23 research outputs found

    A Rational and Efficient Algorithm for View Revision in Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In this paper, we argue that to apply rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first of all, it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented, along with the concept of a generalized revision algorithm for Horn knowledge bases. We show that Horn knowledge base dynamics has interesting connection with kernel change and abduction. Finally, we also show that both variants are rational in the sense that they satisfy certain rationality postulates stemming from philosophical works on belief dynamics

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515

    Towards Closed World Reasoning in Dynamic Open Worlds (Extended Version)

    Full text link
    The need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantics for hybrid knowledge bases composed of both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules. These semantics have matured over the years, but only provide solutions for the static case when knowledge does not need to evolve. In this paper we take a first step towards addressing the dynamics of hybrid knowledge bases. We focus on knowledge updates and, considering the state of the art of belief update, ontology update and rule update, we show that current solutions are only partial and difficult to combine. Then we extend the existing work on ABox updates with rules, provide a semantics for such evolving hybrid knowledge bases and study its basic properties. To the best of our knowledge, this is the first time that an update operator is proposed for hybrid knowledge bases.Comment: 40 pages; an extended version of the article published in Theory and Practice of Logic Programming, 10 (4-6): 547 - 564, July. Copyright 2010 Cambridge University Pres

    Approximate Compliance Checking for Annotated Process Models

    Get PDF
    We describe a method for validating whether the states reached by a process are compliant with a set of constraints. This serves to (i) check the compliance of a new or altered process against the constraints base, and (ii) check the whole process repository against a changed constraints base, e.g., when new regulations come into being. For these purposes we formalize a particular class of compliance rules as well as annotated process models, the latter by combining a notion from the workflow literature with a notion from the AI actions and change literature. The compliance rules in turn pose restrictions on the desirable states. Each rule takes the form of a clausal constraint, i.e., a disjunction of literals. If for a given state there is a grounded clause none of whose literals are true, then the constraint is violated and indicates non-compliance. Checking whether a process is compliant with the rules involves enumerating all reachable states and is in general a hard search problem. Since long waiting times during process modelling are undesirable, it is important to explore restricted classes and approximate methods. We present a polynomial-time algorithm that, for a particular class of processes, computes the sets of literals that are necessarily true at particular points during process execution. Based on this information, we devise two approximate compliance checking methods. One of these is sound but not complete (it guarantees to find only non-compliance instances, but not to find all non-compliance instances); the other method is complete but not sound. We sketch how one can trace the state evolution back to the process activities which caused the (potential) non-compliance, and hence provide the user with some error diagnosis

    Four Approaches to Supposition

    Get PDF
    The primary purpose of this paper is to shed light on the structure of four varieties of normative theories of supposition by systematically explicating the relationships between canonical representatives of each. These include qualitative and quantitative theories of indicative and subjunctive supposition. We approach this project by treating supposition as a form of 'provisional belief revision' in which a person temporarily accepts the supposition as true and makes some appropriate changes to her other opinions so as to accommodate their supposition. The idea is that suppositional judgments are supposed to reflect an agent's judgments about how things would be in some hypothetical state of affairs satisfying the supposition. Accordingly, our representative qualitative theories of indicative and subjunctive supposition are respectively based on AGM revision and KM update, while our representative quantitative ones are provided by conditionalization and imaging. We rely on a suitably adapted version of the Lockean thesis to generate qualitative judgments based on our representative quantitative theories. Ultimately, a number of new results are established that vindicate the often repeated claim that conditionalization is a probabilistic version of revision, while imaging is a probabilistic version of update

    A Knowledge Compilation Map

    Full text link
    We propose a perspective on knowledge compilation which calls for analyzing different compilation approaches according to two key dimensions: the succinctness of the target compilation language, and the class of queries and transformations that the language supports in polytime. We then provide a knowledge compilation map, which analyzes a large number of existing target compilation languages according to their succinctness and their polytime transformations and queries. We argue that such analysis is necessary for placing new compilation approaches within the context of existing ones. We also go beyond classical, flat target compilation languages based on CNF and DNF, and consider a richer, nested class based on directed acyclic graphs (such as OBDDs), which we show to include a relatively large number of target compilation languages
    corecore