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Abstract

We propose a novel multi-atlas based segmentation method to address the segmentation editing
scenario, where an incomplete segmentation is given along with a set of existing reference label
images (used as atlases). Unlike previous multi-atlas based methods, which depend solely on
appearance features, we incorporate /nteraction-guided constraintsto find appropriate atlas label
patches in the reference label set and derive their weights for label fusion. Specifically, user
interactions provided on the erroneous parts are first divided into multiple local combinations. For
each combination, the atlas label patches well-matched with both interactions and the previous
segmentation are identified. Then, the segmentation is updated through the voxel-wise label fusion
of selected atlas label patches with their weights derived from the distances of each underlying
voxel to the interactions. Since the atlas label patches well-matched with different local
combinations are used in the fusion step, our method can consider various local shape variations
during the segmentation update, even with only limited atlas label images and user interactions.
Besides, since our method does not depend on either image appearance or sophisticated learning
steps, it can be easily applied to general editing problems. To demonstrate the generality of our
method, we apply it to editing segmentations of CT prostate, CT brainstem, and MR hippocampus,
respectively. Experimental results show that our method outperforms existing editing methods in
all three data sets.
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[. Introduction

Medical image segmentation is important for many applications, such as image-guided
surgery [3], shape analysis [5], disease progression monitoring, and longitudinal studies [6].
With the advances in automatic segmentation tools, now people can more effectively
conduct segmentations by first applying these tools, and then manually correcting errors in
some parts of the segmentation. The use of automatic tools greatly reduces the burden of
slice-by-slice manual segmentation. However, due to various challenges such as unclear
target organ boundaries, large appearance variations and shape changes, the current
automatic methods often fail to produce reliable segmentation, thereby requiring additional
labor-intensive and time-consuming manual editing. If the segmentation errors can be
corrected with only a few user interactions (e.g., dots as shown in Fig. 1), the total time to
obtain satisfactory segmentation could be significantly reduced.

Many interactive segmentation methods have been developed for the segmentation editing
problem, such as live-wire [7], graph cut [6, 8], and random walk [9]. In these methods, the
segmentation is often iteratively updated using accumulated user interactions. Specifically,
when additional user interactions are inserted into the erroneous regions, a statistical model
is updated by intensities or gradients from new annotated voxels, and then used to update the
labels of un-annotated voxels. These methods can improve the segmentation efficiency by
using user guidance and simple appearance models, without relying on any expensive
learning procedures. However, it is difficult to directly apply these methods to the editing
problem, when allowing only a few dots or scribbles as user interactions. Fig. 1(b) gives an
example of the editing result using the graph cut [8] with a small amount of interactions on
ambiguous parts. In order for these methods to obtain reliable results, a substantial amount
of annotations is required.

To address this limitation, we propose a new editing method using high-level information
from training data. Specifically, we borrow the idea from multi-atlas based segmentation
methods, which often require two steps: (1) searching appropriate atlas labels and (2) label
fusion of the selected atlas labels based on their respective voting weights. So far, most
multi-atlas based methods have used image appearance features to achieve these two steps,
with the assumption that similar images or patches have similar labels. For example,
Heckemann et a/. [10] and Aljabar et a/. [11] aligned training images to the target image and
then used the weighted voting of labels of aligned training images to determine the
segmentation. Coupe et al. [12] and Rousseau ef a/. [13] found similar training image
patches after the alignment, and then used the non-local weighted voting of the labels of
training atlas patches to determine the segmentation. The performance of these patch-based
methods can be further improved with some advanced voting weights derived by sparse
representation [14, 15] or joint fusion methods [16, 17]. However, it is often easy to find
patches with similar appearances, but distinct label patterns, especially for medical images
that often include weak boundaries and also the regions with large inter-subject appearance
variations. Unlike previous methods depending solely on image appearance, we use the
constraints from user interactions to guide both the atlas patch selection and label fusion
steps. Specifically, for step (1), we divide user interactions into multiple local interaction
combinations, and then locally search the label patches corresponding with each
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combination. Specially, we introduce a novel label-based similarity to find the atlas label
patches that are well-matched with both the interactions and the previous segmentation. For
step (2), we introduce a novel distance-based weight map to voxel-wisely fuse the selected
label patches to obtain the final segmentation. The advantages of our proposed method,
compared to the previous related works, are presented in the following subsections.

A. Related works

Recently, interactive segmentation methods were improved in several ways as briefly
introduced below.

. Several methods [18-20] have been proposed to effectively use the prior
knowledge from user interactions. Specially, Rother et al. [18] proposed grab cut
by requiring only a rough bounding box around the target object for interactive
segmentation. In this method, a Gaussian mixture model is estimated to
summarize the intensity distribution within the bounding box by using the
Expectation-Maximization algorithm. Lempitsky et a/. [21] further enforced the
topological prior of the bounding box into the energy minimization framework.
Bai et al. [19] and Criminisi et a/. [20] both used geodesic distance from user
interactions to encode spatial gradients.

. On the other hand, several methods [22-25] consider using more advanced image
features and also modeling the relationship between annotated regions and other
regions. For example, Kim et al. [22] and Jung et a/. [23] divided an image into a
set of small regions, and then learned their relationship with a multi-layer graph
and a kernel matrix, respectively. Finally, segmentation is conducted by using
both the region likelihood and learned inter-region relationship. Gao et al. [25]
learned local statistics near user interactions, and then used them to guide active
contour evolution within a variational framework.

. Active learning based methods [26—28] have also been proposed for efficiently
receiving user interactions. Wang et al. [26] and Top et al. [27] measured the
uncertainty of either a local region and a 2D plane, and then automatically
provided the most ambiguous parts to users. Similarly, Sourati et a/. [28] located
the ambiguous parts by measuring the uncertainty of pairwise queries.

These methods can generate better segmentations with less user interactions than the early
interactive methods [4-7]. However, a number of user interactions are still required since it
is difficult to construct a distinct appearance model by using a few dots or scribbles in
ambiguous regions. To address this problem, several methods have been proposed to
incorporate high-level information from training data. For example, Barnes et a/. [29, 30]
used the label information of similar image patches from a training set for image completion
and reshuffling. The patches were found by random patch selection and propagation
methods. Beyond the use of label information, Schwarz et a/. [31] further trained the active
shape model (ASM) and then incorporated it to assist segmentation editing. Specifically,
when any incorrect landmark point is edited by users, the adjacent landmark points are
modified accordingly, with the global shape constraint of ASM. However, manual editing of
3D landmarks is inconvenient, and also the ASM with limited training data often fails to
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capture local shape variations. Recently, Park et a/.[1] proposed an editing method based on
a structured patch model that utilizes localized classifiers and also the spatial relationship
between neighboring patches. In their method, training patches are transferred to appropriate
places in the target image by considering the similarity of labels, interactions and the inter-
patch spatial relationship. Then, the classifiers trained on the transferred patches are used to
guide segmentation. We proposed a semi-supervised learning based method [32] to learn
discriminative appearance patterns. Specifically, we first found a small set of atlas label
patches that are well-matched with interactions, and then estimated confidence regions in the
testing image through majority voting. Finally, a semi-supervised learning algorithm was
used to train a classifier by using positive and negative training samples extracted from the
confidence regions. The learned classifier is used to label the rest non-confidence regions for
updating segmentation. All these previous methods effectively exploit useful image features
by using label information. However, since they consider all interactions together for finding
the atlas label patches, the number of well-matched atlas label patches is often limited. Thus,
it causes the unreliability of either the trained local classifiers or the identified confidence
region. Moreover, since editing needs to be sequentially conducted region-by-region, users
cannot insert their interactions freely into erroneous regions in the entire image.

B. Contributions

In this paper, we propose a novel editing method, focusing on a reliable estimation of label
information without using complex classifiers or training models. There are three main
contributions. First, we introduce a new label fusion strategy based on user-guided patch
selection and weighted voting for segmentation editing. Since the user-guided constraints are
more intuitive and much clearer than simple image appearance information, the atlas label
patches and their respective voting weights can be more accurately estimated. Second, our
method could consider various local shape variations, even with limited atlas label images,
by separately finding atlas label patches for different interaction combinations. Compared to
our previous method [22] considering all interactions together, the atlas label patches
selected by separate interaction subsets can constrain the abrupt shape changes and also
generate more reliable editing results, as illustrated in Figs. 1(c) and 1(d), respectively.
Finally, since our proposed method does not need any training image information and
expensive learning procedures, it can be easily applied to the editing scenario, when given an
incomplete segmentation along with a set of reference label images. We will validate these
key contributions on three challenging data sets in our experiments.

[l. Multi-atlas based editing

Our proposed editing procedure begins with an initial segmentation obtained by any existing
method, a set of existing atlas label images, and user interactions on erroneous parts. To
receive the user interactions on erroneous parts, we provide an interface, where user can
choose both an appropriate 2D view (among coronal, axial, and sagittal views) and a brush
size for interaction. Intuitively, we assume that the foreground (FG) / background (BG) dots
or short scribbles are inserted into the erroneous regions near the true object boundary.
Specifically, the editing procedure consists of four steps, as described below.
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1. All atlas label images are registered to the previous segmentation L1 for
guiding the segmentation update, where frepresents the editing round and £° is
the initial segmentation. To enrich the reference label set, we respectively
transform each atlas label image to L1 with rigid and affine registrations, and
then use the aligned label images as reference atlas label images. In the
registration, we extracted the 3D surfaces of both the 21 and binary atlas label
images, and then aligned the surface points using the iterative closest point
method [2].

Local interaction combinations (/.e., UZ, for FG combination / Uf{ for BG
combination) are extracted from the FG and BG user interactions, respectively,
where kis the index of combination. For each combination, a region of interest
(ROI) is set as a bounding volume to include the respective interactions with a
small margin. Examples of the combinations and their ROIs are shown in the top
row of Fig. 2.

3. For each combination, the appropriate label patches, which are well-matched
with both the interactions and previous segmentation in the ROI, are searched
from reference label images. The selected patches are averaged to build a local

likelihood map (7.e., PZ,forUZ /?ZforUZ)- Examples of local likelihood maps are
shown in the middle row of Fig. 2.

4, A global likelihood map A'in the entire image is determined by the label fusion
of the previous segmentation and the local likelihood maps with their respective

distance-based weight maps (i.e., W' for LEL/ 17, for P} /W for PL). Noting that
the local likelihood maps become much more accurate near the interactions,
while the previous segmentation is more reliable at a distant voxel vfrom the
interactions, the weight of vis determined by the respective distances to the
interactions. The weight maps are shown in the bottom row of Fig. 2. Finally, the
segmentation is determined by thresholding the likelihood map A

The above four steps are repeated with the inclusion of additional user interactions, if
provided, until the updated segmentation is satisfactory. Note that, when repeating each
editing procedure, all accumulated user interactions are considered to find the atlas label
patches and derive their respective weight maps. The overall editing procedure is described
in Fig. 3. The details of steps 2), 3), and 4) are presented in the following subsections.

A. Extraction of local interaction combinations

In our method, the segmentation is edited using reference atlas label images that are well-
matched with user interactions. If there are many atlas label images well-matched with all
provided user interactions, the segmentation can be edited easily by following the user
guidance. However, unfortunately, in most situations, there are few globally well-matched
atlas label images. Therefore, we separately find the atlas label patches that are well-
matched with various local interaction combinations, and then aggregate them to estimate
the voxel likelihood. Based on the spatial proximity of separate interactions, we extract three
types of local combinations for FG and BG interactions, respectively, as follows: 1)
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individual interaction such as a dot or scribble, 2) pairwise interaction which includes two
individual interactions within a certain distance, and 3) union interaction which includes all
neighboring interactions within a certain distance. The interaction combinations are
extracted not only from the current interactions, but also from the relevant previous
interactions. Specifically, if the previous interactions are located within a certain distance of
the current interactions, the combinations between current and previous interactions would
be extracted. On the other hand, previous interactions, which are distant from all the current
interactions, will not be used in the current editing, since the accurate parts of the updated
segmentation do not need to be changed. The distance for defining the pairwise and union
interactions was determined with respect to applications by considering the object size. For

each A combination, we set the ROI (¢}, for FG or !, for BG) as a bounding volume, which
covers the interaction combination with a small margin to include possible local variations in
the ROI. Since the ROI is set from the annotated voxel positions with a certain margin, its
size depends on the interaction combination.

of reference label patches with respect to user interactions

For each interaction combination, we find reference label patches that are well-matched with
interactions and the previous segmentation 21 in the ROI. Here, the patch size is the same
as the RO size. Since the label images are aligned to 1 without utilizing user interactions
in the initial registration step, the registration might be inaccurate, especially for initial
segmentation with large errors. To address this issue, we borrowed the idea from non-local
patch-based methods [12]. Specifically, we used a novel label-based similarity Sdefined in
Eq. 2 to identify the best well-matched label patch in a local neighborhood of each aligned
atlas label image. In our previous work [32], the label-based similarity Sis defined as:

S= Y 6(M() - U0) 47, Y. 6(M(v) — L (v),

Ut (v)#0 Ut(v)=0 1)

where & is the Kronecker delta, vis a voxel under consideration, Mis an aligned atlas label
image with values 1 and -1 denoting FG and BG voxels, respectively, (/is the user
interaction map at #” iteration with values 1, -1 and 0 denoting FG, BG and unannotated
voxels, respectively, L&1 is the previous segmentation at ¢- 1 iteration with the similar label
definitions as A/, and ¢’ denotes the ROI including all interactions. In Eq. (1), the first term
represents the similarity between an atlas label image and all user interactions, while the
second term represents the similarity between an atlas label image and the previous
segmentation. -y ;/is a parameter used to control the weight between these two terms. Eq. (1)
assumes that a good atlas label patch should be strongly matched with all annotated voxels
primarily in a ROI and also matched with the previous segmentation on unannotated voxels.
To emphasize the importance of a small amount of annotated voxels, -y, was set as a small
value (7.e., smaller than 1). However, since all interactions are considered as strong
constraints jointly in Eq. (1), the number of well-matched atlas label patches is often limited.
Thus, various shape changes cannot be well captured.
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To consider local shape variability with a limited number of label images, we separately find
similar atlas label patches for each interaction combination, instead of all interactions
together. For each interaction combination, we find the atlas label patches 1) tightly matched
with interactions in this combination, 2) moderately matched with other interactions, and 3)
weakly matched with the previous segmentation. Based on this motivation, we modify our

label-based similarity Sy for the 4’ interaction combination U,g(U,g:UZ for FG combination

or 7L =17}, for BG combination) as follows:

Sk=S(M,U)+7,5(M, U%)HUS(M, LY, S(MU)= Y §(M(v)-Ug(v)),
vept Uk (v)#0 (2)

where U}éforUé denote the user interactions in &% combination and the other user
interactions at /7 iteration, respectively. The first, second, and third terms in Eq. (2)
represent the similarity of an aligned atlas label image A/ 1) with the user interactions in the
k" combination, 2) with the other user interactions, and 3) with the previous segmentation,
respectively. y,and y denote parameters for balancing these three terms. In our
experiment, vy, is set as 0.05 to distinguish the strong and moderate constraints for different
user interactions. y,is set as 0.005 to represent the weak constraint from the previous

t
segmentation. The more consistent the aligned atlas label image is with Ui, UE and L5 in
the ROI (!, the higher is the similarity obtained in Eg. (2).

For each reference atlas image, the best matched label patch is determined as the one with

the highest label-based similarity in the local neighborhood. We repeat this procedure for all
reference atlas label images, and then select the 71, patches with the highest similarities.

Finally, the selected label patches are averaged to build a local likelihood map (]3; for FG, or

P, for BG).

C. Label fusion based on user interactions

In the label fusion step, local likelihood maps are aggregated to build a global likelihood
map A for the entire image. Since we emphasize the first term in Eq. (2), the local likelihood
map is more likely to be accurate near the interaction. In contrast, the confidence of the

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Park et al.

Page 8

estimated likelihood for a voxel decreases when its distance from the interactions increases.
(E.g., the likelihood becomes small and fuzzy when it is far from the interactions in Fig. 2.)
In these low-confidence regions, the previous segmentation is more accurate than the
likelihood maps. Therefore, to determine the global likelihood of a voxel, it is natural to
emphasize the contribution of the local likelihood maps near user interactions, while
emphasizing the contribution of the previous segmentation £*Zin distant voxels from
interactions. By considering the distance of each voxel from the interaction and also the

confidences of local likelihood maps (]SZandFZ), Plis defined as:

W ()L (0)+ 53, W (0) P (0)+ 558 T (0) P (v)
W)+ L Wi (0)+ s, W (0) Q)

Pl(v)=

where ngand 1y are the numbers of FG and BG combinations. The weight for the FG

interaction combination WZ(U) is defined as:
2
Wi(v):iexp < <dk(v2) >) ,
\ /nf 20’ (4)

where dj (V) is the shortest distance between a voxel vand the annotated voxels in 7} If dj

(V) is large, W}i (v) decreases and vice versa. o controls how quickly the emphasis shifts
from the local likelihood maps to the previous segmentation as the voxel becomes distant
from the interactions. If o is small, only the region close to the user interactions is affected
by the local likelihood maps, while other regions are affected by the previous segmentation.
On the other hand, if o is large, most voxels are affected by the local likelihood maps. a fis
the weight for the confidence of voxel likelihood. Note that several likelihood maps obtained
by individual or pairwise interaction combinations may be inaccurate due to the strong
constraints for a few annotated voxels. To alleviate this effect, we enforce more weights
when the likelihood map certainly indicates the voxel as FG or BG. For example, when

some local likelihood maps indicate vas BG with low confidence (e.g., FZ:0_2~0,5) and

some local likelihood maps indicate vas FG with high confidence (e.g., 132:0,8N1), we
enforce more weight on the latter local likelihood maps. We set a ras largely greater than 1,

if ]52>0.8; otherwise 1. The weight of the BG combination is similarly defined as:
W, (v):—ab exp | — di(v)”
’ Vb 202 " 5)

where a is greater than 1, if ?2(v)<0,2; otherwise 1. The weight Wf (v) is defined as:
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where B controls the importance of the previous segmentation. If g is small, the result is
more affected by the previous segmentation than the local likelihood maps even for voxels
near the interactions. On the other hand, if B is very large, the previous segmentation is not
considered during label fusion. The weight maps for different o and p are shown in Fig. 4.
Finally, a new segmentation label L{1) is set as FG if A(1) > 0.5, or vis annotated as FG;
otherwise, set as BG.

Our proposed editing method was evaluated on three challenging data sets: 1) prostate data
set [32] including 73 CT images with dimension 512 x 512 x (61~81) voxel® and spacing
0.94 x 0.94 x 3.00 mm3, 2) brainstem data set [33] including 40 head & neck CT images
with spacing approximately 1.0 x 1.0 x (2.5~3.0) mm3 , and 3) hippocampus data set’
including 35 brain MR images with dimension 256 x 256 x 287 voxel? and spacing 1.0 x 1.0
x 1.0 mm? (Fig 5). Although several automatic methods [17, 33-35] have been proposed to
address these segmentation problems, inaccurate results were often obtained due to low
tissue contrast and large shape and appearance variations. To evaluate editing performances,
we first used one of the state-of-the-art automatic methods to generate the initial
segmentation, and then applied our editing method to the half of the results with the largest
errors. Specifically, for the prostate data set, we randomly divided the data set into four
subsets, and then conducted the regression-based segmentation method [34] using four-fold
cross validation. Finally, we chose 37 images with the lowest Dice similarity coefficient
(DSC) scores. Similarly, for the brainstem data set, we applied the learning-based multi-
source integration framework [5] using leave-one-out validation, and then chose 20 images
with the worst segmentations. For the hippocampus data set, we applied the joint label
fusion method [17] using leave-one-out validation, and then chose 18 images with the worst
segmentations. Next, we conducted our editing method with user interactions, inserted in the
erroneous parts of selected images. The details of the experimental setting and results are
presented in the following subsections.

A. Experimental setting

For each of the selected prostate, brainstem, and hippocampus images, the average numbers
of 14, 30, and 9 dots were interactively inserted, respectively, depending on the amount of
segmentation errors. We first found a reasonable interaction distance value for defining
pairwise and union combinations. If the interaction distance value is very small, only
individual interactions are used, thus, losing useful middle-level priors, such as those shown
in the last two columns of Fig. 2. On the other hand, if the interaction distance value is very
large, many distant interactions are considered together. Thus, some irrational atlas label

1https://masi.vuse.vanderbiIt.edu/workshop2013/index.php/Main_Page
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images (well-matched with all combined interactions) cannot well-capture local shape
variations. In our experiment, the interaction distance value was empirically set as 40 for the
prostate and brainstem due to their relatively large sizes, while 15 for the hippocampus. With
these interaction distance values, the average numbers of 48, 111, and 19 interaction
combinations were extracted. Since the margin size was also related to the object size, we set
the margin as one third of the interaction distance (/.e., 13 for prostate and brainstem, and 5
for hippocampus) so that local variations near interactions could be covered in the ROI.
Since the voxel spacing was triple in the zdirection than that in the x- and y~directions for
both the prostate and brainstem data sets, the margin sizes were finally set as 13 x 13 x 4
voxel3. On the other hand, the margin size of the hippocampus was set as 5 x 5 x 5 voxel3
because of isotropic image resolution. The rest of the parameters were determined by cross
validation. For example, the patch search range is used to compensate for the error of initial
alignment. In the validation, the errors of initial alignment usually did not exceed 8 voxels in
each direction for the prostate and brainstem, and 4 voxels for the hippocampus. Thus, the
patch search range was set accordingly as 8 x 8 x 8 voxel® for the prostate and brainstem,
and 4 x 4 x 4 voxel® for the hippocampus. The parameters o and p as the fusion weights
need to be determined with respect to the margin size as shown in Fig. 4. We tested the
performances with different o and B values ranged from a quarter to three quarters of the
margin size. With different values, the performances could change less than the DSC of
0.007 and the ASD of 0.08mm for the prostate, the DSC of 0.01 and the ASD of 0.15mm for
the brainstem, and the DSC of 0.003 and the ASD of 0.01mm for the hippocampus,
respectively. Finally, we set o and B as a half of a margin size and three quarters of a margin
size, respectively. Since the remaining parameters 71, a rand a, did not significantly affect
the performance, the same values such as 7, 5, and 5, respectively, were used for all
experiments. The details are presented in Table 1.

To show the sensitivity of our method to the margin size, we evaluated our method using the
above setting, but with different margin sizes: 9x9x3, 13x13x4, 15x15x5, 18 x 18 x 6
voxel® for the prostate and brainstem, and 3 x 3 x 3, 5x5x5, 7x7x7, 9x9x9 voxel® for the
hippocampus. Even with these different margin sizes, the performance changed less than the
DSC of 0.005 and the ASD of 0.05mm for the prostate, the DSC of 0.005 and the ASD of
0.09mm for the brainstem, and the DSC of 0.002 and the ASD of 0.007mm for the
hippocampus, respectively.

B. Segmentation performance

Under the same user interactions, our method that uses interaction combinations and
weighted voting (namely /CWV) was compared with 1) initial automatic segmentation, 2) a
manual editing method, 3) a label fusion method using all interactions in the entire image
(namely LFG) for finding the atlas label patches, 4) a label fusion method using all
interactions in each local region (namely LFL) for finding the atlas label patches, 5) a
method using the structured patch model (namely SPM) [1], and 6) a method using
interaction combinations, but with majority voting for label fusion (namely /CMV).
Specifically, in the manual editing method, only the labels annotated by users are changed,
which is used to estimate the amount of user interactions provided. Except for the manual
editing method, the atlas label images are used for all other editing methods. In the LFG
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method, the labels well-matched with all interactions in the entire image are found with the
label-based similarity as defined in Eq. (1). The segmentation is then updated using majority
voting on the selected atlas label images. In the LFL and SPM methods, the atlas label
patches well-matched with all interactions in each local region are found with respect to Eq.
(1). Then, the segmentation is updated by majority voting of the selected atlas label patches
in the LFL method, and updated by MRF optimization based on the local classifiers [1] in
the SPM method. For these two methods, all interactions are divided into multiple
interactions by region, and then the editing is conducted sequentially. In the ICMV method,
interaction combinations are used for the atlas label patch selection similarly as the proposed
method, but the final segmentation is obtained by equally weighting all local likelihood
maps.

For evaluation, we used the Dice Similarity Coefficient (DSC) and the average surface
distance (ASD) between the respective segmentation result £and the manual ground-truth
M9. The DSC is computed to measure the overlapping degree: (2 x |L7N AE)/(|LT + | M#).
The ASD is computed by averaging all the symmetric pair-wise closest distances between
the surface of £7and the surface of M9. The DSC and ASD were measured both in the entire
image and the ROI region, because the erroneous regions could be small compared to the
entire image. Table 2 and Table 3 show the average and standard deviation of DSC and ASD
scores, respectively, for all comparison methods using the aligned atlas label images. Also,
the boxplots in Figure 6 show the distributions of DSC and ASD scores. The gain of the
manual method was only the DSC of 0.005-0.026 and the ASD of 0.029-1.12mm due to the
small amount of user interactions. On the other hand, the methods using existing reference
labels gave significantly improved scores, 7.e., DSC of 0.01-0.13 and the ASD of 0.043-
1.48mm for most cases except the LFG method in the hippocampus data set. Since the
hippocampus has a non-convex shape with local variations, the number of label images well-
matched with all interactions was very limited. Thus, inaccurate label images, which were
often selected, worsened the results (see the last row of Fig. 7 (c)). On the other hand, the
LFL and SPM methods had better performances by dividing all user interactions into local
parts for finding the well-matched atlas label patches. However, the LFL method could not
capture the shape variations near the object boundary due to the limited number of atlas
label patches that are tightly matched with all interactions in the ROI. Moreover, since the
initial segmentation was not used for computing the likelihood map, the correct parts far
from the interactions could be worse by voting from inaccurate label patches. The SPM
method has similar problems, due to the patch localization errors and also the low intensity
contrast between FG and BG, even though it utilizes the image appearance information. The
ICMV method outperformed both the LFL and SPM methods in terms of accuracy, by
finding well-matched atlas label patches for multiple interaction combinations. Nonetheless,
since several inaccurate local likelihoods, obtained by the individual or pairwise interactions
far from the current voxel, can equally contribute to the final label prediction, large standard
deviations were obtained compared to our ICWYV method. On the other hand, our ICWV
method outperformed all other editing methods, in most cases, for both accuracy and
robustness (small standard deviation) by using the distance-based fusion weight.

Compared to the other comparison methods, our ICWYV method obtained 1-5% DSC gains.
Since the erroneous parts are often much smaller than the entire target object, it may look
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small. However, in clinical application, segmentation improvement for these local errors can
be meaningful. For example, hippocampus subfields have recently drawn a lot of attention
due to their important role in several neuropsychiatric diseases [36]. The local error can
significantly affect the calculation of subfield volume, since its annual change (due to
disease) could be as small as 1%. In terms of the prostate, the segmentation is often
conducted for radiotherapy [37]. During radiotherapy, high energy X-rays should be
accurately delivered to the prostate. Thus, the local error could lead to overdose on nearby
healthy tissues, such as the bladder and rectum, since the boundaries of pelvic organs usually
touch together.

The qualitative results of comparison methods are described in Fig. 7. Although the LFG,
LFL, SPM methods corrected major errors, their correction results still included errors, due
to the limited number of well-matched atlas labels. Since the incomplete intermediate result
was used for the editing procedure, the errors may have accumulated as the editing
procedure was repeated. On the other hand, the segmentation obtained by our proposed
ICWYV method accurately followed the true object boundary near the user interactions, and
also constrained the irregular shape changes in the regions far from the user interactions.

C. Performance for repetitive editing

For the experiments in Sec. 111-B, we used all user interactions inserted on erroneous parts in
the entire image to perform the segmentation editing. After the first round of editing, the
DSC scores of most cases were higher than some inter-rater DSC scores reported in the
literature [38-40], and also had no notable qualitative errors. Thus, we usually performed
only the first round of editing in this study. However, in a few cases, there were still large
errors, especially when the initial segmentation was too bad. Since the atlas label images
were initially aligned to the target image based on the initial automatic segmentation, the
registration could be inaccurate if the initial automatic segmentation included large errors. In
such case, a single round of editing is often insufficient to correct all the segmentation
errors, which makes it necessary to repeat the editing steps until obtaining satisfactory
results. To demonstrate the effectiveness of our repetitive editing procedure, we selected the
5 worst subjects among 20 brainstem results after the first round of editing, and then
conducted the second round of editing with some additional user interactions. Table 4 shows
the experimental setting and performances for the five subjects. Since the initial
segmentation included relatively large erroneous parts, many user interactions (/.e., 24 dots
on average) were inserted in the first round of editing. Accordingly, the performance was
significantly improved with a DSC of >0.25 and an ASD of 2.7mm. Since most of the errors
were edited during the first round of editing, much less interactions (/.e., 7 dots on average)
were inserted in the second round editing. The performance improved again with a DSC of
>0.15 and an ASD of 0.43mm. Since the number of interaction combinations was much
reduced in the second round of editing, the computational time was also reduced (five times
less than that of the first round of editing).

A typical example for the repetitive editing procedure is given in Fig. 8. In this example, the
large error occurred in the upper part of the initial segmentation. Thus, there was a lack of
good atlas label images that could cover the large shape change, even though the atlas label
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patches were searched within the local neighborhood. As a result, the intermediate result still
included the error on the upper part (Fig. 8(c)). In the next round of editing, we inserted
additional user dots, further re-aligned all atlas label images to the intermediate result, and
also refined the result with additional interaction combinations near the dots. Since the
aligned atlas label images were much more reliable in the second round than in the first
round, the possible shape changes for the erroneous part could be covered in the search
range of the second round. This allowed the segmentation to be more accurately updated.

D. Validation of label-based registration

The appearance information of the reference image was not used in our editing procedure.
Thus, our method can freely use the data sets open to the public or obtained from other
modalities as the reference label atlases; which makes our method more useful, especially
when only a few reference images with the same modality are available. In addition, the
label-based registration usually gave comparable accuracy and less computational
complexity than the deformable registration in the editing procedure since the image
appearance information was sufficiently considered when the initial segmentations were
generated by the state-of-the-art methods [17, 34, 41]. To demonstrate it, we selected the
best, median, and worst initial segmentations from each data set, and then conducted our
editing method using the reference atlas label images aligned by the ICP registration [2] and
the MRF-based deformable registration [4], respectively. The ICP registration is based on
labels, while the MRF-based deformable registration is based on image intensities. We
measured the DSC scores of the aligned atlas label images with respect to the ground-truth
label. The top ten DSC scores were averaged to assess the registration accuracy. We also
calculated the final DSC scores using those aligned atlas label images for comparison. Table
5 shows these DSC scores. For both the prostate and brainstem, the initial segmentation
gives better guidance than the intensity-based deformable registration since intensity based
appearance is ambiguous. Moreover, as the segmentation is improved after the first round of
editing, more reliable atlas label images can be obtained in the second round by aligning the
atlases to the updated segmentation. On the other hand, the deformable registration is better
for the hippocampus, due to its relatively stable position in the brain image. However, in
terms of final segmentation accuracy, both registration methods obtain a similar performance
as shown in the right two columns of Table 5. This is because we locally search for the
similar label patches within a neighborhood, which could overcome a certain amount of
registration errors. Therefore, the label-based registration was more efficient in the editing
procedure.

E. Computational time

The experiments were performed on a PC with a 3.5 GHz Intel quad-core i7 CPU, and 16GB
of RAM. The total computational time depended on the number of reference atlas label
images, the number of interaction combinations, the ROl margin size, and the search range
size. In our experimental settings, the computational time of the first round of editing took
1.5-7 minutes, 2-18 minutes, and 50-80 seconds for the prostate, brainstem, and
hippocampus data sets, respectively. Since the editing is conducted with all interactions in
the image, our method is unable to promptly produce the intermediate results, like the
existing interactive methods [1, 32]. However, the accuracy of our method is much higher
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than those of the existing methods under the same amount of user interactions. Thus, the
total editing time to obtain satisfactory segmentation can be reduced by our method.
Specifically, our method allows the batch processing after receiving user interactions for all
the erroneous parts. Thus, it will be effective for a scenario in which the incomplete
segmentation results need to be edited for multiple images, which is often needed for shape
analysis, longitudinal studies, and image-guided surgery. During the second round of
editing, the computational time was greatly reduced, compared to the first round (Table 4).
As the number of interactions is reduced at the fine-level editing steps, the computational
time is further reduced.

V. Conclusion

We have proposed a novel multi-atlas based segmentation editing method with interaction-
guided constraints to find the appropriate atlas label patches and also derive their respective
voting weights. Our proposed method can generate robust segmentation editing results
without requiring image information and the expensive learning procedures, even in
challenging regions. For all three challenging data sets, our method outperformed the other
existing editing methods. We expect that our method can help produce accurate
segmentations of a large number of 3D medical images, especially for difficult cases that
failed in existing automatic methods. Although the simple appearance based deformable
registration could not give an improvement in our method, the appearance information can
be a useful cue for editing. In the future, we will consider using machine learning
techniques, such as [32], to exploit the informative features and then use them for either
registration or similarity calculation. Furthermore, we believe that our method can be easily
extended to multi-label segmentation editing. Specially, all steps in our method, such as the
patch selection step with Eq. (2) and the label fusion step with Eq. (3), can be similarly
applied to multiple labels by grouping all labels (except a target label) as background.
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(a) Test (b) Graph Cut (c) Majority voting (d) Proposed

Fig. 1.
Segmentation editing results for three methods: (b) graph cut, (c) majority voting, and (d)

proposed method. A test image is shown in the top of (a), and its initial segmentation
(green), ground-truth boundary (white line), and user interactions (blue/red dots) are shown
in the bottom of (a). Likelihood maps and editing results (green) obtained by three methods
are shown in the top and bottom of (b), (c), and (d), respectively. Note that, for the graph cut
method (b), the foreground (FG) intensity histogram is constructed from both the FG region
of initial segmentation and the voxels annotated as FG. Similarly, the background (BG)
histogram is constructed from both the BG region of initial segmentation and the voxels
annotated as BG.
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Fig. 2.
Interaction combinations and their ROIs (top row), local likelihood maps (middle row), and

weight maps (bottom row), obtained from the user interactions shown in Fig. 1(a). The
initial segmentation, ground-truth boundary, FG/BG interactions, and ROIs are shown as
green, white line, red/blue dots, and red box, respectively. The global likelihood map in Fig.
1(d) is obtained by label fusion of Lt1 and the local likelihood maps with the weights.
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(b) 7=35 (¢) o =7 (d) ¢ =105

(e) =5 (f) =10 (g) B=15

Fig. 4.
The voting weight maps for different @ and p. The graph of exponential functions with

different o is shown in (a). For the three different values of o, their respective weight maps
are obtained with respect to the distance dy(v) to the user interactions (blue dots) and are
shown in (b), (c), and (d), respectively. For three different values of B, their respective

weight maps Wi are obtained and shown in (e), (f), and (g), respectively, when using @ = 7.
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(a) (b) (©)

Fig. 5.
Example of 2D (top) and 3D (bottom) views for (a) prostate, (b) brainstem, and (c)

hippocampus data sets. White line represents the target object boundary.
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The distributions of DSC and ASD scores in the ROI region and in the entire image,
respectively. (a) and (b), (c) and (d), and (e) and (f) represent the results for prostate,
brainstem, and hippocampus data sets, respectively. The top, center, and bottom of each box
represent the upper quartile, median, and lower quartile scores, respectively, and the
whiskers connected to each box represent the maximum and minimum scores, respectively.
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(b) Initial + UI  (c) LFG (d) LFL (e) SPM () ICWV

Fig. 7.
Segmentation editing results by LFG, LFL, SPM [1], and ICWV methods (from 3rd to 6th

columns). The first column shows the original images, while the 2nd column shows the
initial segmentations along with manual interactions. The segmentation results, ground-truth
labels, and FG / BG user interactions (Ul) are shown as green, white lines, and red / blue
dots, respectively. The first two, middle two, and last two rows show the typical slices for 3D
prostate, brainstem, and hippocampus images, respectively.
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(b) (c) (d) (e)

Fig. 8.

Tt?e procedure of brainstem segmentation update with respect to the repetitive user
interactions. (a) Initial segmentation with large errors, (b) initial segmentation with user
interactions, (c) intermediate segmentation result based on the interactions shown in (b), (d)
intermediate result with some additional user interactions, (e) updated segmentation result
based on the interactions shown in (d), and (f) ground-truth segmentation. The red / blue
dots represent the FG / BG interactions. Three different views in 3D space are shown in the
top, middle, and bottom rows.
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