19,793 research outputs found

    Erdos-Ko-Rado theorems for simplicial complexes

    Get PDF
    A recent framework for generalizing the Erdos-Ko-Rado Theorem, due to Holroyd, Spencer, and Talbot, defines the Erdos-Ko-Rado property for a graph in terms of the graph's independent sets. Since the family of all independent sets of a graph forms a simplicial complex, it is natural to further generalize the Erdos-Ko-Rado property to an arbitrary simplicial complex. An advantage of working in simplicial complexes is the availability of algebraic shifting, a powerful shifting (compression) technique, which we use to verify a conjecture of Holroyd and Talbot in the case of sequentially Cohen-Macaulay near-cones.Comment: 14 pages; v2 has minor changes; v3 has further minor changes for publicatio

    Some New Bounds For Cover-Free Families Through Biclique Cover

    Get PDF
    An (r,w;d)(r,w;d) cover-free family (CFF)(CFF) is a family of subsets of a finite set such that the intersection of any rr members of the family contains at least dd elements that are not in the union of any other ww members. The minimum number of elements for which there exists an (r,w;d)CFF(r,w;d)-CFF with tt blocks is denoted by N((r,w;d),t)N((r,w;d),t). In this paper, we show that the value of N((r,w;d),t)N((r,w;d),t) is equal to the dd-biclique covering number of the bipartite graph It(r,w)I_t(r,w) whose vertices are all ww- and rr-subsets of a tt-element set, where a ww-subset is adjacent to an rr-subset if their intersection is empty. Next, we introduce some new bounds for N((r,w;d),t)N((r,w;d),t). For instance, we show that for rwr\geq w and r2r\geq 2 N((r,w;1),t)c(r+ww+1)+(r+w1w+1)+3(r+w4w2)logrlog(tw+1), N((r,w;1),t) \geq c{{r+w\choose w+1}+{r+w-1 \choose w+1}+ 3 {r+w-4 \choose w-2} \over \log r} \log (t-w+1), where cc is a constant satisfies the well-known bound N((r,1;1),t)cr2logrlogtN((r,1;1),t)\geq c\frac{r^2}{\log r}\log t. Also, we determine the exact value of N((r,w;d),t)N((r,w;d),t) for some values of dd. Finally, we show that N((1,1;d),4d1)=4d1N((1,1;d),4d-1)=4d-1 whenever there exists a Hadamard matrix of order 4d
    corecore