2,560 research outputs found

    Binarized support vector machines

    Get PDF
    The widely used Support Vector Machine (SVM) method has shown to yield very good results in Supervised Classification problems. Other methods such as Classification Trees have become more popular among practitioners than SVM thanks to their interpretability, which is an important issue in Data Mining. In this work, we propose an SVM-based method that automatically detects the most important predictor variables, and the role they play in the classifier. In particular, the proposed method is able to detect those values and intervals which are critical for the classification. The method involves the optimization of a Linear Programming problem, with a large number of decision variables. The numerical experience reported shows that a rather direct use of the standard Column-Generation strategy leads to a classification method which, in terms of classification ability, is competitive against the standard linear SVM and Classification Trees. Moreover, the proposed method is robust, i.e., it is stable in the presence of outliers and invariant to change of scale or measurement units of the predictor variables. When the complexity of the classifier is an important issue, a wrapper feature selection method is applied, yielding simpler, still competitive, classifiers

    Learning understandable classifier models.

    Get PDF
    The topic of this dissertation is the automation of the process of extracting understandable patterns and rules from data. An unprecedented amount of data is available to anyone with a computer connected to the Internet. The disciplines of Data Mining and Machine Learning have emerged over the last two decades to face this challenge. This has led to the development of many tools and methods. These tools often produce models that make very accurate predictions about previously unseen data. However, models built by the most accurate methods are usually hard to understand or interpret by humans. In consequence, they deliver only decisions, and are short of any explanations. Hence they do not directly lead to the acquisition of new knowledge. This dissertation contributes to bridging the gap between the accurate opaque models and those less accurate but more transparent for humans. This dissertation first defines the problem of learning from data. It surveys the state-of-the-art methods for supervised learning of both understandable and opaque models from data, as well as unsupervised methods that detect features present in the data. It describes popular methods of rule extraction from unintelligible models which rewrite them into an understandable form. Limitations of rule extraction are described. A novel definition of understandability which ties computational complexity and learning is provided to show that rule extraction is an NP-hard problem. Next, a discussion whether one can expect that even an accurate classifier has learned new knowledge. The survey ends with a presentation of two approaches to building of understandable classifiers. On the one hand, understandable models must be able to accurately describe relations in the data. On the other hand, often a description of the output of a system in terms of its input requires the introduction of intermediate concepts, called features. Therefore it is crucial to develop methods that describe the data with understandable features and are able to use those features to present the relation that describes the data. Novel contributions of this thesis follow the survey. Two families of rule extraction algorithms are considered. First, a method that can work with any opaque classifier is introduced. Artificial training patterns are generated in a mathematically sound way and used to train more accurate understandable models. Subsequently, two novel algorithms that require that the opaque model is a Neural Network are presented. They rely on access to the network\u27s weights and biases to induce rules encoded as Decision Diagrams. Finally, the topic of feature extraction is considered. The impact on imposing non-negativity constraints on the weights of a neural network is considered. It is proved that a three layer network with non-negative weights can shatter any given set of points and experiments are conducted to assess the accuracy and interpretability of such networks. Then, a novel path-following algorithm that finds robust sparse encodings of data is presented. In summary, this dissertation contributes to improved understandability of classifiers in several tangible and original ways. It introduces three distinct aspects of achieving this goal: infusion of additional patterns from the underlying pattern distribution into rule learners, the derivation of decision diagrams from neural networks, and achieving sparse coding with neural networks with non-negative weights

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    Verifiable Learning for Robust Tree Ensembles

    Get PDF
    Verifying the robustness of machine learning models against evasion attacks at test time is an important research problem. Unfortunately, prior work established that this problem is NP-hard for decision tree ensembles, hence bound to be intractable for specific inputs. In this paper, we identify a restricted class of decision tree ensembles, called large-spread ensembles, which admit a security verification algorithm running in polynomial time. We then propose a new approach called verifiable learning, which advocates the training of such restricted model classes which are amenable for efficient verification. We show the benefits of this idea by designing a new training algorithm that automatically learns a large-spread decision tree ensemble from labelled data, thus enabling its security verification in polynomial time. Experimental results on public datasets confirm that large-spread ensembles trained using our algorithm can be verified in a matter of seconds, using standard commercial hardware. Moreover, large-spread ensembles are more robust than traditional ensembles against evasion attacks, at the cost of an acceptable loss of accuracy in the non-adversarial setting
    • …
    corecore