5 research outputs found

    Bayesian estimation of nonlinear Hawkes process

    Get PDF
    Multivariate point processes (MPPs) are widely applied to model the occurrences of events, e.g., natural disasters, online message exchanges, financial transactions or neuronal spike trains. In the Hawkes process model, the probability of occurrences of future events depend on the past of the process. This model is particularly popular for modelling interactive phenomena such as disease expansion. In this work we consider the nonlinear multivariate Hawkes model, which allows to account for excitation and inhibition between interacting entities. We provide theoretical guarantees for applying nonparametric Bayesian estimation methods in this context. In particular, we obtain concentration rates of the posterior distribution on the parameters, under mild assumptions on the prior distribution and the model. These results also lead to convergence rates of Bayesian estimators. Another object of interest in event-data modelling is to infer the graph of interaction - or Granger causal graph. In this case, we provide consistency guarantees; in particular, we prove that the posterior distribution is consistent on the graph adjacency matrix of the process, as well as a Bayesian estimator based on an adequate loss function

    Proper Loss Functions for Nonlinear Hawkes Processes

    No full text
    Temporal point processes are a statistical framework for modelling the times at which events of interest occur. The Hawkes process is a well-studied instance of this framework that captures self-exciting behaviour, wherein the occurrence of one event increases the likelihood of future events. Such processes have been successfully applied to model phenomena ranging from earthquakes to behaviour in a social network. We propose a framework to design new loss functions to train linear and nonlinear Hawkes processes. This captures standard maximum likelihood as a special case, but allows for other losses that guarantee convex objective functions (for certain types of kernel), and admit simpler optimisation. We illustrate these points with three concrete examples: for linear Hawkes processes, we provide a least-squares style loss potentially admitting closed-form optimisation; for exponential Hawkes processes, we reduce training to a weighted logistic regression; and for sigmoidal Hawkes processes, we propose an asymmetric form of logistic regression

    Flexible estimation of temporal point processes and graphs

    Get PDF
    Handling complex data types with spatial structures, temporal dependencies, or discrete values, is generally a challenge in statistics and machine learning. In the recent years, there has been an increasing need of methodological and theoretical work to analyse non-standard data types, for instance, data collected on protein structures, genes interactions, social networks or physical sensors. In this thesis, I will propose a methodology and provide theoretical guarantees for analysing two general types of discrete data emerging from interactive phenomena, namely temporal point processes and graphs. On the one hand, temporal point processes are stochastic processes used to model event data, i.e., data that comes as discrete points in time or space where some phenomenon occurs. Some of the most successful applications of these discrete processes include online messages, financial transactions, earthquake strikes, and neuronal spikes. The popularity of these processes notably comes from their ability to model unobserved interactions and dependencies between temporally and spatially distant events. However, statistical methods for point processes generally rely on estimating a latent, unobserved, stochastic intensity process. In this context, designing flexible models and consistent estimation methods is often a challenging task. On the other hand, graphs are structures made of nodes (or agents) and edges (or links), where an edge represents an interaction or relationship between two nodes. Graphs are ubiquitous to model real-world social, transport, and mobility networks, where edges can correspond to virtual exchanges, physical connections between places, or migrations across geographical areas. Besides, graphs are used to represent correlations and lead-lag relationships between time series, and local dependence between random objects. Graphs are typical examples of non-Euclidean data, where adequate distance measures, similarity functions, and generative models need to be formalised. In the deep learning community, graphs have become particularly popular within the field of geometric deep learning. Structure and dependence can both be modelled by temporal point processes and graphs, although predominantly, the former act on the temporal domain while the latter conceptualise spatial interactions. Nonetheless, some statistical models combine graphs and point processes in order to account for both spatial and temporal dependencies. For instance, temporal point processes have been used to model the birth times of edges and nodes in temporal graphs. Moreover, some multivariate point processes models have a latent graph parameter governing the pairwise causal relationships between the components of the process. In this thesis, I will notably study such a model, called the Hawkes model, as well as graphs evolving in time. This thesis aims at designing inference methods that provide flexibility in the contexts of temporal point processes and graphs. This manuscript is presented in an integrated format, with four main chapters and two appendices. Chapters 2 and 3 are dedicated to the study of Bayesian nonparametric inference methods in the generalised Hawkes point process model. While Chapter 2 provides theoretical guarantees for existing methods, Chapter 3 also proposes, analyses, and evaluates a novel variational Bayes methodology. The other main chapters introduce and study model-free inference approaches for two estimation problems on graphs, namely spectral methods for the signed graph clustering problem in Chapter 4, and a deep learning algorithm for the network change point detection task on temporal graphs in Chapter 5. Additionally, Chapter 1 provides an introduction and background preliminaries on point processes and graphs. Chapter 6 concludes this thesis with a summary and critical thinking on the works in this manuscript, and proposals for future research. Finally, the appendices contain two supplementary papers. The first one, in Appendix A, initiated after the COVID-19 outbreak in March 2020, is an application of a discrete-time Hawkes model to COVID-related deaths counts during the first wave of the pandemic. The second work, in Appendix B, was conducted during an internship at Amazon Research in 2021, and proposes an explainability method for anomaly detection models acting on multivariate time series
    corecore