382 research outputs found

    State and disturbance estimation of a linear systems using proportional integral observer

    Get PDF
    This paper offers a short survey of linear systems Proportional-Integral-Observer design. This observer has the capacity to estimate simultaneously the states and unknown inputs which include disturbances or model uncertainties appearing on the system. The design of state and output estimation using PO and state, output and disturbance estimation using PIO is done using Matlab/Simulink successfully. The simulation is done for estimating using PO and PIO and the results proved that estimates the state variables and output correctly when there is no disturbance in the plant and there is a constant steady-state error in estimation after leading a constant disturbance into the plant for both state variables and plant output for the Proportional Observer and there is ability to estimate state variables, disturbance and system output correctly with or without the disturbance in plant for the Proportional Integral Observer

    Neural Network Control for the Probe Landing Based on Proportional Integral Observer

    Get PDF
    For the probe descending and landing safely, a neural network control method based on proportional integral observer (PIO) is proposed. First, the dynamics equation of the probe under the landing site coordinate system is deduced and the nominal trajectory meeting the constraints in advance on three axes is preplanned. Then the PIO designed by using LMI technique is employed in the control law to compensate the effect of the disturbance. At last, the neural network control algorithm is used to guarantee the double zero control of the probe and ensure the probe can land safely. An illustrative design example is employed to demonstrate the effectiveness of the proposed control approach

    Chaos-based communication scheme using proportional and proportional-integral observers

    Get PDF
    In this paper, we propose a new chaos-based communication scheme using the observers. The novelty lies in the masking procedure that is employed to hide the confidential information using the chaotic oscillator. We use a combination of the addition and inclusion methods to mask the information. The performance of two observers, the proportional observer (P-observer) and the proportional integral observer (PI-observer) is compared that are employed as receivers for the proposed communication scheme. We show that the P-observer is not suitable scheme since it imposes unpractical constraints on the messages to be transmitted. On the other hand, we show that the PI-observer is the better solution because it allows greater flexibility in choosing the gains of the observer and does not impose any unpractical restrictions on the message

    Robust Nonlinear Control Design with Proportional-Integral-Observer Technique

    Get PDF
    In this thesis, the motivation is explained in the introduction part based on a review of the development of observer technique especially the Proportional-Integral-Observer (PI-Observer) technique and an analysis of robust control for nonlinear systems. After that, the goals of the work are set as: improvement of the high gain PI-Observer design in the way that the high observer gains of PI-Observer can be automatically chosen and fit the current situation; and the application of PI-Observer in robust nonlinear control for nonlinear systems with unknown effects. To the first point, the high-gain PI-Observer design is systematically discussed and the online adjustment of the PI-Observer gains proposed as an advanced PI-Observer (API-Observer) is detailed. At the same time, the implementation of the addressed adjustment algorithm is included showing the adaption of the PI-Observer gains to the current situation of system dynamics and disturbances on a practical system with simulation results and real measurements respectively. To the other aspect, a high gain PI-Observer-based nonlinear control method is proposed as a combination of the PI-Observer and the classical exact feedback linearization method (EFL-PIO) and directly after it the applicability on mechanical systems is surveyed. Numerical examples of mechanical systems are given to illustrate the application of the EFL-PIO approach. At last, the implementation of the proposed PI-Observer-based nonlinear control method is illustrated in detail on a hydraulic cylinder system for its position control. Besides that, the position control for the cylinder system without direct position measurement is realized with the PI-Observer applied as virtual sensor. Here a discrete-time control algorithm is also designed and programmed to satisfy the normal industrial requirement. At last, a broader application of the robust EFL-PIO approach, a more efficient and compact numerical realization of the adaption algorithm for the API-Observer, and an API-Observer-based robust control or fault detection are suggested as future work

    Actuator and sensor fault estimation based on a proportional-integral quasi-LPV observer with inexact scheduling parameters

    Get PDF
    © 2019. ElsevierThis paper presents a method for actuator and sensor fault estimation based on a proportional-integral observer (PIO) for a class of nonlinear system described by a polytopic quasi-linear parameter varying (qLPV) mathematical model. Contrarily to the traditional approach, which considers measurable or unmeasurable scheduling parameters, this work proposes a methodology that considers inexact scheduling parameters. This condition is present in many physical systems where the scheduling parameters can be affected by noise, offsets, calibration errors, and other factors that have a negative impact on the measurements. A H8 performance criterion is considered in the design in order to guarantee robustness against sensor noise, disturbance, and inexact scheduling parameters. Then, a set of linear matrix inequalities (LMIs) is derived by the use of a quadratic Lyapunov function. The solution of the LMI guarantees asymptotic stability of the PIO. Finally, the performance and applicability of the proposed method are illustrated through a numerical experiment in a nonlinear system.Peer ReviewedPostprint (author's final draft

    Continuous-Time Switched H∞ Proportional-Integral observer: Application for sideslip and road bank angles estimation

    No full text
    International audience— In this work, a Continuous-Time Switched H ∞ Proportional-Integral (CTSH ∞ PI) observer is presented. The estimation method is based on a proportional-integral observer introduced by [13], [11], [12]. The estimation method is used to estimate simultaneously the state variables and unknown inputs of switched systems. A design method is established using a common Lyapunov function and H ∞ norm. Its stability and global convergence conditions are proved and expressed in term of LMIs. All conditions are established under given switching signals. The estimation method is applied in vehicle dynamics to estimate simultaneously the vehicle sideslip angle and road bank angle. Moreover, the switching signal is deduced from measured premise variables. Simulation tests with experimental data are included to demonstrate the advantage of this method

    PI robust fault detection observer for a class of uncertain switched systems using LMIs

    No full text
    International audienceThis paper addresses a method for robust fault detection and estimation by minimizing the disturbance and uncertainties to residual sensitivity. It consists in the design of proportional integral observer while minimizing the well known H ∞ norm for worst case uncertainties and disturbance attenuation, and combining a transient response specification. This multi-objective problem is formulated as linear matrix inequalities (LMI) feasibility problem in which a cost function is minimized subject to LMI constraints. This approach is employed to generate a set of robust observers for uncertain switched systems

    Driver torque estimation in Electric Power Steering system using an H ∞ /H 2 Proportional Integral Observer

    No full text
    International audienceThis paper deals with the design of a Proportional Integral (PI) observer to estimate the driver torque in an Electric Power Steering (EPS) system. The PI observer is obtained by solving a multi-objective optimization problem: it should both be barely sensitive to road disturbances and sensor noise, and converge swiftly. The performance of the proposed observer is illustrated by simulation results using experimental data

    New Tuning Approach of Fuzzy Logic System Using Proportional Integral Observer for Tracking a Nonlinear System

    Get PDF
    Proportional integral observer (PIO) for tracking a nonlinear method has a lower sentiency to cipher the state and output variables. So a more nonlinear controller has to be else to control to activity. In this paper, a fuzzy logic (FLC) controller has been added to the PIO to meliorate the calculation transmute. A fuzzy proportional integral observer (FPIO) for following a nonlinear system has been premeditated to decimate the susceptibleness to cipher the tell and turnout variables with the existent posit and product variables. The FPIO controller has been tested for improving the estimation control using a nonlinear quarter vehicle active suspension system with a nonlinear hydraulic actuator. A comparison simulation of the proposed nonlinear system for estimating the state variables and tracking the output (suspension deflection) with a set point bump road disturbance using FPIO and PIO. The comparison simulation result shows that the estimated state variables and system output match the actual ones perfectly using a fuzzy PIO controller
    corecore