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A recent framework for generalizing the Erdős–Ko–Rado theorem,
due to Holroyd, Spencer, and Talbot, defines the Erdős–Ko–Rado
property for a graph in terms of the graph’s independent sets. Since
the family of all independent sets of a graph forms a simplicial
complex, it is natural to further generalize the Erdős–Ko–Rado
property to an arbitrary simplicial complex. An advantage of
working in simplicial complexes is the availability of algebraic
shifting, a powerful shifting (compression) technique, which we
use to verify a conjecture of Holroyd and Talbot in the case of
sequentially Cohen–Macaulay near-cones.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A family A of sets is intersecting if every pair of sets in A has non-empty intersection, and is
an r-family if every set in A has cardinality r. A well-known theorem of Erdős, Ko, and Rado bounds
the cardinality of an intersecting r-family:

Theorem 1.1. (See Erdős, Ko and Rado [11].) Let r � n
2 and A be an intersecting r-family of subsets of [n]. Then

|A| � (n−1
r−1

)
.

Given a simplicial complex � (defined in Section 2) and a face σ of �, we define the link of σ in
� to be

link� σ = {τ : τ ∪ σ is a face of �, τ ∩ σ = ∅}.
An r-face of � is a face of cardinality r. We further let fr(�) be defined as the number of r-faces
in �, and the tuple ( f0(�), f1(�), . . . , fd+1(�)) (where d is the dimension of �) is called the f -
vector of �.
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Note 1.2. We follow Swartz [28] in our definition of r-face and fr . Other sources define an r-face to
be a face with dimension r (rather than cardinality r) which shifts the indices of the f -vector by 1.

We restate Theorem 1.1 using this language:

Theorem 1.3. Let r � n
2 and A be an intersecting r-family of faces of the simplex with n vertices. Then |A| �

fr−1(link� v1).

Let G be a graph with edge set E(G) and vertex set V (G). The independence complex of G ,
denoted I(G), is the simplicial complex consisting of all independent sets of G . For a vertex
v ∈ V (G), the closed neighborhood N[v] consists of v and all its neighbors. We notice that linkI(G) v =
I(G \ N[v]).

Following Holroyd, Spencer, and Talbot [17, Section 1], we define:

Definition 1.4. A simplicial complex � is r-EKR if every intersecting r-family A of faces of � satisfies
|A| � maxv∈V (�) fr−1(link� v). Equivalently, � is r-EKR if the set of all r-faces containing some v has
maximal cardinality among all intersecting families of r-faces.

Holroyd and Talbot [18] further investigated the problem of when graphs are r-EKR, and made the
following conjecture:

Conjecture 1.5. (See Holroyd and Talbot [18, Conjecture 7].) If G is a graph where the minimal facet cardinality
of I(G) is k, then I(G) is r-EKR for r � k

2 .

The natural extension was made by Borg [5]:

Conjecture 1.6. (See Borg [5, Conjecture 1.7].) If � is a simplicial complex having minimal facet cardinality k,
then � is r-EKR for r � k

2 .

Remark 1.7. A different version of an EKR property for simplicial complexes was studied by Chvá-
tal [8], who conjectured that if A is an intersecting family of faces (of possibly differing dimensions)
then

|A| � max
v∈V (�)

( ∑
r

fr(link� v)

)
,

i.e., that the set of all faces containing some v has maximal cardinality among all intersecting families
of faces. We notice that Conjecture 1.6 is an analogue of Chvátal’s Conjecture for uniform intersecting
families.

We refer the reader to [6] for additional background on the r-EKR property in graphs, and to [5]
for further relationships with more general intersection problems.

This paper is organized as follows. In Section 2 we review the necessary background on shifted
complexes, algebraic shifting, the Cohen–Macaulay property, and near-cones. We also characterize the
graphs G such that Shift I(G) is the independence complex of some other graph, and the graphs
such that I(G) is a near-cone. In Section 3 we present and prove our main theorem, Theorem 3.3. In
Section 4 we give applications of Theorem 3.3 to Conjecture 1.5. In particular, we recover the main
result of [19], and many of the results of [17]. We close in Section 5 with further questions regarding
the strict r-EKR property.

2. Shifting

We will need some basic simplicial complex language: An (abstract) simplicial complex � is a sys-
tem of sets (called faces) on base set V (�) (called vertices) such that if σ is a face then every subset
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of σ is also a face. We assume that every vertex is contained in some face. A facet of � is a face
that is maximal under inclusion. It is well known that any abstract simplicial complex has a geometric
realization, a geometric simplicial complex with the same face incidences; so we can use terms from
geometry such as dimension to describe a simplicial complex.

If F is some family of sets, then the simplicial complex �(F ) generated by F has faces consisting
of all subsets of all sets in F . For a simplicial complex �, the r-skeleton �(r) consists of all faces of
� having dimension at most r, while the pure r-skeleton is the subcomplex generated by all faces of
� having dimension exactly r. The join of disjoint simplicial complexes � and Σ is the simplicial
complex � ∗ Σ with faces τ ∪ σ , where τ is a face of � and σ a face of Σ .

A simplicial complex � with ordered vertex set {v1, . . . , vn} is shifted if whenever σ is a face of
� containing vertex vi , then (σ \ {vi}) ∪ {v j} is a face of � for every j < i. An r-family F of subsets
of {v1, . . . , vn} is shifted if it generates a shifted complex.

A general approach to proving theorems similar to Theorem 1.3 is to define a shifting operation or
compression operation which replaces a non-shifted set system with a shifted system obeying some of
the same combinatorial properties. Erdős, Ko, and Rado pioneered this technique in [11], and their
operation is now called combinatorial shifting. Combinatorial shifting is discussed in the survey arti-
cle [13], particularly as applied to intersection theorems.

2.1. Algebraic shifting

The specific shifting operation we will use is called exterior algebraic shifting (with respect to a
field F ), and we denote the (exterior) algebraic shift of � by Shift �, or ShiftF � if we want to em-
phasize the field. Algebraic shifting was first studied by Kalai, and unless otherwise stated the facts
we present here were first proved by him.

The precise definition of Shift � will not be important for us, but can be found in Kalai’s survey
article [22]. Rather than working with the definition, we examine Shift � using a series of lemmas
collected in [22]. The following basic properties we will use without further mention:

Lemma 2.1. (See [22].) Let � be a simplicial complex with n vertices. Then:

(1) Shift � is a shifted simplicial complex on an ordered vertex set {v1, . . . , vn}.
(2) If � is shifted, then Shift� ∼= �.
(3) f i(Shift�) = f i(�) for all i.

Shifting respects subcomplexes, at least in a weak sense:

Lemma 2.2. (See [22, Theorem 2.2].) If Σ ⊂ � are simplicial complexes, then Shift Σ ⊂ Shift�.

Example 2.3. Let � be the simplicial complex with facets {1,2} and {3,4}. Then it is easy to see that
the unique shifted complex with the same f -vector has facets {1,2}, {2,3}, and {4}, hence that this
complex is Shift�. Then Shift{1,2} = Shift{3,4} = {1,2} ⊂ Shift�.

Corollary 2.4. If � is a simplicial complex, then Shift(�(r)) = (Shift�)(r) .

Proof. Lemma 2.2 gives that Shift(�(r)) ⊆ (Shift�)(r) , and by Lemma 2.1 part (3) the f -vectors are
equal. �

Notice that if � is a shifted complex, then it is immediate that �(r) is shifted for every r.
If A is some r-family of sets, then Shift A is the pure r-skeleton of Shift�(A). (Kalai’s equivalent

definition actually defines Shift � as a union of the shift of its r-faces [22, Section 2.1].) Kalai proves:

Lemma 2.5. (See [22, Corollary 6.3].) If A is an intersecting r-family, then Shift A is an intersecting r-family.
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2.2. Near-cones

A simplicial complex � is a near-cone with respect to an apex vertex v if for every face σ , the set
(σ \ {w}) ∪ {v} is also a face for each vertex w ∈ σ . Equivalently, the boundary of every facet of �

is contained in v ∗ link� v; another equivalent condition is that � consists of v ∗ link� v union some
set of facets not containing v (but whose boundary is contained in link� v). If � is a cone with apex
vertex v , then obviously � = v ∗ link� v , thus every cone is a near-cone.

Because the apex vertex is always the vertex with the largest link, near-cones are relatively easy
to work with in the context of intersection theorems, as has been previously noticed in e.g. [27,4]. In
particular:

Lemma 2.6. If � is a near-cone with apex vertex v, then fr(link� w) � fr(link� v) for any vertex w and all r.

Proof. For every (r + 1)-face σ containing w , either v ∈ σ or else (σ \ w) ∪ v is an r-face containing
v but not w . �

Notice that � being a near-cone with apex vertex v essentially says that � is “shifted with respect
to v”. In particular, any shifted complex is a near-cone with apex vertex v1. Nevo examined the
algebraic shift of a near-cone, showing:

Lemma 2.7. (See Nevo [25, Theorems 5.2 and 5.3].) If � is a near-cone with apex v, let us consider
Shift(link� v) as having ordered vertex set {v2, . . . , vn}. Then:

(1) linkShift� v1 = Shift(link� v).
(2) Shift � = (v1 ∗ Shift(link� v)) ∪ B, where B is a set of facets not containing v1 .

Corollary 2.8. If � is a near-cone with apex v, then fr(link� v) = fr(linkShift� v1) for all r.

2.3. Pure complexes, Cohen–Macaulay complexes, and depth

A simplicial complex � is pure if all facets of � have the same dimension. Graphs with a pure
independence complex are sometimes called well-covered.

Let F be either any field, or the ring of integers. A simplicial complex � is Cohen–Macaulay over
F if its homology satisfies H̃i(link� σ ; F ) = 0 for all i < dim(link� σ) and all faces σ of � (including
σ = ∅). It is well known that every Cohen–Macaulay complex is pure, and that every skeleton of a
Cohen–Macaulay complex is Cohen–Macaulay.

A simplicial complex is sequentially Cohen–Macaulay over F if the pure r-skeleton of � is
Cohen–Macaulay (over F ) for all r. Thus, a pure sequentially Cohen–Macaulay complex is Cohen–
Macaulay.

When we simply say that a simplicial complex � is (sequentially) Cohen–Macaulay, with no men-
tion of F , then we mean that � is (sequentially) Cohen–Macaulay over all F . For example, every
“shellable” or “vertex decomposable” complex is sequentially Cohen–Macaulay over any F [2,3].

The main relationships between the Cohen–Macaulay property and shifting are the following:

Lemma 2.9. (See [3, Theorem 11.3].) If � is shifted, then � is “vertex decomposable”, hence sequentially
Cohen–Macaulay (over any F ).

Lemma 2.10. (See [22, Theorem 4.1], see also [1, Proposition 8.4].) ShiftF � is pure if and only if � is Cohen–
Macaulay (over F ).

Duval [9] also examined the algebraic shift of a sequentially Cohen–Macaulay complex, and more
generally of Cohen–Macaulay skeletons. A result of his that will be of particular interest to us is:
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Corollary 2.11. (See Duval [9, Corollary 4.5].) The minimum facet dimension of ShiftF � is � d if and only if
�(d) is Cohen–Macaulay (over F ).

Corollary 2.11 suggests the definition of the depth of � over F as

depthF � = max
{

d: �(d) is Cohen–Macaulay over F
}
.

Thus, depthF � is the minimum facet dimension of ShiftF �. We note that depthF � is one less than
the ring-theoretic depth of the “Stanley–Reisner ring” F [�] [26, Theorem 3.7]. Thus, just as in the
ring-theoretic situation, � is Cohen–Macaulay over F if and only if depthF � = dim�. If � is sequen-
tially Cohen–Macaulay over F then depthF � is the minimum facet dimension of �.

By the definition of simplicial homology we have H̃d(�
(d+1); F ) = H̃d(�; F ), hence the easy equiv-

alent characterization:

depthF � = max
{

d: H̃i(link� σ ; F ) = 0 for all σ ∈ � and i < d − |σ |}.
In particular, we notice that depthF � is at most the minimal facet dimension, since if σ is a facet
then H̃−1(link� σ ; F ) = H̃−1(∅; F ) = F .

The following result about the depth of the join of complexes will be especially useful in Section 4:

Lemma 2.12. Let F be a field, and �1 and �2 be simplicial complexes. Then depthF (�1 ∗�2) = depthF �1 +
depthF �2 + 1.

Proof. Faces of �1 ∗ �2 have the form σ = σ1 ∪̇ σ2 where σi is a face of �i , hence link�1∗�2 σ =
link�1 σ1 ∗ link�2 σ2. The result then follows from the standard algebraic topology fact [20, Corol-
lary 4.23] that H̃n+1(�1 ∗ �2; F ) = ⊕n+1

i=−1 H̃i(�1; F ) ⊗ H̃n−i(�2; F ). �
The reader is referred to [20] for additional background on depthF � and the (sequentially) Cohen–

Macaulay property. We will henceforth take the field F to be understood, and drop it from our
notation.

2.4. Shifting independence complexes

A graph G is chordal if every induced subgraph of G which is a cyclic graph has length 3. A graph
is co-chordal if its complement graph is chordal.

Since the original question of Holroyd, Spencer and Talbot was restricted to the independence
complexes of graphs, one might ask when Shift I(G) is isomorphic to I(G ′) for some graph G ′ . The
answer is easy, given the necessary machinery. The Alexander dual of �, denoted �∨ , is the complex
with facets {σ : V \ σ is a minimal non-face of �}. See e.g. [21, Section 6] for more information and
background on Alexander duality.

Theorem 2.13. Let G be a graph. Then Shift I(G) is the independence complex I(G ′) of some other graph G ′ if
and only if G is co-chordal.

Proof. We need the following three facts about Alexander duality: (1) It is clear from the definition
that � is the independence complex of a graph if and only if �∨ is pure (n−2)-dimensional, where n
is the number of vertices of �. (2) Alexander duality and shifting commute, i.e. Shift � = (Shift(�∨))∨
[22, Section 3.5.6]. (3) If G is a graph, then I(G)∨ is Cohen–Macaulay if and only if G is co-chordal
[10, Proposition 8]. The result is then immediate from Lemma 2.10. �
Remark 2.14. The family of independence complexes of graphs has been extensively studied in the
literature under the name of flag complexes.



R. Woodroofe / Journal of Combinatorial Theory, Series A 118 (2011) 1218–1227 1223
The shifted flag complexes were classified by Klivans, as follows: Given a graph G , let D(G) be
G ∪̇ {v} for a new vertex v (D for “disjoint union”). Let S(G) be the graph on vertex set V (G) ∪ {v}
for a new vertex v and with edge set E(G) ∪ {w v: w ∈ V (G)} (S for “star”). In the independence
complex, we have I(D(G)) as the cone over I(G), and I(S(G)) as I(G) ∪̇ {v}, thus if G is sequentially
Cohen–Macaulay then both D(G) and S(G) are.

A graph is threshold [24] if it is obtained from a single vertex by some sequence of D and S oper-
ations. Every threshold graph is both chordal and co-chordal. Since a D operation adds a cone vertex,
which can be taken as the initial vertex in a shifted complex; and an S operation adds a disjoint
vertex, which can be taken as the final vertex in a shifted complex, we have proved inductively that
the independence complex of any threshold graph is shifted. Klivans [23] showed the converse result
that all graphs with shifted independence complex are threshold.

We prove the following generalization of [23, Theorem 1]:

Proposition 2.15. If G is a graph such that I(G) is a near-cone, then G is obtained from some graph G0 by a
sequence of D and S operations, including at least one D operation.

Proof. Let v be the apex vertex of I(G), and suppose that w v ∈ E(G). Then wx is also an edge for
every x ∈ V (G), since if wx were a face of I(G) then w v would also be independent, a contradiction.
We see that G = Sk D(G \ N[v]), where k is the number of neighbors of v . �
Remark 2.16. Since the independence complex of S(G) has an isolated vertex, its minimum facet
dimension is 0. Hence Proposition 2.15 tells us that for a graph G we have that I(G) is a near-cone
with non-trivial minimum facet dimension if and only if G has an isolated vertex.

3. Main theorem

The following lemma follows from Borg’s more general result [5, Theorem 2.7]. We use algebraic
shifting to give a short new proof of the specific result.

Lemma 3.1. (See Borg [5, Theorem 2.7].) If � is a shifted complex having minimal facet cardinality k, then �

is r-EKR for r � k
2 .

Proof. Let � have ordered vertex set {v1, . . . , vn}, and let A be an intersecting r-family of faces of �.
We proceed by induction: our base cases are when � is a simplex (Theorem 1.3), and the trivial case
where r = 1.

If � is not a simplex and r > 1, then by Lemmas 2.5 and 2.2, we have that Shift A is a shifted
intersecting r-family of faces of � = Shift� with |Shift A| = |A|. We decompose Shift A into the
subfamilies C consisting of all σ ∈ Shift A with vn ∈ σ , and D = (Shift A)\ C , so that |A| = |Shift A| =
|C| + |D|.

We first consider C . Let C0 = {σ \ {vn}: σ ∈ C}, so that |C| = |C0|. Suppose that C0 is not inter-
secting. Then there are σ ,τ ∈ C such that σ ∩ τ = {vn}, and |σ ∪ τ | < r + r � k < n. It follows that
there is a v� /∈ σ ∪ τ . But then τ ′ = (τ \ {vn}) ∪ {v�} is in Shift A by the definition of shiftedness,
and σ ∩ τ ′ = ∅, which contradicts that Shift A is intersecting. We conclude that C0 is an intersecting
(r − 1)-family of faces of link� vn . Since link� vn is a shifted complex with minimum facet cardinality
at least k − 1, we get that |C| = |C0| � fr−2(link�{v1, vn}) by induction and Lemma 2.6.

We now consider D. It is obvious that D is an intersecting r-family contained in the shifted
complex � \ vn . Since � is not a simplex, it follows easily from the definition of shiftedness that
the minimum facet cardinality of � \ vn is at least k. By induction and Lemma 2.6 we have |D| �
fr−1(link�\vn v1).

Putting our two parts together, we have

|A| = |C| + |D| � fr−2
(
link�{v1, vn}

) + fr−1(link�\vn v1) = fr−1(link� v1). �
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Remark 3.2. Our requirement for Lemma 3.1 on the minimum facet cardinality seems much stronger
than necessary. Our essential need is for a parameter k which we can control in both � \ vn and
link� vn , and such that r � k

2 forces r < n
2 . Use of another such parameter might give a stronger

result version of Lemma 3.1. Any strengthening of Lemma 3.1 would likely also strengthen Theo-
rem 3.3.

Holroyd and Talbot [18, Section 3] construct several examples of independence complexes that
are not r-EKR for various r, which may give some intuition about what parameters are tractable.
(They in particular construct an example with maximum facet cardinality � such that � is not  �

2 �-
EKR.)

By applying algebraic shifting to an arbitrary complex, we prove:

Theorem 3.3. If � is a near-cone and F is an arbitrary field, then � is r-EKR for r � depthF �+1
2 .

Proof. Let A be an intersecting r-family of faces of �. By Lemma 2.6, we need to show that |A| �
fr−1(link� v) for the apex vertex v .

Apply algebraic shifting. ShiftF A is an intersecting r-family of faces of Shift� with |Shift A| = |A|
by Lemmas 2.5 and 2.2. By Lemma 2.11 and the following discussion, the minimum facet cardinal-
ity of ShiftF � is depthF � + 1, hence |A| � fr−1(linkShift� v1) = fr−1(link� v) by Lemma 3.1 and
Corollary 2.8. �

To the best of my knowledge, Theorem 3.3 is the first ‘new’ intersection theorem to be proved by
algebraic shifting.

Corollary 3.4. If � is a sequentially Cohen–Macaulay near-cone with minimum facet cardinality k, then � is
r-EKR for r � k

2 .

Remark 3.5. Borg’s aforementioned result [5, Theorem 2.7] generalizes Lemma 3.1 to include non-
uniform families (i.e., sets of different sizes), and to t-intersecting families (i.e., to families where
|A ∩ B| � t). By Kalai [22, Corollary 6.3 and following], algebraic shifting preserves the t-intersecting
property for any r-family, hence a reduction to [5, Theorem 2.7] similar to that in Theorem 3.3 will
show that if � is a t-fold near-cone (i.e., shifted with respect to its first t elements) with depth equal
to its minimum facet dimension, then [5, Conjecture 2.7] holds for uniform r-families of faces in �.
In particular, [5, Conjecture 2.7] holds for sequentially Cohen–Macaulay t-fold near-cones.

4. Applications

It is immediate from the definitions that if G = G1 ∪̇ G2, then I(G) decomposes as the join
I(G1) ∗ I(G2). In particular, if G has an isolated vertex v then I(G) is a cone over v , as discussed
in detail in Section 2.2. We will call a graph G sequentially Cohen–Macaulay if its independence com-
plex I(G) is sequentially Cohen–Macaulay. An immediate consequence of Corollary 3.4 is:

Theorem 4.1. If G is a sequentially Cohen–Macaulay graph with an isolated vertex, then G satisfies Conjec-
ture 1.5.

The family of sequentially Cohen–Macaulay graphs includes:

(1) Chordal graphs [12].
(2) Graphs with no induced cycle of length other than 3 or 5 [31].
(3) Bipartite graphs containing a vertex v of degree 1 such that G \ N[v] and G \ N[w] (where w is

the unique neighbor of v) recursively satisfy the same condition [30, Corollary 3.11].
(4) Incomparability graphs of shellable posets [2].
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(5) The minimal set of non-faces of the isocahedron, or any other polytope where the set of minimal
non-faces forms a graph [7].

(6) Disjoint unions of sequentially Cohen–Macaulay graphs, since I(G1 ∪̇ G2) = I(G1) ∗ I(G2).

In particular, we recover the following theorem of Hurlbert and Kamat:

Corollary 4.2. (See Hurlbert and Kamat [19, Theorem 1.22].) If G is a chordal graph with an isolated vertex,
then G satisfies Conjecture 1.5.

Obviously we also have that if G is e.g. a threshold graph, then G satisfies Conjecture 1.5. But
Remark 2.16 tells us that this result is not an interesting improvement on Corollary 4.2, since in this
case the minimum facet cardinality of I(G) is 1 unless G has an isolated vertex.

We apply Lemma 2.12 for a result in a slightly different direction:

Proposition 4.3. If G = G1 ∪̇ · · · ∪̇ Gn is the disjoint union of n � 2r non-empty graphs, including at least one
isolated vertex, then I(G) is r-EKR.

Proof. The 0-skeleton of any non-empty complex is Cohen–Macaulay, hence depth I(Gi) � 0, and by
repeated application of Lemma 2.12 we get depth I(G) = depth I(G1) ∗ · · · ∗ I(Gn) � n − 1. The result
then follows by Theorem 3.3. �

Proposition 4.3 significantly improves [17, Theorem 8], which proves the result in the special case
where each Gi is a complete graph, path, or cycle. By considering graphs of depth 1, we can do
slightly better.

Lemma 4.4. The independence complex of a graph G has depth � 1 if and only if |G| > 1 and the complement
graph Ḡ is connected.

Proof. The complement graph Ḡ forms the 1-skeleton of I(G) under the hypothesis, and a 1-
dimensional complex is Cohen–Macaulay if and only if it is connected. �
Example 4.5. Let Cn be the cyclic graph on n vertices. If n � 5, then Cn satisfies the conditions of
Lemma 4.4, hence depth I(Cn) � 1. But the cyclic graph C4 on 4 vertices has disconnected complement
graph, hence depth I(C4) = 0.

Proposition 4.6. Let G = G1 ∪̇ · · · ∪̇ Gn be the disjoint union of n graphs, including at least one isolated vertex.
Suppose that m of the Gi satisfy the conditions of Lemma 4.4. Then I(G) is r-EKR for r � n+m

2 .

The proof is exactly as in Proposition 4.3.

5. Further questions

As we have discussed, for � to be r-EKR means that every maximal intersecting r-family of faces
A has |A| � maxv∈V (�) fr−1(link� v). We say that � is strictly r-EKR if every maximum cardinality
intersecting r-family of faces A consists of the r-faces of v ∗ (link� v)(r−1) for some v . That is to
say, every maximum intersecting r-family A satisfies

⋂
A∈A A �= ∅. Hilton and Milner [15] improved

Theorem 1.3 to:

Theorem 5.1. (See Hilton and Milner [15].) If � is the simplex with n vertices, then � is strictly r-EKR for
2 � r < n

2 .

Holroyd and Talbot, and later Borg, actually conjectured slightly more than we stated in Conjec-
tures 1.5 and 1.6:
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Conjecture 5.2. (See Holroyd and Talbot [18, Conjecture 7], Borg [5, Conjecture 1.7].) If � is a simplicial com-
plex having minimal facet cardinality k, then � is r-EKR for r � k

2 , and strictly r-EKR for r < k
2 .

Can an algebraic shifting (or some other) argument be adapted to prove Conjecture 5.2, optionally
restricted to the case of a sequentially Cohen–Macaulay complex?

Of course, even the more restricted Conjecture 1.6 remains open for general complexes. Theo-
rem 3.3 suggests that a counterexample to Conjecture 1.6, if one exists, should be a complex which
badly fails to be Cohen–Macaulay. We discuss briefly some examples of such complexes:

Example 5.3. The facets of the boundary �0 of a simplex with n +1 vertices is intersecting, hence not
n-EKR. One can increase the dimension by coning k points over each facet to obtain a pure complex
� with (k + 1) · (n + 1) points. Since H̃n(�) �= 0, the complex is not Cohen–Macaulay, and the hope
for a counterexample would be: for some k > n and n � r �  k+n

2 �, that the family A consisting of all
r-faces that contain a facet of �0 would be larger than fr−1(link� v).

But we count: if v ∈ �0, then fr−1(link� v) = n · (n+k
r−1

)
, while |A| = (n +1) · ( k

r−n

)
. A straightforward

computation (cancel, then match terms) yields that fr−1(link� v)/|A| > 1. Hence |A| < fr−1(link� v),
and thus A and � are not a counterexample to Conjecture 1.6.

Example 5.4. Cyclic graphs Cn are not sequentially Cohen–Macaulay for n �= 3,5 [12, Proposition 4.1].
For example, I(C4) consists of two disjoint 2-faces, while I(C7) is a triangulation of the Möbius strip.
Nonetheless, Talbot [29] showed that the independence complex of every cyclic graph is r-EKR for
all r. More recently, the independence complex of the disjoint union of two cycles [14], and of the
disjoint union of an arbitrary number of cycles and a path [16] were shown to be r-EKR for all r.
Conjecture 1.5 also holds [6] for the disjoint union of an isolated vertex and a somewhat wider class
of non-sequentially Cohen–Macaulay graphs, including cycles and complete multipartite graphs.
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