2,529 research outputs found

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Construction of analysis-suitable G1G^1 planar multi-patch parameterizations

    Full text link
    Isogeometric analysis allows to define shape functions of global C1C^{1} continuity (or of higher continuity) over multi-patch geometries. The construction of such C1C^{1}-smooth isogeometric functions is a non-trivial task and requires particular multi-patch parameterizations, so-called analysis-suitable G1G^{1} (in short, AS-G1G^{1}) parameterizations, to ensure that the resulting C1C^{1} isogeometric spaces possess optimal approximation properties, cf. [7]. In this work, we show through examples that it is possible to construct AS-G1G^{1} multi-patch parameterizations of planar domains, given their boundary. More precisely, given a generic multi-patch geometry, we generate an AS-G1G^{1} multi-patch parameterization possessing the same boundary, the same vertices and the same first derivatives at the vertices, and which is as close as possible to this initial geometry. Our algorithm is based on a quadratic optimization problem with linear side constraints. Numerical tests also confirm that C1C^{1} isogeometric spaces over AS-G1G^{1} multi-patch parameterized domains converge optimally under mesh refinement, while for generic parameterizations the convergence order is severely reduced

    The Argyris isogeometric space on unstructured multi-patch planar domains

    Full text link
    Multi-patch spline parametrizations are used in geometric design and isogeometric analysis to represent complex domains. We deal with a particular class of C0C^0 planar multi-patch spline parametrizations called analysis-suitable G1G^1 (AS-G1G^{1}) multi-patch parametrizations (Collin, Sangalli, Takacs; CAGD, 2016). This class of parametrizations has to satisfy specific geometric continuity constraints, and is of importance since it allows to construct, on the multi-patch domain, C1C^1 isogeometric spaces with optimal approximation properties. It was demonstrated in (Kapl, Sangalli, Takacs; CAD, 2018) that AS-G1G^1 multi-patch parametrizations are suitable for modeling complex planar multi-patch domains. In this work, we construct a basis, and an associated dual basis, for a specific C1C^1 isogeometric spline space W\mathcal{W} over a given AS-G1G^1 multi-patch parametrization. We call the space W\mathcal{W} the Argyris isogeometric space, since it is C1C^1 across interfaces and C2C^2 at all vertices and generalizes the idea of Argyris finite elements to tensor-product splines. The considered space W\mathcal{W} is a subspace of the entire C1C^1 isogeometric space V1\mathcal{V}^{1}, which maintains the reproduction properties of traces and normal derivatives along the interfaces. Moreover, it reproduces all derivatives up to second order at the vertices. In contrast to V1\mathcal{V}^{1}, the dimension of W\mathcal{W} does not depend on the domain parametrization, and W\mathcal{W} admits a basis and dual basis which possess a simple explicit representation and local support. We conclude the paper with some numerical experiments, which exhibit the optimal approximation order of the Argyris isogeometric space W\mathcal{W} and demonstrate the applicability of our approach for isogeometric analysis

    A family of C1C^1 quadrilateral finite elements

    Full text link
    We present a novel family of C1C^1 quadrilateral finite elements, which define global C1C^1 spaces over a general quadrilateral mesh with vertices of arbitrary valency. The elements extend the construction by (Brenner and Sung, J. Sci. Comput., 2005), which is based on polynomial elements of tensor-product degree p≥6p\geq 6, to all degrees p≥3p \geq 3. Thus, we call the family of C1C^1 finite elements Brenner-Sung quadrilaterals. The proposed C1C^1 quadrilateral can be seen as a special case of the Argyris isogeometric element of (Kapl, Sangalli and Takacs, CAGD, 2019). The quadrilateral elements possess similar degrees of freedom as the classical Argyris triangles. Just as for the Argyris triangle, we additionally impose C2C^2 continuity at the vertices. In this paper we focus on the lower degree cases, that may be desirable for their lower computational cost and better conditioning of the basis: We consider indeed the polynomial quadrilateral of (bi-)degree~55, and the polynomial degrees p=3p=3 and p=4p=4 by employing a splitting into 3×33\times3 or 2×22\times2 polynomial pieces, respectively. The proposed elements reproduce polynomials of total degree pp. We show that the space provides optimal approximation order. Due to the interpolation properties, the error bounds are local on each element. In addition, we describe the construction of a simple, local basis and give for p∈{3,4,5}p\in\{3,4,5\} explicit formulas for the B\'{e}zier or B-spline coefficients of the basis functions. Numerical experiments by solving the biharmonic equation demonstrate the potential of the proposed C1C^1 quadrilateral finite element for the numerical analysis of fourth order problems, also indicating that (for p=5p=5) the proposed element performs comparable or in general even better than the Argyris triangle with respect to the number of degrees of freedom

    Unstructured spline spaces for isogeometric analysis based on spline manifolds

    Full text link
    Based on spline manifolds we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure, which allows for the definition of function spaces that have a tensor-product structure locally, but not globally. This includes configurations such as B-splines over multi-patch domains with extraordinary points, analysis-suitable unstructured T-splines, or more general constructions. Within this framework, we generalize the concept of dual-compatible B-splines, which was originally developed for structured T-splines. This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for hh-refined meshes

    A comparison of smooth basis constructions for isogeometric analysis

    Full text link
    In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modeling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-C1C^1, Analysis-Suitable G1G^1 and the Approximate C1C^1 constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate C1C^1 and Analysis-Suitable G1G^1 converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-C1C^1 and D-Patch provide relatively easy construction on complex geometries. The Almost-C1C^1 method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate C1C^1 and Analysis-Suitable G1G^1 applicable to more complex geometries
    • …
    corecore