194 research outputs found

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    Propositional calculus for adjointness lattices

    Get PDF
    Recently, Morsi has developed a complete syntax for the class of all adjointness algebras (L,≤,A,K,H)\left( L,\leq ,A,K,H\right) . There, (L,≤)\left( L,\leq \right) is a partially ordered set with top element 11, KK is a conjunction on (L,≤)\left( L,\leq \right) for which 11 is a left identity element, and the two implication-like binary operations AA and HH on LL are adjoints of KK. In this paper, we extend that formal system to one for the class ADJLADJL of all 9-tuples (L,≤,1,0,A,K,H,∧,∨)\left( L,\leq ,1,0,A,K,H,\wedge ,\vee \right) , called \emph{% adjointness lattices}; in each of which (L,≤,1,0,∧,∨)\left( L,\leq ,1,0,\wedge ,\vee \right) is a bounded lattice, and (L,≤,A,K,H)\left( L,\leq ,A,K,H\right) is an adjointness algebra. We call it \emph{Propositional Calculus for Adjointness Lattices}, abbreviated AdjLPCAdjLPC. Our axiom scheme for AdjLPCAdjLPC features four inference rules and thirteen axioms. We deduce enough theorems and inferences in AdjLPCAdjLPC to establish its completeness for ADJLADJL; by means of a quotient-algebra structure (a Lindenbaum type of algebra). We study two negation-like unary operations in an adjointness lattice, defined by means of 00 together with AA and HH. We end by developing complete syntax for all adjointness lattices whose implications are SS-type implications

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    From IF to BI: a tale of dependence and separation

    Full text link
    We take a fresh look at the logics of informational dependence and independence of Hintikka and Sandu and Vaananen, and their compositional semantics due to Hodges. We show how Hodges' semantics can be seen as a special case of a general construction, which provides a context for a useful completeness theorem with respect to a wider class of models. We shed some new light on each aspect of the logic. We show that the natural propositional logic carried by the semantics is the logic of Bunched Implications due to Pym and O'Hearn, which combines intuitionistic and multiplicative connectives. This introduces several new connectives not previously considered in logics of informational dependence, but which we show play a very natural role, most notably intuitionistic implication. As regards the quantifiers, we show that their interpretation in the Hodges semantics is forced, in that they are the image under the general construction of the usual Tarski semantics; this implies that they are adjoints to substitution, and hence uniquely determined. As for the dependence predicate, we show that this is definable from a simpler predicate, of constancy or dependence on nothing. This makes essential use of the intuitionistic implication. The Armstrong axioms for functional dependence are then recovered as a standard set of axioms for intuitionistic implication. We also prove a full abstraction result in the style of Hodges, in which the intuitionistic implication plays a very natural r\^ole.Comment: 28 pages, journal versio

    G\"odel's Notre Dame Course

    Full text link
    This is a companion to a paper by the authors entitled "G\"odel's natural deduction", which presented and made comments about the natural deduction system in G\"odel's unpublished notes for the elementary logic course he gave at the University of Notre Dame in 1939. In that earlier paper, which was itself a companion to a paper that examined the links between some philosophical views ascribed to G\"odel and general proof theory, one can find a brief summary of G\"odel's notes for the Notre Dame course. In order to put the earlier paper in proper perspective, a more complete summary of these interesting notes, with comments concerning them, is given here.Comment: 18 pages. minor additions, arXiv admin note: text overlap with arXiv:1604.0307
    • …
    corecore