched label patch is determined as the one with 

the highest label-based similarity in the local neighborhood. We repeat this procedure for all 

reference atlas label images, and then select the np patches with the highest similarities. 

Finally, the selected label patches are averaged to build a local likelihood map (  for FG, or 

 for BG).

C. Label fusion based on user interactions

In the label fusion step, local likelihood maps are aggregated to build a global likelihood 

map Pt for the entire image. Since we emphasize the first term in Eq. (2), the local likelihood 

map is more likely to be accurate near the interaction. In contrast, the confidence of the 
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estimated likelihood for a voxel decreases when its distance from the interactions increases. 

(E.g., the likelihood becomes small and fuzzy when it is far from the interactions in Fig. 2.) 

In these low-confidence regions, the previous segmentation is more accurate than the 

likelihood maps. Therefore, to determine the global likelihood of a voxel, it is natural to 

emphasize the contribution of the local likelihood maps near user interactions, while 

emphasizing the contribution of the previous segmentation Lt-1 in distant voxels from 

interactions. By considering the distance of each voxel from the interaction and also the 

confidences of local likelihood maps ( ), Pt is defined as:

(3)

where nf and nb are the numbers of FG and BG combinations. The weight for the FG 

interaction combination  is defined as:

(4)

where dk (v) is the shortest distance between a voxel v and the annotated voxels in . If dk 

(v) is large,  decreases and vice versa. σ controls how quickly the emphasis shifts 

from the local likelihood maps to the previous segmentation as the voxel becomes distant 

from the interactions. If σ is small, only the region close to the user interactions is affected 

by the local likelihood maps, while other regions are affected by the previous segmentation. 

On the other hand, if σ is large, most voxels are affected by the local likelihood maps. αf is 

the weight for the confidence of voxel likelihood. Note that several likelihood maps obtained 

by individual or pairwise interaction combinations may be inaccurate due to the strong 

constraints for a few annotated voxels. To alleviate this effect, we enforce more weights 

when the likelihood map certainly indicates the voxel as FG or BG. For example, when 

some local likelihood maps indicate v as BG with low confidence (e.g., ) and 

some local likelihood maps indicate v as FG with high confidence (e.g., ), we 

enforce more weight on the latter local likelihood maps. We set αf as largely greater than 1, 

if ; otherwise 1. The weight of the BG combination is similarly defined as:

(5)

where αb is greater than 1, if ; otherwise 1. The weight  is defined as:
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(6)

where β controls the importance of the previous segmentation. If β is small, the result is 

more affected by the previous segmentation than the local likelihood maps even for voxels 

near the interactions. On the other hand, if β is very large, the previous segmentation is not 

considered during label fusion. The weight maps for different σ and β are shown in Fig. 4. 

Finally, a new segmentation label Lt(v) is set as FG if Pt(v) > 0.5, or v is annotated as FG; 

otherwise, set as BG.

III. Results

Our proposed editing method was evaluated on three challenging data sets: 1) prostate data 

set [32] including 73 CT images with dimension 512 × 512 × (61~81) voxel3 and spacing 

0.94 × 0.94 × 3.00 mm3, 2) brainstem data set [33] including 40 head & neck CT images 

with spacing approximately 1.0 × 1.0 × (2.5~3.0) mm3 , and 3) hippocampus data set1 

including 35 brain MR images with dimension 256 × 256 × 287 voxel3 and spacing 1.0 × 1.0 

× 1.0 mm3 (Fig 5). Although several automatic methods [17, 33–35] have been proposed to 

address these segmentation problems, inaccurate results were often obtained due to low 

tissue contrast and large shape and appearance variations. To evaluate editing performances, 

we first used one of the state-of-the-art automatic methods to generate the initial 

segmentation, and then applied our editing method to the half of the results with the largest 

errors. Specifically, for the prostate data set, we randomly divided the data set into four 

subsets, and then conducted the regression-based segmentation method [34] using four-fold 

cross validation. Finally, we chose 37 images with the lowest Dice similarity coefficient 

(DSC) scores. Similarly, for the brainstem data set, we applied the learning-based multi-

source integration framework [5] using leave-one-out validation, and then chose 20 images 

with the worst segmentations. For the hippocampus data set, we applied the joint label 

fusion method [17] using leave-one-out validation, and then chose 18 images with the worst 

segmentations. Next, we conducted our editing method with user interactions, inserted in the 

erroneous parts of selected images. The details of the experimental setting and results are 

presented in the following subsections.

A. Experimental setting

For each of the selected prostate, brainstem, and hippocampus images, the average numbers 

of 14, 30, and 9 dots were interactively inserted, respectively, depending on the amount of 

segmentation errors. We first found a reasonable interaction distance value for defining 

pairwise and union combinations. If the interaction distance value is very small, only 

individual interactions are used, thus, losing useful middle-level priors, such as those shown 

in the last two columns of Fig. 2. On the other hand, if the interaction distance value is very 

large, many distant interactions are considered together. Thus, some irrational atlas label 

1https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page
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images (well-matched with all combined interactions) cannot well-capture local shape 

variations. In our experiment, the interaction distance value was empirically set as 40 for the 

prostate and brainstem due to their relatively large sizes, while 15 for the hippocampus. With 

these interaction distance values, the average numbers of 48, 111, and 19 interaction 

combinations were extracted. Since the margin size was also related to the object size, we set 

the margin as one third of the interaction distance (i.e., 13 for prostate and brainstem, and 5 

for hippocampus) so that local variations near interactions could be covered in the ROI. 

Since the voxel spacing was triple in the z-direction than that in the x- and y-directions for 

both the prostate and brainstem data sets, the margin sizes were finally set as 13 × 13 × 4 

voxel3. On the other hand, the margin size of the hippocampus was set as 5 × 5 × 5 voxel3 

because of isotropic image resolution. The rest of the parameters were determined by cross 

validation. For example, the patch search range is used to compensate for the error of initial 

alignment. In the validation, the errors of initial alignment usually did not exceed 8 voxels in 

each direction for the prostate and brainstem, and 4 voxels for the hippocampus. Thus, the 

patch search range was set accordingly as 8 × 8 × 8 voxel3 for the prostate and brainstem, 

and 4 × 4 × 4 voxel3 for the hippocampus. The parameters σ and β as the fusion weights 

need to be determined with respect to the margin size as shown in Fig. 4. We tested the 

performances with different σ and β values ranged from a quarter to three quarters of the 

margin size. With different values, the performances could change less than the DSC of 

0.007 and the ASD of 0.08mm for the prostate, the DSC of 0.01 and the ASD of 0.15mm for 

the brainstem, and the DSC of 0.003 and the ASD of 0.01mm for the hippocampus, 

respectively. Finally, we set σ and β as a half of a margin size and three quarters of a margin 

size, respectively. Since the remaining parameters np, αf and αb did not significantly affect 

the performance, the same values such as 7, 5, and 5, respectively, were used for all 

experiments. The details are presented in Table 1.

To show the sensitivity of our method to the margin size, we evaluated our method using the 

above setting, but with different margin sizes: 9×9×3, 13×13×4, 15×15×5, 18 × 18 × 6 

voxel3 for the prostate and brainstem, and 3 × 3 × 3, 5×5×5, 7×7×7, 9×9×9 voxel3 for the 

hippocampus. Even with these different margin sizes, the performance changed less than the 

DSC of 0.005 and the ASD of 0.05mm for the prostate, the DSC of 0.005 and the ASD of 

0.09mm for the brainstem, and the DSC of 0.002 and the ASD of 0.007mm for the 

hippocampus, respectively.

B. Segmentation performance

Under the same user interactions, our method that uses interaction combinations and 

weighted voting (namely ICWV) was compared with 1) initial automatic segmentation, 2) a 

manual editing method, 3) a label fusion method using all interactions in the entire image 

(namely LFG) for finding the atlas label patches, 4) a label fusion method using all 

interactions in each local region (namely LFL) for finding the atlas label patches, 5) a 

method using the structured patch model (namely SPM) [1], and 6) a method using 

interaction combinations, but with majority voting for label fusion (namely ICMV). 

Specifically, in the manual editing method, only the labels annotated by users are changed, 

which is used to estimate the amount of user interactions provided. Except for the manual 

editing method, the atlas label images are used for all other editing methods. In the LFG 
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method, the labels well-matched with all interactions in the entire image are found with the 

label-based similarity as defined in Eq. (1). The segmentation is then updated using majority 

voting on the selected atlas label images. In the LFL and SPM methods, the atlas label 

patches well-matched with all interactions in each local region are found with respect to Eq. 

(1). Then, the segmentation is updated by majority voting of the selected atlas label patches 

in the LFL method, and updated by MRF optimization based on the local classifiers [1] in 

the SPM method. For these two methods, all interactions are divided into multiple 

interactions by region, and then the editing is conducted sequentially. In the ICMV method, 

interaction combinations are used for the atlas label patch selection similarly as the proposed 

method, but the final segmentation is obtained by equally weighting all local likelihood 

maps.

For evaluation, we used the Dice Similarity Coefficient (DSC) and the average surface 

distance (ASD) between the respective segmentation result Lf and the manual ground-truth 

Mg. The DSC is computed to measure the overlapping degree: (2 × |Lf ∩ Mg|)/(|Lf| + |Mg|). 

The ASD is computed by averaging all the symmetric pair-wise closest distances between 

the surface of Lf and the surface of Mg. The DSC and ASD were measured both in the entire 

image and the ROI region, because the erroneous regions could be small compared to the 

entire image. Table 2 and Table 3 show the average and standard deviation of DSC and ASD 

scores, respectively, for all comparison methods using the aligned atlas label images. Also, 

the boxplots in Figure 6 show the distributions of DSC and ASD scores. The gain of the 

manual method was only the DSC of 0.005–0.026 and the ASD of 0.029–1.12mm due to the 

small amount of user interactions. On the other hand, the methods using existing reference 

labels gave significantly improved scores, i.e., DSC of 0.01–0.13 and the ASD of 0.043–

1.48mm for most cases except the LFG method in the hippocampus data set. Since the 

hippocampus has a non-convex shape with local variations, the number of label images well-

matched with all interactions was very limited. Thus, inaccurate label images, which were 

often selected, worsened the results (see the last row of Fig. 7 (c)). On the other hand, the 

LFL and SPM methods had better performances by dividing all user interactions into local 

parts for finding the well-matched atlas label patches. However, the LFL method could not 

capture the shape variations near the object boundary due to the limited number of atlas 

label patches that are tightly matched with all interactions in the ROI. Moreover, since the 

initial segmentation was not used for computing the likelihood map, the correct parts far 

from the interactions could be worse by voting from inaccurate label patches. The SPM 

method has similar problems, due to the patch localization errors and also the low intensity 

contrast between FG and BG, even though it utilizes the image appearance information. The 

ICMV method outperformed both the LFL and SPM methods in terms of accuracy, by 

finding well-matched atlas label patches for multiple interaction combinations. Nonetheless, 

since several inaccurate local likelihoods, obtained by the individual or pairwise interactions 

far from the current voxel, can equally contribute to the final label prediction, large standard 

deviations were obtained compared to our ICWV method. On the other hand, our ICWV 

method outperformed all other editing methods, in most cases, for both accuracy and 

robustness (small standard deviation) by using the distance-based fusion weight.

Compared to the other comparison methods, our ICWV method obtained 1–5% DSC gains. 

Since the erroneous parts are often much smaller than the entire target object, it may look 
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small. However, in clinical application, segmentation improvement for these local errors can 

be meaningful. For example, hippocampus subfields have recently drawn a lot of attention 

due to their important role in several neuropsychiatric diseases [36]. The local error can 

significantly affect the calculation of subfield volume, since its annual change (due to 

disease) could be as small as 1%. In terms of the prostate, the segmentation is often 

conducted for radiotherapy [37]. During radiotherapy, high energy X-rays should be 

accurately delivered to the prostate. Thus, the local error could lead to overdose on nearby 

healthy tissues, such as the bladder and rectum, since the boundaries of pelvic organs usually 

touch together.

The qualitative results of comparison methods are described in Fig. 7. Although the LFG, 

LFL, SPM methods corrected major errors, their correction results still included errors, due 

to the limited number of well-matched atlas labels. Since the incomplete intermediate result 

was used for the editing procedure, the errors may have accumulated as the editing 

procedure was repeated. On the other hand, the segmentation obtained by our proposed 

ICWV method accurately followed the true object boundary near the user interactions, and 

also constrained the irregular shape changes in the regions far from the user interactions.

C. Performance for repetitive editing

For the experiments in Sec. III-B, we used all user interactions inserted on erroneous parts in 

the entire image to perform the segmentation editing. After the first round of editing, the 

DSC scores of most cases were higher than some inter-rater DSC scores reported in the 

literature [38–40], and also had no notable qualitative errors. Thus, we usually performed 

only the first round of editing in this study. However, in a few cases, there were still large 

errors, especially when the initial segmentation was too bad. Since the atlas label images 

were initially aligned to the target image based on the initial automatic segmentation, the 

registration could be inaccurate if the initial automatic segmentation included large errors. In 

such case, a single round of editing is often insufficient to correct all the segmentation 

errors, which makes it necessary to repeat the editing steps until obtaining satisfactory 

results. To demonstrate the effectiveness of our repetitive editing procedure, we selected the 

5 worst subjects among 20 brainstem results after the first round of editing, and then 

conducted the second round of editing with some additional user interactions. Table 4 shows 

the experimental setting and performances for the five subjects. Since the initial 

segmentation included relatively large erroneous parts, many user interactions (i.e., 24 dots 

on average) were inserted in the first round of editing. Accordingly, the performance was 

significantly improved with a DSC of >0.25 and an ASD of 2.7mm. Since most of the errors 

were edited during the first round of editing, much less interactions (i.e., 7 dots on average) 

were inserted in the second round editing. The performance improved again with a DSC of 

>0.15 and an ASD of 0.43mm. Since the number of interaction combinations was much 

reduced in the second round of editing, the computational time was also reduced (five times 

less than that of the first round of editing).

A typical example for the repetitive editing procedure is given in Fig. 8. In this example, the 

large error occurred in the upper part of the initial segmentation. Thus, there was a lack of 

good atlas label images that could cover the large shape change, even though the atlas label 
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patches were searched within the local neighborhood. As a result, the intermediate result still 

included the error on the upper part (Fig. 8(c)). In the next round of editing, we inserted 

additional user dots, further re-aligned all atlas label images to the intermediate result, and 

also refined the result with additional interaction combinations near the dots. Since the 

aligned atlas label images were much more reliable in the second round than in the first 

round, the possible shape changes for the erroneous part could be covered in the search 

range of the second round. This allowed the segmentation to be more accurately updated.

D. Validation of label-based registration

The appearance information of the reference image was not used in our editing procedure. 

Thus, our method can freely use the data sets open to the public or obtained from other 

modalities as the reference label atlases; which makes our method more useful, especially 

when only a few reference images with the same modality are available. In addition, the 

label-based registration usually gave comparable accuracy and less computational 

complexity than the deformable registration in the editing procedure since the image 

appearance information was sufficiently considered when the initial segmentations were 

generated by the state-of-the-art methods [17, 34, 41]. To demonstrate it, we selected the 

best, median, and worst initial segmentations from each data set, and then conducted our 

editing method using the reference atlas label images aligned by the ICP registration [2] and 

the MRF-based deformable registration [4], respectively. The ICP registration is based on 

labels, while the MRF-based deformable registration is based on image intensities. We 

measured the DSC scores of the aligned atlas label images with respect to the ground-truth 

label. The top ten DSC scores were averaged to assess the registration accuracy. We also 

calculated the final DSC scores using those aligned atlas label images for comparison. Table 

5 shows these DSC scores. For both the prostate and brainstem, the initial segmentation 

gives better guidance than the intensity-based deformable registration since intensity based 

appearance is ambiguous. Moreover, as the segmentation is improved after the first round of 

editing, more reliable atlas label images can be obtained in the second round by aligning the 

atlases to the updated segmentation. On the other hand, the deformable registration is better 

for the hippocampus, due to its relatively stable position in the brain image. However, in 

terms of final segmentation accuracy, both registration methods obtain a similar performance 

as shown in the right two columns of Table 5. This is because we locally search for the 

similar label patches within a neighborhood, which could overcome a certain amount of 

registration errors. Therefore, the label-based registration was more efficient in the editing 

procedure.

E. Computational time

The experiments were performed on a PC with a 3.5 GHz Intel quad-core i7 CPU, and 16GB 

of RAM. The total computational time depended on the number of reference atlas label 

images, the number of interaction combinations, the ROI margin size, and the search range 

size. In our experimental settings, the computational time of the first round of editing took 

1.5–7 minutes, 2–18 minutes, and 50–80 seconds for the prostate, brainstem, and 

hippocampus data sets, respectively. Since the editing is conducted with all interactions in 

the image, our method is unable to promptly produce the intermediate results, like the 

existing interactive methods [1, 32]. However, the accuracy of our method is much higher 
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than those of the existing methods under the same amount of user interactions. Thus, the 

total editing time to obtain satisfactory segmentation can be reduced by our method. 

Specifically, our method allows the batch processing after receiving user interactions for all 

the erroneous parts. Thus, it will be effective for a scenario in which the incomplete 

segmentation results need to be edited for multiple images, which is often needed for shape 

analysis, longitudinal studies, and image-guided surgery. During the second round of 

editing, the computational time was greatly reduced, compared to the first round (Table 4). 

As the number of interactions is reduced at the fine-level editing steps, the computational 

time is further reduced.

IV. Conclusion

We have proposed a novel multi-atlas based segmentation editing method with interaction-

guided constraints to find the appropriate atlas label patches and also derive their respective 

voting weights. Our proposed method can generate robust segmentation editing results 

without requiring image information and the expensive learning procedures, even in 

challenging regions. For all three challenging data sets, our method outperformed the other 

existing editing methods. We expect that our method can help produce accurate 

segmentations of a large number of 3D medical images, especially for difficult cases that 

failed in existing automatic methods. Although the simple appearance based deformable 

registration could not give an improvement in our method, the appearance information can 

be a useful cue for editing. In the future, we will consider using machine learning 

techniques, such as [32], to exploit the informative features and then use them for either 

registration or similarity calculation. Furthermore, we believe that our method can be easily 

extended to multi-label segmentation editing. Specially, all steps in our method, such as the 

patch selection step with Eq. (2) and the label fusion step with Eq. (3), can be similarly 

applied to multiple labels by grouping all labels (except a target label) as background.
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Fig. 1. 
Segmentation editing results for three methods: (b) graph cut, (c) majority voting, and (d) 

proposed method. A test image is shown in the top of (a), and its initial segmentation 

(green), ground-truth boundary (white line), and user interactions (blue/red dots) are shown 

in the bottom of (a). Likelihood maps and editing results (green) obtained by three methods 

are shown in the top and bottom of (b), (c), and (d), respectively. Note that, for the graph cut 

method (b), the foreground (FG) intensity histogram is constructed from both the FG region 

of initial segmentation and the voxels annotated as FG. Similarly, the background (BG) 

histogram is constructed from both the BG region of initial segmentation and the voxels 

annotated as BG.
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Fig. 2. 
Interaction combinations and their ROIs (top row), local likelihood maps (middle row), and 

weight maps (bottom row), obtained from the user interactions shown in Fig. 1(a). The 

initial segmentation, ground-truth boundary, FG/BG interactions, and ROIs are shown as 

green, white line, red/blue dots, and red box, respectively. The global likelihood map in Fig. 

1(d) is obtained by label fusion of Lt-1 and the local likelihood maps with the weights.
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Fig. 3. 
Flowchart of our segmentation editing framework. The proposed multi-atlas based editing 

method is shown in the blue dotted box, where UI denotes the user interactions.
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Fig. 4. 
The voting weight maps for different σ and β. The graph of exponential functions with 

different σ is shown in (a). For the three different values of σ, their respective weight maps 

are obtained with respect to the distance dk(v) to the user interactions (blue dots) and are 

shown in (b), (c), and (d), respectively. For three different values of β, their respective 

weight maps  are obtained and shown in (e), (f), and (g), respectively, when using σ = 7.
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Fig. 5. 
Example of 2D (top) and 3D (bottom) views for (a) prostate, (b) brainstem, and (c) 

hippocampus data sets. White line represents the target object boundary.
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Fig. 6. 
The distributions of DSC and ASD scores in the ROI region and in the entire image, 

respectively. (a) and (b), (c) and (d), and (e) and (f) represent the results for prostate, 

brainstem, and hippocampus data sets, respectively. The top, center, and bottom of each box 

represent the upper quartile, median, and lower quartile scores, respectively, and the 

whiskers connected to each box represent the maximum and minimum scores, respectively.

Park et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Segmentation editing results by LFG, LFL, SPM [1], and ICWV methods (from 3rd to 6th 

columns). The first column shows the original images, while the 2nd column shows the 

initial segmentations along with manual interactions. The segmentation results, ground-truth 

labels, and FG / BG user interactions (UI) are shown as green, white lines, and red / blue 

dots, respectively. The first two, middle two, and last two rows show the typical slices for 3D 

prostate, brainstem, and hippocampus images, respectively.
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Fig. 8. 
The procedure of brainstem segmentation update with respect to the repetitive user 

interactions. (a) Initial segmentation with large errors, (b) initial segmentation with user 

interactions, (c) intermediate segmentation result based on the interactions shown in (b), (d) 

intermediate result with some additional user interactions, (e) updated segmentation result 

based on the interactions shown in (d), and (f) ground-truth segmentation. The red / blue 

dots represent the FG / BG interactions. Three different views in 3D space are shown in the 

top, middle, and bottom rows.
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