27 research outputs found

    Propositional computability logic I

    Full text link
    In the same sense as classical logic is a formal theory of truth, the recently initiated approach called computability logic is a formal theory of computability. It understands (interactive) computational problems as games played by a machine against the environment, their computability as existence of a machine that always wins the game, logical operators as operations on computational problems, and validity of a logical formula as being a scheme of "always computable" problems. The present contribution gives a detailed exposition of a soundness and completeness proof for an axiomatization of one of the most basic fragments of computability logic. The logical vocabulary of this fragment contains operators for the so called parallel and choice operations, and its atoms represent elementary problems, i.e. predicates in the standard sense. This article is self-contained as it explains all relevant concepts. While not technically necessary, however, familiarity with the foundational paper "Introduction to computability logic" [Annals of Pure and Applied Logic 123 (2003), pp.1-99] would greatly help the reader in understanding the philosophy, underlying motivations, potential and utility of computability logic, -- the context that determines the value of the present results. Online introduction to the subject is available at http://www.cis.upenn.edu/~giorgi/cl.html and http://www.csc.villanova.edu/~japaridz/CL/gsoll.html .Comment: To appear in ACM Transactions on Computational Logi

    The Computational Complexity of Propositional Cirquent Calculus

    Full text link
    Introduced in 2006 by Japaridze, cirquent calculus is a refinement of sequent calculus. The advent of cirquent calculus arose from the need for a deductive system with a more explicit ability to reason about resources. Unlike the more traditional proof-theoretic approaches that manipulate tree-like objects (formulas, sequents, etc.), cirquent calculus is based on circuit-style structures called cirquents, in which different "peer" (sibling, cousin, etc.) substructures may share components. It is this resource sharing mechanism to which cirquent calculus owes its novelty (and its virtues). From its inception, cirquent calculus has been paired with an abstract resource semantics. This semantics allows for reasoning about the interaction between a resource provider and a resource user, where resources are understood in the their most general and intuitive sense. Interpreting resources in a more restricted computational sense has made cirquent calculus instrumental in axiomatizing various fundamental fragments of Computability Logic, a formal theory of (interactive) computability. The so-called "classical" rules of cirquent calculus, in the absence of the particularly troublesome contraction rule, produce a sound and complete system CL5 for Computability Logic. In this paper, we investigate the computational complexity of CL5, showing it is Σ2p\Sigma_2^p-complete. We also show that CL5 without the duplication rule has polynomial size proofs and is NP-complete

    A new face of the branching recurrence of computability logic

    Get PDF
    This letter introduces a new, substantially simplified version of the branching recurrence operation of computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html), and proves its equivalence to the old, "canonical" version

    Intuitionistic computability logic

    Get PDF
    Computability logic (CL) is a systematic formal theory of computational tasks and resources, which, in a sense, can be seen as a semantics-based alternative to (the syntactically introduced) linear logic. With its expressive and flexible language, where formulas represent computational problems and "truth" is understood as algorithmic solvability, CL potentially offers a comprehensive logical basis for constructive applied theories and computing systems inherently requiring constructive and computationally meaningful underlying logics. Among the best known constructivistic logics is Heyting's intuitionistic calculus INT, whose language can be seen as a special fragment of that of CL. The constructivistic philosophy of INT, however, has never really found an intuitively convincing and mathematically strict semantical justification. CL has good claims to provide such a justification and hence a materialization of Kolmogorov's known thesis "INT = logic of problems". The present paper contains a soundness proof for INT with respect to the CL semantics. A comprehensive online source on CL is available at http://www.cis.upenn.edu/~giorgi/cl.htm

    The logic of interactive Turing reduction

    Full text link
    The paper gives a soundness and completeness proof for the implicative fragment of intuitionistic calculus with respect to the semantics of computability logic, which understands intuitionistic implication as interactive algorithmic reduction. This concept -- more precisely, the associated concept of reducibility -- is a generalization of Turing reducibility from the traditional, input/output sorts of problems to computational tasks of arbitrary degrees of interactivity. See http://www.cis.upenn.edu/~giorgi/cl.html for a comprehensive online source on computability logic
    corecore